1
|
Uzelac M, Sladonja B, Šola I, Dudaš S, Bilić J, Famuyide IM, McGaw LJ, Eloff JN, Mikulic-Petkovsek M, Poljuha D. Invasive Alien Species as a Potential Source of Phytopharmaceuticals: Phenolic Composition and Antimicrobial and Cytotoxic Activity of Robinia pseudoacacia L. Leaf and Flower Extracts. PLANTS (BASEL, SWITZERLAND) 2023; 12:2715. [PMID: 37514330 PMCID: PMC10385011 DOI: 10.3390/plants12142715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Black locust (Robinia pseudoacacia L.), an invasive tree in Europe, commonly known for its negative impact on biodiversity, is a rich source of phenolic compounds recognized in traditional medicine. Since the metabolite profile depends on the environment and climate, this study aimed to provide the first LC-MS phytochemical screening of the black locust from the Istria region (Croatia). The compounds were extracted from leaves and flowers with 70% ethanol and 80% methanol. Total phenolics (TP) and flavonoids (TF), as well as antioxidant capacity (AC) measured by ABTS (17.49-146.41 mg TE/g DW), DPPH (24.67-118.49 mg TE/g DW), and FRAP (7.38-77.53 mg TE/g DW) assays, were higher in leaf than in flower extracts. Higher TP and total non-flavonoid (TNF) values were displayed in ethanolic than in methanolic extracts. In total, 64 compounds were identified, of which flavonols (20) and hydroxycinnamic acid derivatives (15) were the most represented. Flavanols such as catechin dominated in leaf extracts, followed by flavonols, with kaempferol glucuronyl rhamnosyl hexosides as the main compound, respectively. Flower extracts had the highest share of flavones, followed by ellagitannins, with luteolin dirhamnosyl hexosides and vescalagin, respectively, being predominant. The extracts had good quorum sensing, biofilm formation prevention, and eradicating capacity. The results provided new insights into the phytochemical properties of R. pseudoacacia as the first step toward its potential pharmaceutical use.
Collapse
Affiliation(s)
- Mirela Uzelac
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Barbara Sladonja
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Slavica Dudaš
- Agricultural Department, Polytechnic of Rijeka, Karla Huguesa 6, 52440 Poreč, Croatia
| | - Josipa Bilić
- METRIS Research Centre, Istrian University of Applied Sciences, Zagrebačka 30, 52100 Pula, Croatia
| | - Ibukun M Famuyide
- Phytomedicine Programme, Paraclinical Sciences Department, University of Pretoria, P/Bag X04, Onderstepoort, Pretoria 0110, Gauteng, South Africa
| | - Lyndy J McGaw
- Phytomedicine Programme, Paraclinical Sciences Department, University of Pretoria, P/Bag X04, Onderstepoort, Pretoria 0110, Gauteng, South Africa
| | - Jacobus N Eloff
- Phytomedicine Programme, Paraclinical Sciences Department, University of Pretoria, P/Bag X04, Onderstepoort, Pretoria 0110, Gauteng, South Africa
| | - Maja Mikulic-Petkovsek
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Danijela Poljuha
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| |
Collapse
|
2
|
The Outer Membrane Proteins and Their Synergy Triggered the Protective Effects against Pathogenic Escherichia coli. Microorganisms 2022; 10:microorganisms10050982. [PMID: 35630426 PMCID: PMC9143122 DOI: 10.3390/microorganisms10050982] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Colibacillosis caused by pathogenic Escherichia coli (E. coli) is one of the most serious infectious diseases, causing an extensive burden on animal husbandry and the human healthcare system. Vaccination is one of the ideal ways to prevent E. coli infection. In this work, recombinant outer membrane protein A (rOmpA), outer membrane protein C (rOmpC) and BamA (rBamA) from E. coli O78 (CVCC CAU0768) were expressed in a prokaryotic expression system with the concentration of 1–2 mg/mL after purification. Considerable immune responses could be triggered in mice that were immunized with these recombinant proteins, high antibody titers, high total IgG level and various antibody isotypes were detected in antisera after booster immunizations. Moreover, mice immunized with several recombinant proteins in combination showed a higher survival rate with the challenge of homologous strain E. coli O78 and a more significant cross-protection effect against heterologous strain E. coli O157:H7 (CICC 21530) in vivo than those of immunized alone. The antisera from immunized mice showed high affinity to multiple strains of Escherichia, Shigella and Salmonella in vitro, indicating that recombinant outer membrane proteins from E. coli O78 had the potential to be developed into universal antigenic substances against not only E. coli but also a variety of Gram-negative bacteria. rOmpA was considered as the most immunogenic protein in this work and the combination of different proteins could further enhance the immune response of immunized mice, which provided the reference for the construction of novel antigens with higher efficiency.
