1
|
Wang B, Shen J, Wang X, Hou R. Biomimetic nanoparticles for effective Celastrol delivery to targeted treatment of rheumatoid arthritis through the ROS-NF-κB inflammasome axis. Int Immunopharmacol 2024; 131:111822. [PMID: 38503010 DOI: 10.1016/j.intimp.2024.111822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024]
Abstract
Previous study has indicated that Celastrol (Cel) has various physiological and pharmacological effects, including antibacterial, antioxidant, pro-apoptotic, anticancer and anti-rheumatoid arthritis (RA) effects. However, low water solubility, low oral bioavailability, narrow treatment window, and high incidence of systemic adverse reactions still limit the further clinical application of Cel. Here, aiming at effectively overcome those shortcomings of Cel to boost its beneficial effects for treating RA, we developed the leukosome (LEUKO) coated biomimetic nanoparticles (NPs) for the targeted delivery of Cel to arthritis injury area in RA. LEUKO were synthesized using membrane proteins purified from activated J774 macrophage. LEUKO and Cel-loaded LEUKO (Cel@LEUKO) were characterized using dynamic light scattering and transmission electron microscopy. Our results demonstrated that Cel@LEUKO can inhibit the inflammatory response of lipopolysaccharide (LPS) induced mouse monocyte macrophage leukemia cells (RAW264.7 cells) and human rheumatoid arthritis synovial fibroblasts (MH7A) cells through the inhibition of reactive oxygen species (ROS)-NF-κB pathway. In addition, research has shown that LEUKO effectively targets and transports Cel to the inflammatory site of RA, increased drug concentration in affected areas, reduced systemic toxicity of Cel, and reduced clinical symptoms, inflammatory infiltration, bone erosion, and serum inflammatory factors in collagen-induced arthritis (CIA) rats.
Collapse
Affiliation(s)
- Bo Wang
- Department of Orthopaedics, Suzhou Ruihua Orthopedic Hospital Affiliated Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215000, China; Department of Orthopaedics, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, China.
| | - Jiquan Shen
- Department of Orthopaedics, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, China
| | - Xinggao Wang
- Department of Orthopaedics, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, China
| | - Ruixing Hou
- Department of Orthopaedics, Suzhou Ruihua Orthopedic Hospital Affiliated Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
2
|
Tong Y, Li X, Deng Q, Shi J, Feng Y, Bai L. Advances of the small molecule drugs regulating fibroblast-like synovial proliferation for rheumatoid arthritis. Front Pharmacol 2023; 14:1230293. [PMID: 37547337 PMCID: PMC10400780 DOI: 10.3389/fphar.2023.1230293] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Rheumatoid arthritis (RA) is a type of chronic autoimmune and inflammatory disease. In the pathological process of RA, the alteration of fibroblast-like synoviocyte (FLS) and its related factors is the main influence in the clinic and fundamental research. In RA, FLS exhibits a uniquely aggressive phenotype, leading to synovial hyperplasia, destruction of the cartilage and bone, and a pro-inflammatory environment in the synovial tissue for perpetuation and progression. Evidently, it is a highly promising way to target the pathological function of FLS for new anti-RA drugs. Based on this, we summed up the pathological mechanism of RA-FLS and reviewed the recent progress of small molecule drugs, including the synthetic small molecule compounds and natural products targeting RA-FLS. In the end, there were some views for further action. Compared with MAPK and NF-κB signaling pathways, the JAK/STAT signaling pathway has great potential for research as targets. A small number of synthetic small molecule compounds have entered the clinic to treat RA and are often used in combination with other drugs. Meanwhile, most natural products are currently in the experimental stage, not the clinical trial stage, such as triptolide. There is an urgent need to unremittingly develop new agents for RA.
Collapse
Affiliation(s)
- Yitong Tong
- Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Xinyu Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qichuan Deng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Shirai T, Nakai A, Ando E, Fujimoto J, Leach S, Arimori T, Higo D, van Eerden FJ, Tulyeu J, Liu YC, Okuzaki D, Murayama MA, Miyata H, Nunomura K, Lin B, Tani A, Kumanogoh A, Ikawa M, Wing JB, Standley DM, Takagi J, Suzuki K. Celastrol suppresses humoral immune responses and autoimmunity by targeting the COMMD3/8 complex. Sci Immunol 2023; 8:eadc9324. [PMID: 37000855 DOI: 10.1126/sciimmunol.adc9324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Celastrol, a bioactive molecule extracted from the
Tripterygium wilfordii
plant, has been shown to exhibit anti-inflammatory properties. However, its mechanism of action has not been fully elucidated. Here, we show that celastrol suppresses humoral immune responses and autoimmunity by disabling a protein complex consisting of copper metabolism MURR1 domain–containing (COMMD) 3 and COMMD8 (COMMD3/8 complex), a signaling adaptor for chemoattractant receptors. Having demonstrated the involvement of the COMMD3/8 complex in a mouse model of rheumatoid arthritis, we identified celastrol as a compound that covalently bound to and dissociated the COMMD3/8 complex. Celastrol inhibited B cell migration, reduced antibody responses, and blocked arthritis progression, recapitulating deficiency of the COMMD3/8 complex. These effects of celastrol were abolished in mice expressing a celastrol-resistant mutant of the COMMD3/8 complex. These findings establish that celastrol exerts immunosuppressive activity by targeting the COMMD3/8 complex. Our study suggests that the COMMD3/8 complex is a potentially druggable target in autoimmune diseases and points to celastrol as a lead pharmacologic candidate in this capacity.
Collapse
Affiliation(s)
- Taiichiro Shirai
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Akiko Nakai
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Immune Response Dynamics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Emiko Ando
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Jun Fujimoto
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Sarah Leach
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Takao Arimori
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Daisuke Higo
- Thermo Fisher Scientific K.K., Yokohama, Kanagawa, Japan
| | - Floris J. van Eerden
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Janyerkye Tulyeu
- Laboratory of Human Single Cell Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Yu-Chen Liu
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masanori A. Murayama
- Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Haruhiko Miyata
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kazuto Nunomura
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, Suita, Osaka, Japan
| | - Bangzhong Lin
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, Suita, Osaka, Japan
| | - Akiyoshi Tani
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Masahito Ikawa
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - James B. Wing
- Laboratory of Human Single Cell Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Daron M. Standley
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Junichi Takagi
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Kazuhiro Suzuki
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immune Response Dynamics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
4
|
Wang Q, Lei Z, Wang Z, Jiang Q, Zhang Z, Liu X, Xing B, Li S, Guo X, Liu Y, Li X, Shu K, Zhang H, Huang Y, Lei T. PKCθ Regulates Pituitary Adenoma Bone Invasion by Activating Osteoclast in NF-κB/IL-1β-Dependent Manner. Cancers (Basel) 2023; 15:cancers15051624. [PMID: 36900414 PMCID: PMC10001016 DOI: 10.3390/cancers15051624] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/13/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Pituitary adenoma (PA) bone invasion results in adverse outcomes, such as reduced rates of complete surgical resection and biochemical remission as well as increased recurrence rates, though few studies have been conducted. METHODS We collected clinical specimens of PAs for staining and statistical analysis. Evaluation of the ability of PA cells to induce monocyte-osteoclast differentiation by coculturing PA cells with RAW264.7 in vitro. An in vivo model of bone invasion was used to simulate the process of bone erosion and evaluate the effect of different interventions in alleviating bone invasion. RESULTS We found an overactivation of osteoclasts in bone-invasive PAs and concomitant aggregation of inflammatory factors. Furthermore, activation of PKCθ in PAs was established as a central signaling promoting PA bone invasion through the PKCθ/NF-κB/IL-1β pathway. By inhibiting PKCθ and blocking IL1β, we were able to significantly reverse bone invasion in an in vivo study. Meanwhile, we also found that celastrol, as a natural product, can obviously reduce the secretion of IL-1β as well as alleviate the progression of bone invasion. CONCLUSIONS By activating the PKCθ/NF-κB/IL-1β pathway, pituitary tumors are able to induce monocyte-osteoclast differentiation in a paracrine manner and promote bone invasion, which can be alleviated by celastrol.
Collapse
Affiliation(s)
- Quanji Wang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Zhuowei Lei
- Department of Orthopedics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Zihan Wang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Qian Jiang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Zhuo Zhang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Xiaojin Liu
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Biao Xing
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Sihan Li
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Xiang Guo
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Yanchao Liu
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Xingbo Li
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Kai Shu
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Huaqiu Zhang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Yimin Huang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
- Correspondence: (Y.H.); (T.L.)
| | - Ting Lei
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
- Correspondence: (Y.H.); (T.L.)
| |
Collapse
|
5
|
Yang J, Liu J, Li J, Jing M, Zhang L, Sun M, Wang Q, Sun H, Hou G, Wang C, Xin W. Celastrol inhibits rheumatoid arthritis by inducing autophagy via inhibition of the PI3K/AKT/mTOR signaling pathway. Int Immunopharmacol 2022; 112:109241. [PMID: 36116150 DOI: 10.1016/j.intimp.2022.109241] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disorder of the synovial joints. Celastrol (Cel) is a quinone-methylated triterpenoid extracted from Tripterygium wilfordii Hook F (TwHF) that has been proven to be effective in treating RA. However, the underlying molecular mechanism of celastrol in the treatment of RA remains unknown. This study explored the protective effect of celastrol against RA and the specific mechanisms of celastrol in vitro and in vivo. METHODS A chicken type II collagen (CII)-induced arthritis (CIA) mouse model was used to explore the anti-arthritic effects of celastrol, and paw swelling degree, the poly-arthritis index score and serum cytokine levels were determined. Pathological morphology was observed using hematoxylin and eosin (H&E) staining. The influences of celastrol on the proliferation of tumor necrosis factor-α (TNF-α)-induced fibroblast-like synoviocytes (FLSs) were tested by Cell Counting Kit-8 (CCK-8) assays and5-ethynyl-2'-deoxyuridine (EdU) staining assays. The level of autophagy was detected by transmission electron microscopy (TEM). Furthermore, the PI3K/AKT/mTOR pathway and the status of autophagy in the CIA model and FLSs were also detected by western blot and immunofluorescence staining. RESULTS The results showed that celastrol decreased arthritis severity and inhibited TNF-α-induced FLSs proliferation. Additionally, celastrol decreased the secretion of pro-inflammatory cytokines. Moreover, celastrol increased autophagosome levels and LC3B protein expression in TNF-α-treated FLSs. Furthermore, celastrol increased the protein expression of LC3-II and Beclin-1 and decreased the phosphorylation degree of mTOR and AKT. CONCLUSION In conclusion, our findings confirmed that celastrol ameliorates RA via the up-regulation of autophagy by inhibiting the PI3K/AKT/mTOR axis.