Collapse
|
3
|
Experimental study of Forsythoside A on prevention and treatment of avian infectious bronchitis. Res Vet Sci 2020; 135:523-531. [PMID: 33234322 DOI: 10.1016/j.rvsc.2020.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/06/2020] [Accepted: 11/15/2020] [Indexed: 02/02/2023]
Abstract
Forsythoside A is the main active ingredient in the Chinese medicine Forsythia suspensa, which has antiviral, anti-inflammatory, antioxidation, and immunoregulatory effects. It is reported that Forsythoside A can significantly inhibit the replication of the avian infectious bronchitis virus(IBV) in cells, but there is no report in chickens. The present study aimed to investigate the effect of Forsythoside A on IBV-M41, experiments were designed using 120 chickens at 12 days of age. The chickens were randomly divided into eight groups: Forsythoside A high-, medium-, and low-dose prevention groups, Forsythoside A high-, medium-, and low-dose treatment groups, model control group and normal control group. All chickens, except the normal control group, were inoculated with 0.2 ml of IBV-M41 at 15 days of age.The antiviral effects were evaluated by clinical signs, weight, histopathology, T-,B-lymphocyte proliferation, T-lymphocyte subsets and cytokine levels.The results showed that the infection rate in each Forsythoside A prevention group was significantly lower than that in the treatment group and model control group (P < 0.05). The recovery rate in each Forsythoside A treatment group was significantly higher than that in the model control group (P < 0.05), and the recovery rate in high- and medium-dose treatment group was the highest, at up to 86.67%. Lymphocytic transformation ability significantly improved in the prevention and treatment groups. Forsythoside A significantly improved the CD3+, CD4+, and CD8+ T-lymphocyte of infected chickens. The cytokine level was able to maintain high concentrations of IL-2 and IFN-α for a long time and maintain a dynamic IL-4-concentration balance. A number of results showed that Forsythoside A had both preventive and therapeutic effects in IBV-M41-infected chickens, among which the high-dose (80 mg/kg/d) prevention group,the high- (80 mg/kg/d) and medium (40 mg/kg/d) -dose treatment group had significant effects.
Collapse
|
4
|
Chen Z, Liu J, Kong X, Li H. Characterization and Immunological Activities of Polysaccharides from Polygonatum sibiricum. Biol Pharm Bull 2020; 43:959-967. [DOI: 10.1248/bpb.b19-00978] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zhangbao Chen
- College of Pharmaceutical Sciences, Southwest University
| | - Jiaojiao Liu
- College of Pharmaceutical Sciences, Southwest University
| | - Xia Kong
- College of Pharmaceutical Sciences, Southwest University
| | - Hui Li
- College of Pharmaceutical Sciences, Southwest University
| |
Collapse
|
5
|
Guo H, Wan X, Niu F, Sun J, Shi C, Ye JM, Zhou C. Evaluation of antiviral effect and toxicity of total flavonoids extracted from Robinia pseudoacacia cv. idaho. Biomed Pharmacother 2019; 118:109335. [PMID: 31452513 DOI: 10.1016/j.biopha.2019.109335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/30/2022] Open
Abstract
In this study, we aimed to evaluate the antiviral effect of total flavonoids extracted from Robinia pseudoacacia cv. idaho (RPTF) in vivo and its toxicity on rats with oral gavage. RPTF was prepared by percolation with 70% ethanol for 24 h and its antiviral effect on different kinds of viruses was evaluated in vitro by MTT staining. The long-term toxicity of RPTF on rats was evaluated through the detection of general behavior, body weight, food intake and related organ tissue sections of experimental animals. We found that RPTF produced significantly inhibitory effects on HSV-1 and EV-71 viruses with the therapeutic index TI values 113.8 and 46.2, respectively. Moreover, toxicity evaluation in vivo showed no significantly adverse effects in rats, indicating that RPTF was safe in use. In conclusion, we demonstrated that RPTF, natural compounds in the Chinese traditional medicine, could act as promising and effective antiviral therapeutics with relative safety in use.