Collapse
Affiliation(s)
- Junjie Yang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Jiayu Liu
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Jing Li
- Department of Neurology, Guangdong Hospital of Traditional Chinese Medicine Guangdong, Guangzhou 510120, China
| | - Ming Jing
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Leiming Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Yantai University, Yantai 264005, Shandong, China
| | - Mengmeng Sun
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Yantai University, Yantai 264005, Shandong, China
| | - Qiaoyun Wang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Hongliu Sun
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Guige Hou
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China.
| | - Chunhua Wang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China.
| | - Wenyu Xin
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China.
| |
Collapse
|
6
|
Lu Q, Xu J, Jiang H, Wei Q, Huang R, Huang G. The bone-protective mechanisms of active components from TCM drugs in rheumatoid arthritis treatment. Front Pharmacol 2022; 13:1000865. [PMID: 36386147 PMCID: PMC9641143 DOI: 10.3389/fphar.2022.1000865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease whose hallmarks are synovial inflammation and irreversible bone destruction. Bone resorption resulting from osteoclasts involves the whole immune and bone systems. Breakdown of bone remodeling is attributed to overactive immune cells that produce large quantities of cytokines, upregulated differentiation of osteoclasts with enhanced resorptive activities, suppressed differentiation of osteoblasts, invading fibroblasts and microbiota dysbiosis. Despite the mitigation of inflammation, the existing treatment in Western medicine fails to prevent bone loss during disease progression. Traditional Chinese medicine (TCM) has been used for thousands of years in RA treatment, showing great efficacy in bone preservation. The complex components from the decoctions and prescriptions exhibit various pharmacological activities. This review summarizes the research progress that has been made in terms of the bone-protective effect of some representative compounds from TCM drugs and proposes the substantial mechanisms involved in bone metabolism to provide some clues for future studies. These active components systemically suppress bone destruction via inhibiting joint inflammation, osteoclast differentiation, and fibroblast proliferation. Neutrophil, gut microenvironment and microRNA has been proposed as future focus.
Collapse
Affiliation(s)
- Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Haixu Jiang
- School of Chinese Materia, Beijing University of Chinese Medicine, Beijing, China
| | - Qiuzhu Wei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Runyue Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- *Correspondence: Guangrui Huang, ; Runyue Huang,
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Guangrui Huang, ; Runyue Huang,
| |
Collapse
|
7
|
Ding W, Miao Z, Feng X, Luo A, Tan W, Li P, Wang F. Alamandine, a new member of the renin-angiotensin system (RAS), attenuates collagen-induced arthritis in mice via inhibiting cytokine secretion in synovial fibroblasts. Peptides 2022; 154:170816. [PMID: 35609788 DOI: 10.1016/j.peptides.2022.170816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 12/16/2022]
Abstract
Alamandine is a novel component of the renin-angiotensin system (RAS) as well as an important biologically active peptide. It has predominantly been studied in cardiovascular context. However, its role in rheumatoid arthritis (RA) remains unknown. Here we illustrated its effects on inflammatory cytokines production by synovial fibroblasts from RA and pathological changes in collagen-induced arthritis (CIA) mice. Alamandine (0.1, 1 and 10 µg/ml) did not affect the survival of the synovial fibroblasts, but decreased the migration and proinflammatory cytokines expression in TNF-α (10 ng/ml) stimulated cells in vitro. Additionally, alamandine selectively decreased phosphorylated-JNK expression induced by TNF-a stimulation in RA FLS. DBA/1 J mice were induced arthritis by a primary injection with an emulsion of bovine type II collagen (CII) and complete Freund's adjuvant (day 0) and a booster injection of CII in incomplete Freund's adjuvant (day 21). Mice were then given alamandine intraperitoneally in saline (50 μg/kg/day) from days 21-42. Histology and multiplex immunobead assay showed that alamandine treatment inhibited the development of arthritis and reduced the joint damage. This effect was accompanied by the reduced inflammatory cytokines (IL-6, IL-23, IFN-γ) mRNA expression in local joints, the decreased TNF-α, IL-6, IL-17 and the increased IL-10 levels in the serum from alamandine administrated CIA mice. In conclusion, alamandine attenuates the development of arthritis by suppressing inflammatory cytokines expression in RA synovial fibroblasts via MAPK signaling pathway, suggesting a potential therapeutic role for RA.
Collapse
Affiliation(s)
- Wei Ding
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Zhengyue Miao
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xiaoke Feng
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; Integrated Traditional Chinese and Western Medicine Institute of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Aishu Luo
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Wenfeng Tan
- Integrated Traditional Chinese and Western Medicine Institute of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Peng Li
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Fang Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
8
|
Cao Y, Liu J, Huang C, Tao Y, Wang Y, Chen X, Huang D. Wilforlide A ameliorates the progression of rheumatoid arthritis by inhibiting M1 macrophage polarization. J Pharmacol Sci 2022; 148:116-124. [PMID: 34924115 DOI: 10.1016/j.jphs.2021.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with increased M1 macrophages. The classical activated M1 macrophages produce various cytokines to control inflammation. Wilforlide A is a natural product that displays anti-inflammatory activities. However, the effect of Wilforlide A on RA progression and the potential mechanisms are unclear. Herein, the collagen-induced arthritis (CIA) mouse was used as an experimental model of RA. The administration of Wilforlide A reduced clinical scores, joint swelling and histological damage in ankle joints of RA mice. The secreted pro-inflammatory factors (MCP1, GM-CSF and M-CSF) and M1 biomarker iNOS in synovium were inhibited by Wilforlide A. In vitro, macrophages deriving from THP-1 cells were stimulated with LPS/IFN-γ to mimic M1 polarization. Similarly, Wilforlide A blocked macrophages polarizing towards M1 subsets. The in vitro results demonstrated that Wilforlide A suppressed LPS/IFN-γ-induced TLR4 upregulation, IκBα degradation and NF-κB p65 activation. In addition, TAK242 (a TLR4 inhibitor) treatment caused a similar inhibitory effect on M1 polarization with Wilforlide A, whereas it was less than the combination of TAK242 and Wilforlide A. Therefore, this work supports that Wilforlide A ameliorates M1 macrophage polarization in RA, which is partially mediated by TLR4/NF-κB signaling pathway inactivation.