Collapse
Affiliation(s)
- Hao Guo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan City, Shandong, China
| | - Xinhuan Wan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan City, Shandong, China
| | - Fengju Niu
- Department of Shandong Institute of Traditional Chinese Medicine, Jinan, China
| | - Jujie Sun
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences
| | - Chenxiao Shi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan City, Shandong, China
| | - Jessica Meng Ye
- School of Land and Food Systems, University of British Columbia, Vancouver, Canada
| | - Changzheng Zhou
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan City, Shandong, China.
| |
Collapse
|
6
|
A polysaccharide found in Paulownia fortunei flowers can enhance cellular and humoral immunity in chickens. Int J Biol Macromol 2019; 130:213-219. [DOI: 10.1016/j.ijbiomac.2019.01.168] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 01/01/2023]
|
7
|
Immunomodulatory Effects of Robinia pseudoacacia Polysaccharides on Live Vaccine against Infectious Bronchitis in Immunosuppressive Chickens. INT J POLYM SCI 2019. [DOI: 10.1155/2019/9542759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In order to investigate the immunomodulatory effect of Robinia pseudoacacia Polysaccharides (RPPS) on vaccine against Infectious Bronchitis (IB) in immunosuppressive chickens, the artificial leukemia chicken model was established and then the IB live vaccine (H120 strain) was immunized. The immunomodulatory efficacy of RPPS was determined by the antibody titer, the lymphocyte transformation rate in peripheral blood, the CD4+ and CD8+ T lymphocyte levels in peripheral blood, and the cytokine levels in the serum. The results showed that RPPS could not only enhance the immune effect of IB live vaccine but also improve the immunity of immunosuppressive chickens. Thus, the function of RPPS immunopotentiator could be further developed.
Collapse
|
8
|
Yang S, Li G, Zhao Z, Huang Z, Fu J, Song M, Lin S, Zhu R. Taishan Pinus massoniana Pollen Polysaccharides Enhance Immune Responses in Chickens Infected by Avian Leukosis Virus Subgroup B. Immunol Invest 2018; 47:443-456. [DOI: 10.1080/08820139.2018.1435689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Shifa Yang
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Guiming Li
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Zengcheng Zhao
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Zhongli Huang
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Jian Fu
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Minxun Song
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Shuqian Lin
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Ruiliang Zhu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
9
|
Liu N, Dong Z, Zhu X, Xu H, Zhao Z. Characterization and protective effect of Polygonatum sibiricum polysaccharide against cyclophosphamide-induced immunosuppression in Balb/c mice. Int J Biol Macromol 2017; 107:796-802. [PMID: 28939510 DOI: 10.1016/j.ijbiomac.2017.09.051] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/07/2017] [Accepted: 09/15/2017] [Indexed: 12/30/2022]
Abstract
In this study, the polysaccharide from Polygonatum sibiricum (PSP) was evaluated for the immunomodulatory activity by the cyclophosphamide (Cy)-induced immunosuppressed-model in vivo. The PSP has been analyzed in order to identify a variety of chemical properties such as monosaccharide compositions and structural confirmation. The results show that the main components of PSP were galactose and rhamnose. The PSP could significantly stimulate neutral red phagocytosis of RAW264.7 macrophages. Compared with the cyclophosphamide group, PSP accelerated recovery of spleen and thymus indexes, and enhanced T cell and B cell proliferation responses as well as peritoneal macrophage phagocytosis. In addition, PSP treatment restored the levels of IL-2, TNF-α, IL-8 and IL-10 in the serum of the Cy-treated mice in a dose-dependent manner. Therefore, PSP played an important role in the protection against immunosuppression in the Cy-treated mice and could be used as a potential immunostimulant agent.