Collapse
Affiliation(s)
- Yunxiang Cao
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine (TCM), Hefei, Anhui, 230031, China
| | - Jian Liu
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine (TCM), Hefei, Anhui, 230031, China.
| | - Chuanbing Huang
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine (TCM), Hefei, Anhui, 230031, China
| | - Yanhong Tao
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine (TCM), Hefei, Anhui, 230031, China
| | - Yuan Wang
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine (TCM), Hefei, Anhui, 230031, China
| | - Xi Chen
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine (TCM), Hefei, Anhui, 230031, China
| | - Dan Huang
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine (TCM), Hefei, Anhui, 230031, China
| |
Collapse
|
9
|
Xu Q, Cao Z, Xu J, Dai M, Zhang B, Lai Q, Liu X. Effects and mechanisms of natural plant active compounds for the treatment of osteoclast-mediated bone destructive diseases. J Drug Target 2021; 30:394-412. [PMID: 34859718 DOI: 10.1080/1061186x.2021.2013488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Bone-destructive diseases, caused by overdifferentiation of osteoclasts, reduce bone mass and quality, and disrupt bone microstructure, thereby causes osteoporosis, Paget's disease, osteolytic bone metastases, and rheumatoid arthritis. Osteoclasts, the only multinucleated cells with bone resorption function, are derived from haematopoietic progenitors of the monocyte/macrophage lineage. The regulation of osteoclast differentiation is considered an effective target for the treatment of bone-destructive diseases. Natural plant-derived products have received increasing attention in recent years due to their good safety profile, the preference of natural compounds over synthetic drugs, and their potential therapeutic and preventive activity against osteoclast-mediated bone-destructive diseases. In this study, we reviewed the research progress of the potential antiosteoclast active compounds extracted from medicinal plants and their molecular mechanisms. Active compounds from natural plants that inhibit osteoclast differentiation and functions include flavonoids, terpenoids, quinones, glucosides, polyphenols, alkaloids, coumarins, lignans, and limonoids. They inhibit bone destruction by downregulating the expression of osteoclast-specific marker genes (CTSK, MMP-9, TRAP, OSCAR, DC-STAMP, V-ATPase d2, and integrin av3) and transcription factors (c-Fos, NFATc1, and c-Src), prevent the effects of local factors (ROS, LPS, and NO), and suppress the activation of various signalling pathways (MAPK, NF-κB, Akt, and Ca2+). Therefore, osteoclast-targeting natural products are of great value in the prevention and treatment of bone destructive diseases.
Collapse
Affiliation(s)
- Qiang Xu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhiyou Cao
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - JiaQiang Xu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Min Dai
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Bin Zhang
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Lai
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xuqiang Liu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
10
|
Zhao X, Huang C, Su M, Ran Y, Wang Y, Yin Z. Reactive Oxygen Species-Responsive Celastrol-Loaded : Bilirubin Nanoparticles for the Treatment of Rheumatoid Arthritis. AAPS J 2021; 24:14. [PMID: 34907482 DOI: 10.1208/s12248-021-00636-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Celastrol (CLT) has shown anti-rheumatic activity against rheumatoid arthritis, while its poor water solubility and high organ toxicity restrict its further therapeutic applications. To mitigate these challenges, a reactive oxygen species (ROS)-responsive nanoparticle was developed for celastrol delivery based on the excessive ROS at the pathologic sites, which was synthesized by conjugating bilirubin to a polyethylene glycol (PEG) chain. The PEGylated bilirubin self-assembled into nanoparticle (BRNP) in aqueous solution had a hydrodynamic diameter of around 68.6 nm, and celastrol was loaded into BRNP (CLT/BRNP) with a drug encapsulation efficiency of 72.6% and a loading capacity of 6.6%. In vitro study revealed that CLT/BRNP exhibited the capacity of scavenging intracellular ROS and down-regulating the level of nitric oxide after it was effectively internalized by activated macrophages. Furthermore, in adjuvant-induced arthritis rats, BRNP was accumulated preferentially at inflamed joints, alleviating the joint swelling and bone erosion, which significantly decreased the secretion of pro-inflammatory cytokines to suppress the RA progression. Importantly, CLT/BRNP markedly enhanced its anti-arthritic effect and attenuated the toxic effect compared with free celastrol. Taken together, our results suggested that CLT/BRNP could be used for targeted drug delivery in rheumatoid arthritis.
Collapse
Affiliation(s)
- Xuan Zhao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, China
| | - Chengyuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, China
| | - Meiling Su
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, China
| | - Yu Ran
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, China
| | - Ying Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, China
| | - Zongning Yin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, China.
| |
Collapse
|
11
|
Zhao J, Zhang F, Xiao X, Wu Z, Hu Q, Jiang Y, Zhang W, Wei S, Ma X, Zhang X. Tripterygium hypoglaucum (Lévl.) Hutch and Its Main Bioactive Components: Recent Advances in Pharmacological Activity, Pharmacokinetics and Potential Toxicity. Front Pharmacol 2021; 12:715359. [PMID: 34887747 PMCID: PMC8650721 DOI: 10.3389/fphar.2021.715359] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/04/2021] [Indexed: 01/12/2023] Open
Abstract
Tripterygium hypoglaucum (Lévl.) Hutch (THH) is believed to play an important role in health care and disease treatment according to traditional Chinese medicine. Moreover, it is also the representative of medicine with both significant efficacy and potential toxicity. This characteristic causes THH hard for embracing and fearing. In order to verify its prospect for clinic, a wide variety of studies were carried out in the most recent years. However, there has not been any review about THH yet. Therefore, this review summarized its characteristic of components, pharmacological effect, pharmacokinetics and toxicity to comprehensively shed light on the potential clinical application. More than 120 secondary metabolites including terpenoids, alkaloids, glycosides, sugars, organic acids, oleanolic acid, polysaccharides and other components were found in THH based on phytochemical research. All these components might be the pharmacological bases for immunosuppression, anti-inflammatory and anti-tumour effect. In addition, recent studies found that THH and its bioactive compounds also demonstrated remarkable effect on obesity, insulin resistance, fertility and infection of virus. The main mechanism seemed to be closely related to regulation the balance of immune, inflammation, apoptosis and so on in various disease. Furthermore, the study of pharmacokinetics revealed quick elimination of the main component triptolide. The feature of celastrol was also investigated by several models. Finally, the side effect of THH was thought to be the key for its limitation in clinical application. A series of reports indicated that multiple organs or systems including liver, kidney and genital system were involved in the toxicity. Its potential serious problem in liver was paid specific attention in recent years. In summary, considering the significant effect and potential toxicity of THH as well as its components, the combined medication to inhibit the toxicity, maintain effect might be a promising method for clinical conversion. Modern advanced technology such as structure optimization might be another way to reach the efficacy and safety. Thus, THH is still a crucial plant which remains for further investigation.
Collapse
Affiliation(s)
- Junqi Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangling Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinxiao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shizhang Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaomei Zhang
- Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| |
Collapse
|
12
|
Hattori H, Takaoka K, Ueta M, Oshitani M, Tamaoka J, Noguchi K, Kishimoto H. Senescent RAW264.7 cells exhibit increased production of nitric oxide and release inducible nitric oxide synthase in exosomes. Mol Med Rep 2021; 24:681. [PMID: 34318909 DOI: 10.3892/mmr.2021.12320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/08/2021] [Indexed: 11/06/2022] Open
Abstract
Aging cells not only cease growing, but also secrete various proteins such as inflammatory cytokines. This secretory phenomenon is known as the senescence‑associated secretory phenotype (SASP). The aim of the present study was to elucidate the effects of senescence on the differentiation of osteoclast precursors (OCPs) and corresponding SASP. RAW264.7 cells were used as OCPs and were cultured to passage (P)5, P10 and P20. Cell proliferation assays, senescence‑associated β‑galactosidase staining and telomere length quantification were subsequently performed, and it was revealed that replicative senescence was induced at P20. In addition, the level of tartrate‑resistant acid phosphatase activity in P20 cells treated with receptor activator of nuclear factor‑κB ligand was significantly lower than that in P5 and P10 cells. The SASP factors interleukin‑6, tumour necrosis factor‑α and nitric oxide were significantly increased in P20 culture supernatants compared with those in P5 and P10 supernatants. Furthermore, the number of exosomes at P20 was increased compared with that at P5 and P10, and inducible nitric oxide synthase (iNOS) was expressed in exosomes at P20, but not in exosomes at P5. In conclusion, the present study revealed that senescent RAW264.7 cells exhibit increased expression of SASP factors and release iNOS in exosomes.
Collapse
Affiliation(s)
- Hirokazu Hattori
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Kazuki Takaoka
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Miho Ueta
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Masayuki Oshitani
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Joji Tamaoka
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Kazuma Noguchi
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Hiromitsu Kishimoto
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| |
Collapse
|
13
|
Xu Q, Chen G, Xu H, Xia G, Zhu M, Zhan H, Zhang B, Dai M, Fan H, Liu X. Celastrol Attenuates RANKL-Induced Osteoclastogenesis in vitro and Reduces Titanium Particle-Induced Osteolysis and Ovariectomy-Induced Bone Loss in vivo. Front Pharmacol 2021; 12:682541. [PMID: 34149427 PMCID: PMC8210420 DOI: 10.3389/fphar.2021.682541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 12/03/2022] Open
Abstract
Excessive bone resorption by osteoclasts contributes significantly to osteoclast-related diseases such as periprosthetic osteolysis and osteoporosis. Osteolysis in a titanium particle-induced calvarial model and bone loss in an ovariectomized mice model occurred similarly to those in humans; thus, these models can be used to evaluate potential therapies for aseptic prosthetic loosening and osteoporosis. Celastrol, which is extracted from the seeds of the genus Tripterygium, has been thoroughly investigated for its anti-inflammatory and anti-cancer pharmacological effects. However, the mechanisms involving bone metabolism by which celastrol inhibits osteoclastogenesis are not yet fully understood. We demonstrated that celastrol inhibited the receptor activator of nuclear factor κB ligand-induced osteoclastogenesis and the bone resorptive function of osteoclasts in vitro by inhibiting the activation of transforming growth factor β-activated kinase 1-mediated NF-κB and mitogen-activated protein kinase signaling pathways and downregulating osteoclastogenesis marker-related genes. Furthermore, celastrol was also shown to be beneficial in both the titanium particle-induced osteolysis calvarial and the murine ovariectomy-induced bone loss. Collectively, our results suggested that celastrol is promising for the prevention of aseptic prosthetic loosening and osteoporosis in the treatment of osteolytic diseases induced by disrupted osteoclast formation and function.