Collapse
Affiliation(s)
- Na Liu
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Shandong Xinhua Pharmaceutical Company Limited, 1 lutai road, Zibo, Shandong 255086, PR China
| | - Zhonghua Dong
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Xiaosong Zhu
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Hongya Xu
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Shandong Engineering & Technology Research Center for Jujube Food and Drug, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Shandong Provincial Key Laboratory of Mucosal and Transdermal Drug Delivery Technologies, Shandong Academy of Pharmaceutical Sciences, 989 Xinluo Street, Jinan, Shandong 250101, PR China.
| |
Collapse
|
10
|
Yang S, Li G, Zhao Z, Feng M, Fu J, Huang Z, Song M, Lin S. The Taishan Robinia pseudoacacia polysaccharides enhance immune effects of rabbit haemorrhagic disease virus inactivated vaccines. Microb Pathog 2017; 112:70-75. [PMID: 28935204 DOI: 10.1016/j.micpath.2017.09.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 01/23/2023]
Abstract
Robinia pseudoacacia flower, a common component in traditional Chinese medicine, has long been well-known for its high pharmaceutical value. This study aimed to assess the immunopotentiating effects of Taishan Robinia Pseudoacacia polysaccharides (TRPPS) in rabbits inoculated with a rabbit haemorrhagic disease virus (RHDV) inactivated vaccine. The rabbits were administered with the RHDV vaccine in conjunction with varying concentrations of TRPPS, and their blood samples were collected at different time points to analyze the ratio and number of blood lymphocytes. In addition, sera were prepared and analyzed to determine the overall antibody titer and the level of IL-2, a cytokine commonly used as an indicator of immune activity. The various TRPPS-supplemented vaccines were shown to be more effective in enhancing the immune functions of the inoculated rabbits compared to their polysaccharide-free counterpart, with 200 mg/mL of TRPPS exhibiting the most pronounced benefits that were comparable to those of propolis. In addition, the TRPPS-supplemented RHDV inactivated vaccines could significantly improve the survival rates of the immunized rabbits against RHDV infection. Our studies offered convincing experimental evidence for the development of TRPPS as a new type of plant-derived immunopotentiator.
Collapse
Affiliation(s)
- Shifa Yang
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Shandong, Jinan 250023, China
| | - Guiming Li
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Shandong, Jinan 250023, China
| | - Zengcheng Zhao
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Shandong, Jinan 250023, China
| | - Minyan Feng
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Shandong, Jinan 250023, China
| | - Jian Fu
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Shandong, Jinan 250023, China
| | - Zhongli Huang
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Shandong, Jinan 250023, China
| | - Minxun Song
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Shandong, Jinan 250023, China
| | - Shuqian Lin
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Shandong, Jinan 250023, China.
| |
Collapse
|
11
|
Zhou J, Wei K, Wang C, Dong W, Ma N, Zhu L, Hu LP, Huang H, Zhu R. Oral immunisation with Taishan Pinus massoniana pollen polysaccharide adjuvant with recombinant Lactococcus lactis-expressing Proteus mirabilis ompA confers optimal protection in mice. Allergol Immunopathol (Madr) 2017. [PMID: 28629671 DOI: 10.1016/j.aller.2017.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Proteus mirabilis poses a critical burden on the breeding industry, but no efficient vaccine is available for animals. METHOD A recombinant Lactococcus lactis expressing the ompA of P. mirabilis was used to develop a vaccine. The mucosal and systemic immune responses of the recombinant vaccine were evaluated in mice after oral immunisation. The inhibition on P. mirabilis colonisation of vaccines was also determined. Moreover, Taishan Pinus massoniana pollen polysaccharides (TPPPS) were used as adjuvants to examine the immunomodulatory effects. RESULTS The pure recombinant L. lactis vaccine significantly induced the production of specific IgA and IgG, IL-2, IL-4, IFN-γ, and T lymphocyte proliferation, and the immunised mice exhibited significant resistance to P. mirabilis colonisation. Notably, the TPPPS adjuvant vaccines induced higher levels of immune responses than the pure L. lactis. CONCLUSIONS The L. lactis as a vaccine vehicle combined with TPPPS adjuvant provides a feasible method for preventing P. mirabilis infection.