Collapse
Affiliation(s)
- Qiang Xu
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Guiping Chen
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China.,Department of Ophthalmology, the Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Huaen Xu
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Guoming Xia
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Meisong Zhu
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Haibo Zhan
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Bin Zhang
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Min Dai
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Hongxian Fan
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China.,Department of Ophthalmology, the Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Xuqiang Liu
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| |
Collapse
|
14
|
Xu Q, Chen G, Xu H, Xia G, Zhu M, Zhan H, Zhang B, Dai M, Fan H, Liu X. Celastrol Attenuates RANKL-Induced Osteoclastogenesis in vitro and Reduces Titanium Particle-Induced Osteolysis and Ovariectomy-Induced Bone Loss in vivo. Front Pharmacol 2021. [DOI: 10.3389/fphar.2021.682541
expr 961747083 + 955359539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Excessive bone resorption by osteoclasts contributes significantly to osteoclast-related diseases such as periprosthetic osteolysis and osteoporosis. Osteolysis in a titanium particle-induced calvarial model and bone loss in an ovariectomized mice model occurred similarly to those in humans; thus, these models can be used to evaluate potential therapies for aseptic prosthetic loosening and osteoporosis. Celastrol, which is extracted from the seeds of the genus Tripterygium, has been thoroughly investigated for its anti-inflammatory and anti-cancer pharmacological effects. However, the mechanisms involving bone metabolism by which celastrol inhibits osteoclastogenesis are not yet fully understood. We demonstrated that celastrol inhibited the receptor activator of nuclear factor κB ligand-induced osteoclastogenesis and the bone resorptive function of osteoclasts in vitro by inhibiting the activation of transforming growth factor β-activated kinase 1-mediated NF-κB and mitogen-activated protein kinase signaling pathways and downregulating osteoclastogenesis marker-related genes. Furthermore, celastrol was also shown to be beneficial in both the titanium particle-induced osteolysis calvarial and the murine ovariectomy-induced bone loss. Collectively, our results suggested that celastrol is promising for the prevention of aseptic prosthetic loosening and osteoporosis in the treatment of osteolytic diseases induced by disrupted osteoclast formation and function.
Collapse
|
15
|
Kalkitoxin Reduces Osteoclast Formation and Resorption and Protects against Inflammatory Bone Loss. Int J Mol Sci 2021; 22:ijms22052303. [PMID: 33669069 PMCID: PMC7956546 DOI: 10.3390/ijms22052303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
Osteoclasts, bone-specified multinucleated cells produced by monocyte/macrophage, are involved in numerous bone destructive diseases such as arthritis, osteoporosis, and inflammation-induced bone loss. The osteoclast differentiation mechanism suggests a possible strategy to treat bone diseases. In this regard, we recently examined the in vivo impact of kalkitoxin (KT), a marine product obtained from the marine cyanobacterium Moorena producens (previously Lyngbya majuscula), on the macrophage colony-stimulating factor (M-CSF) and on the receptor activator of nuclear factor κB ligand (RANKL)-stimulated in vitro osteoclastogenesis and inflammation-mediated bone loss. We have now examined the molecular mechanism of KT in greater detail. KT decreased RANKL-induced bone marrow-derived macrophages (BMMs) tartrate-resistant acid phosphatase (TRAP)-multinucleated cells at a late stage. Likewise, KT suppressed RANKL-induced pit area and actin ring formation in BMM cells. Additionally, KT inhibited several RANKL-induced genes such as cathepsin K, matrix metalloproteinase (MMP-9), TRAP, and dendritic cell-specific transmembrane protein (DC-STAMP). In line with these results, RANKL stimulated both genes and protein expression of c-Fos and nuclear factor of activated T cells (NFATc1), and this was also suppressed by KT. Moreover, KT markedly decreased RANKL-induced p-ERK1/2 and p-JNK pathways at different time points. As a result, KT prevented inflammatory bone loss in mice, such as bone mineral density (BMD) and osteoclast differentiation markers. These experiments demonstrated that KT markedly inhibited osteoclast formation and inflammatory bone loss through NFATc1 and mitogen-activated protein kinase (MAPK) signaling pathways. Therefore, KT may have potential as a treatment for destructive bone diseases.
Collapse
|
16
|
Pérez-Lozano ML, Cesaro A, Mazor M, Esteve E, Berteina-Raboin S, Best TM, Lespessailles E, Toumi H. Emerging Natural-Product-Based Treatments for the Management of Osteoarthritis. Antioxidants (Basel) 2021; 10:265. [PMID: 33572126 PMCID: PMC7914872 DOI: 10.3390/antiox10020265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 01/10/2023] Open
Abstract
Osteoarthritis (OA) is a complex degenerative disease in which joint homeostasis is disrupted, leading to synovial inflammation, cartilage degradation, subchondral bone remodeling, and resulting in pain and joint disability. Yet, the development of new treatment strategies to restore the equilibrium of the osteoarthritic joint remains a challenge. Numerous studies have revealed that dietary components and/or natural products have anti-inflammatory, antioxidant, anti-bone-resorption, and anabolic potential and have received much attention toward the development of new therapeutic strategies for OA treatment. In the present review, we provide an overview of current and emerging natural-product-based research treatments for OA management by drawing attention to experimental, pre-clinical, and clinical models. Herein, we review current and emerging natural-product-based research treatments for OA management.
Collapse
Affiliation(s)
- Maria-Luisa Pérez-Lozano
- Laboratory I3MTO, EA 4708, Université d’Orléans, CEDEX 2, 45067 Orléans, France; (M.-L.P.-L.); (A.C.); (E.L.)
- Plateforme Recherche Innovation Médicale Mutualisée d’Orléans, Centre Hospitalier Régional d’Orléans, 14 Avenue de l’Hôpital, 45100 Orléans, France
| | - Annabelle Cesaro
- Laboratory I3MTO, EA 4708, Université d’Orléans, CEDEX 2, 45067 Orléans, France; (M.-L.P.-L.); (A.C.); (E.L.)