Collapse
Affiliation(s)
- J Zhou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Shandong Taian 271018, PR China
| | - K Wei
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Shandong Taian 271018, PR China
| | - C Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Shandong Taian 271018, PR China
| | - W Dong
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Shandong Taian 271018, PR China
| | - N Ma
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Shandong Taian 271018, PR China
| | - L Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Shandong Taian 271018, PR China
| | - L P Hu
- Animal Disease Prevention and Control Center of Shandong Province, Animal Husbandry and Veterinary Bureau of Shandong Province, Shandong Jinan 250022, PR China
| | - H Huang
- Shandong New Hope Liuhe Co., Ltd, New Hope Group, Shandong Qingdao, 266061, PR China
| | - R Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Shandong Taian 271018, PR China.
| |
Collapse
|
12
|
Qiao D, Wei C, Chen N, Min Y, Xu H, Chen R. Influences of Hyriopsis cumingii polysaccharides on mice immunosignaling molecules and T lymphocyte differentiation. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1306494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Deliang Qiao
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, People's Republic of China
| | - Chuanbao Wei
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, People's Republic of China
| | - Naidong Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, People's Republic of China
| | - Yunjiang Min
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, People's Republic of China
| | - Haijun Xu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, People's Republic of China
| | - Rui Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, People's Republic of China
| |
Collapse
|
13
|
Pi J, Wang Y, Zhu H, Jin H, Jiang J, Yang F, Ma CW, Hu M, Ma F, Cai H, Cai J. Immunomodulatory effects of polysaccharide compounds in macrophages revealed by high resolution AFM. SCANNING 2016; 38:792-801. [PMID: 27280953 DOI: 10.1002/sca.21329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/16/2016] [Indexed: 06/06/2023]
Abstract
Polysaccharide compounds (PCs), which composed of different kinds of polysaccharides always isolated from different kinds of traditional Chinese medicine, are now attracting more and more attentions due to their strong immunomodulatory activities beyond the corresponding one-component polysaccharides. In this study, we demonstrated for the first time that PCs-1 and PCs-2 had strong immunomodulatory effects on macrophages both in in vitro and in vivo models by atomic force microscopy (AFM). By high resolution AFM imaging, PCs-1 and PCs-2 were found to inhibit LPS induced cell surface particle size and roughness increase in RAW264.7 macrophages, demonstrating the anti-inflammatory effects of PCs-1 and PCs-2 on macrophages. PCs-1 and PCs-2 were also proved to increase the particle size and roughness of resting RAW264.7 macrophages, which suggested that PCs could activate resting RAW264.7 macrophages. And additionally, PCs-1 and PCs-2 were also found to reverse the surface particle size and roughness decrease of peritoneal macrophages isolated from cyclophosphamide induced immunosuppressive mice, suggesting the activation effects of PCs-1 and PCs-2 on immunosuppressive macrophages. These results further enhanced our understanding of macrophage activations by direct imaging of cell surface ultrastructure and also highlighted AFM as a novel nanotool for macrophage detections. And most importantly, these results also indicated the outstanding immunomodulatory effects of PCs on macrophages, which therefore suggested that PCs could be served as a kind of novel immunomodulatory agents that would benefit human health. SCANNING 38:792-801, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jiang Pi
- Department of Chemistry, Jinan University, Guangzhou, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Yuanyuan Wang
- Infinitus Chinese Herbal Immunity Research Centre, Guangzhou, China
| | - Haiyan Zhu
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Hua Jin
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jinhuan Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Fen Yang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Chung Wah Ma