- Plateforme Recherche Innovation Médicale Mutualisée d’Orléans, Centre Hospitalier Régional d’Orléans, 14 Avenue de l’Hôpital, 45100 Orléans, France
| | - Marija Mazor
- Center for Proteomics, Department for Histology and Embryology, Faculty of Medicine, University of Rijeka, B. Branchetta 20, 51000 Rijeka, Croatia;
| | - Eric Esteve
- Service de Dermatologie, Centre Hospitalier Régional d′Orléans, 14 Avenue de l’Hôpital, 45100 Orléans, France;
| | - Sabine Berteina-Raboin
- Institut de Chimie Organique et Analytique ICOA, Université d’Orléans-Pôle de Chimie, UMR CNRS 7311, Rue de Chartres-BP 6759, CEDEX 2, 45067 Orléans, France;
| | - Thomas M. Best
- Department of Orthopedics, Division of Sports Medicine, Health Sports Medicine Institute, University of Miami, Coral Gables, FL 33146, USA;
| | - Eric Lespessailles
- Laboratory I3MTO, EA 4708, Université d’Orléans, CEDEX 2, 45067 Orléans, France; (M.-L.P.-L.); (A.C.); (E.L.)
- Plateforme Recherche Innovation Médicale Mutualisée d’Orléans, Centre Hospitalier Régional d’Orléans, 14 Avenue de l’Hôpital, 45100 Orléans, France
- Centre Hospitalier Régional d’Orléans, Institut Département de Rhumatologie, 45067 Orléans, France
| | - Hechmi Toumi
- Laboratory I3MTO, EA 4708, Université d’Orléans, CEDEX 2, 45067 Orléans, France; (M.-L.P.-L.); (A.C.); (E.L.)
- Plateforme Recherche Innovation Médicale Mutualisée d’Orléans, Centre Hospitalier Régional d’Orléans, 14 Avenue de l’Hôpital, 45100 Orléans, France
- Centre Hospitalier Régional d’Orléans, Institut Département de Rhumatologie, 45067 Orléans, France
| |
Collapse
|
17
|
Park JY, Kwon YW, Kim SA, Park SD, Kim CH, Kim JH, Lee JH. Polyherbal formula SC-E3 inhibits rheumatoid arthritis activity in a mouse model of type-II collagen-induced arthritis. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 19:265-273. [PMID: 33349609 DOI: 10.1016/j.joim.2020.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE SC-E3 is a polyherbal formula that contains five medicinal herbs used frequently in traditional herbal medicine. In our previous study, we demonstrated the antioxidant and anti-inflammatory effects of SC-E3. The present study examined the effects of SC-E3 in a mouse model of type-II collagen-induced arthritis (CIA). METHODS In vivo, male DBA/1J mice were immunized by intradermal injection of bovine type-II collagen and complete or incomplete Freund's adjuvant, to induce arthritis. SC-E3 was orally administered daily for 23 days. In vitro, bone marrow-derived macrophages (BMMs) were treated with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) in the absence or presence of SC-E3. RESULTS Administrations of SC-E3 were found to have anti-arthritic effects in the joints of CIA mice, as evidenced by reduced paw swelling, bone erosion and deformation, inflammatory cell infiltration, and inflammation in synovial membrane. SC-E3 also reduced serum levels of tumor necrosis factor-α, interleukin-1β, aspartate aminotransferase and alanine aminotransferase. Furthermore, tartrate-resistant acid phosphatase-positive osteoclast numbers in the joints were significantly lower in SC-E3-treated CIA mice than in CIA mice. In addition, the differentiations of BMMs to multinucleated osteoclasts induced by M-CSF and RANKL stimulation were dose-dependently reduced by SC-E3. CONCLUSION These results suggest that SC-E3 possesses substantial anti-arthritic activity because it inhibits pro-inflammatory cytokines and osteoclastogenesis, and that SC-E3 has potential therapeutic use for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Ju-Yeon Park
- College of Korean Medicine, Dongguk University, Goyang 10326, Republic of Korea
| | - Young-Won Kwon
- College of Korean Medicine, Dongguk University, Goyang 10326, Republic of Korea
| | - Sun-Ah Kim
- College of Korean Medicine, Dongguk University, Goyang 10326, Republic of Korea
| | - Sun-Dong Park
- College of Korean Medicine, Dongguk University, Goyang 10326, Republic of Korea
| | - Chang-Hyun Kim
- Department of Medicine, College of Medicine, Dongguk University, Goyang 10326, Republic of Korea
| | - Jin-Hee Kim
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju 28503, Republic of Korea.
| | - Ju-Hee Lee
- College of Korean Medicine, Dongguk University, Goyang 10326, Republic of Korea.
| |
Collapse
|
18
|
Zhang Y, Mao X, Li W, Chen W, Wang X, Ma Z, Lin N. Tripterygium wilfordii: An inspiring resource for rheumatoid arthritis treatment. Med Res Rev 2020; 41:1337-1374. [PMID: 33296090 DOI: 10.1002/med.21762] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/02/2020] [Accepted: 11/22/2020] [Indexed: 12/22/2022]
Abstract
Tripterygium wilfordii Hook F (TwHF)-based therapy is among the most efficient and crucial therapeutics for the treatment of rheumatoid arthritis (RA), which indicates that TwHF is a potential source of novel anti-RA drugs. However, accumulating studies have observed that TwHF-based therapy induces multi-organ toxicity, which prevents the wide use of this herb in clinical practice, although several recent studies have attempted to reduce the toxicity of TwHF. Notably, our research group developed a "Clinical Practice Guideline for Tripterygium Glycosides/Tripterygium wilfordii Tablets in the Treatment of Rheumatoid Arthritis" (No. T/CACM 1337-2020) approved by the China Association of Chinese Medicine to standardize the clinical application of TwHF-based therapy and thus avoid adverse effects. Although great strides have been made toward the characterization of TwHF-based therapy and revealing its underlying pharmacological and toxicological mechanisms, several crucial gaps in knowledge remain as potential barriers to enhance its therapeutic effects on the premise of safety assurance. This review offers a global view of TwHF, ranging from its chemical constituents, quality control, clinical observations, and underlying pharmacological mechanisms to toxic manifestations and mechanisms. We focus on the important and emerging aspects of this field and highlight the major challenges and strategies for using novel techniques and approaches to gain new insights into unresolved questions. We hope that this review will improve the understanding of TwHF application and draw increasing interdisciplinary attention from clinicians that practice both Chinese and Western medicine, basic researchers, and computer scientists.