- Infinitus Chinese Herbal Immunity Research Centre, Guangzhou, China
| | - Minghua Hu
- Infinitus Chinese Herbal Immunity Research Centre, Guangzhou, China
| | - Fangli Ma
- Infinitus Chinese Herbal Immunity Research Centre, Guangzhou, China
| | - Huaihong Cai
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Jiye Cai
- Department of Chemistry, Jinan University, Guangzhou, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| |
Collapse
|
14
|
The immune adjuvant response of polysaccharides from Atractylodis macrocephalae Koidz in chickens vaccinated against Newcastle disease (ND). Carbohydr Polym 2016; 141:190-6. [PMID: 26877012 DOI: 10.1016/j.carbpol.2016.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/06/2016] [Accepted: 01/10/2016] [Indexed: 11/18/2022]
|
15
|
Zhu F, Liu X, Sun Z, Yu C, Liu L, Yang S, Li B, Wei K, Zhu R. Immune-Enhancing Effects of Taishan Pinus massoniana Pollen Polysaccharides on DNA Vaccine Expressing Bordetella avium ompA. Front Microbiol 2016; 7:66. [PMID: 26870023 PMCID: PMC4735580 DOI: 10.3389/fmicb.2016.00066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/14/2016] [Indexed: 11/17/2022] Open
Abstract
Bordetella avium is the causative agent of bordetellosis, which remains to be the cause of severe losses in the turkey industry. Given the lack of vaccines that can provide good protection, developing a novel vaccine against B. avium infection is crucial. In this study, we constructed a eukaryotic expression plasmid, which expressed the outer membrane protein A (ompA) of B. avium, to prepare a B. avium recombinant ompA-DNA vaccine. Three concentrations (low, middle, and high) of Taishan Pinus massoniana pollen polysaccharides (TPPPS), a known immunomodulator, were used as adjuvants, and their immune conditioning effects on the developed DNA vaccine were examined. The pure ompA-DNA vaccine, Freund’s incomplete adjuvant ompA-DNA vaccine, and the empty plasmid served as the controls. The chickens in each group were separately inoculated with these vaccines three times at 1, 7, and 14 days old. Dynamic changes in antibody production, cytokine secretion, and lymphocyte count were then determined from 7 to 49 days after the first inoculation. Protective rates of the vaccines were also determined after the third inoculation. Results showed that the pure DNA vaccine obviously induced the production of antibodies, the secretion of cytokines, and the increase in CD4+ and CD8+ T lymphocyte counts in peripheral blood, as well as provided a protective rate of 50% to the B. avium-challenged chickens. The chickens inoculated with the TPPPS adjuvant ompA-DNA vaccine and Freund’s adjuvant ompA-DNA vaccine demonstrated higher levels of immune responses than those inoculated with pure ompA-DNA vaccine, whereas only the ompA-DNA vaccine with 200 mg/mL TPPPS completely protected the chickens against B. avium infection. These findings indicate that the B. avium ompA-DNA vaccine combined with TPPPS is a potentially effective B. avium vaccine.
Collapse
Affiliation(s)
- Fujie Zhu
- Laboratory of Animal Biological Products, College of Animal Science and Technology, Shandong Agricultural University Taian, China
| | - Xiao Liu
- Laboratory of Animal Biological Products, College of Animal Science and Technology, Shandong Agricultural University Taian, China
| | - Zhenhong Sun
- Analytic Laboratory, Institute of Preclinical Medicine, Taishan Medical College Taian, China
| | - Cuilian Yu
- Laboratory of Animal Biological Products, College of Animal Science and Technology, Shandong Agricultural University Taian, China
| | - Liping Liu
- Laboratory of Animal Biological Products, College of Animal Science and Technology, Shandong Agricultural University Taian, China
| | - Shifa Yang
- Laboratory of Animal Biological Products, College of Animal Science and Technology, Shandong Agricultural University Taian, China
| | - Bing Li
- Laboratory of Animal Biological Products, College of Animal Science and Technology, Shandong Agricultural University Taian, China
| | - Kai Wei
- Laboratory of Animal Biological Products, College of Animal Science and Technology, Shandong Agricultural University Taian, China
| | - Ruiliang Zhu
- Laboratory of Animal Biological Products, College of Animal Science and Technology, Shandong Agricultural University Taian, China
| |
Collapse
|