Collapse
Affiliation(s)
- Yanqiong Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xia Mao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weijie Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjia Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyue Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhaochen Ma
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Na Lin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Fang G, Tang B. Current advances in the nano-delivery of celastrol for treating inflammation-associated diseases. J Mater Chem B 2020; 8:10954-10965. [PMID: 33174584 DOI: 10.1039/d0tb01939a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammation is ubiquitous in the body, and uncontrolled inflammation often contributes to various diseases. Celastrol, a compound isolated from a Chinese medicinal herb, holds great potential in treating multiple inflammation-associated diseases. However, its further clinical use is limited by its poor solubility, bioavailability, and high organ toxicity. With the advancement of nanotechnology, the nano-delivery of celastrol can effectively improve its oral bioavailability, maximize its efficacy and minimize its side effects. Here, we summarize the roles of celastrol in the treatment of various inflammation-associated diseases, with a special emphasis on its role in modulating immune cell signaling or non-immune cell signaling within the inflammatory microenvironment, and we highlight the latest advances in nano-delivery strategies for celastrol to treat diseases associated with inflammation.
Collapse
Affiliation(s)
- Guihua Fang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu Province 226001, China.
| | | |
Collapse
|
20
|
An L, Li Z, Shi L, Wang L, Wang Y, Jin L, Shuai X, Li J. Inflammation-Targeted Celastrol Nanodrug Attenuates Collagen-Induced Arthritis through NF-κB and Notch1 Pathways. NANO LETTERS 2020; 20:7728-7736. [PMID: 32965124 DOI: 10.1021/acs.nanolett.0c03279] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory disorder which can cause bone and cartilage damage leading to disability, yet the treatment remains unsatisfactory nowadays. Celastrol (Cel) has shown antirheumatic activity against RA. However, the frequent parenteral delivery and poor water solubility of Cel restrict its further therapeutic applications. Here, aiming at effectively overcoming the poor water solubility and short half-life of Cel to boost its beneficial effects for treating RA, we developed a polymeric micelle for Cel delivery based on a reactive oxygen species (ROS) sensitive polymer. Our results demonstrated that Cel may inhibit the repolarization of macrophages toward the pro-inflammatory M1 pheno-type via regulating the NF-κB and Notch1 pathways, which resulted in significantly decreased secretion of multiple pro-inflammatory cytokines to suppress the RA progression. Consequently, the Cel-loaded micelle effectively alleviated the major RA-associated symptoms including articular scores, ankle thickness, synovial inflammation, bone erosion, and cartilage degradation.
Collapse
Affiliation(s)
- Lemei An
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Zhanrong Li
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Liuqi Shi
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Liujun Wang
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yong Wang
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lin Jin
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jingguo Li
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| |
Collapse
|
21
|
Shi Y, Shu H, Wang X, Zhao H, Lu C, Lu A, He X. Potential Advantages of Bioactive Compounds Extracted From Traditional Chinese Medicine to Inhibit Bone Destructions in Rheumatoid Arthritis. Front Pharmacol 2020; 11:561962. [PMID: 33117162 PMCID: PMC7577042 DOI: 10.3389/fphar.2020.561962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Bone destruction is an important pathological feature of rheumatoid arthritis (RA), which finally leads to the serious decline of life quality in RA patients. Bone metabolism imbalance is the principal factor of bone destruction in RA, which is manifested by excessive osteoclast-mediated bone resorption and inadequate osteoblast-mediated bone formation. Although current drugs alleviate the process of bone destruction to a certain extent, there are still many deficiencies. Recent studies have shown that traditional Chinese medicine (TCM) could effectively suppress bone destruction of RA. Some bioactive compounds from TCM have shown good effect on inhibiting osteoclast differentiation and promoting osteoblast proliferation. This article reviews the research progress of bioactive compounds exacted from TCM in inhibiting bone destruction of RA, so as to provide references for further clinical and scientific research.
Collapse
Affiliation(s)
- Yingjie Shi
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyang Shu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyu Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Hanxiao Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Chinese Medicine, Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Tang Y, Liu Q, Feng Y, Zhang Y, Xu Z, Wen C, Zhang Y. Tripterygium Ingredients for Pathogenicity Cells in Rheumatoid Arthritis. Front Pharmacol 2020; 11:583171. [PMID: 33123015 PMCID: PMC7567162 DOI: 10.3389/fphar.2020.583171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease mainly characterized by chronic polyarthritis. Many types of cells play pivotal roles in the pathogenicity of RA, such as T cells, B cells, macrophages, dendritic cells (DCs), osteoclasts (OCs), and fibroblast-like synoviocytes (FLS). Tripterygium wilfordii Hook f. (TwHf) and its ingredients are able to control disease activity by regulating the functions of cells mentioned above, and the clinical studies have highlighted the importance of TwHf ingredients in RA treatment. They have been demonstrated to improve the RA symptoms of animal models and patients. In this review, we discussed the effect of TwHf ingredients on pathogenicity cells, including disease/cell phenotypes and molecular mechanisms. Here, we constructed a cell-cell interaction network to visualize the effect of TwHf ingredients. We found that TwHf ingredients could inhibit the differentiation and proliferation of the pathogenicity cells. Besides, the components could decrease the levels of pathogenicity cytokines [i.e., interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α)]. Many signaling pathways are involved in the underlying mechanisms, such as PI3K, NF-κB, and MAPK signaling pathways.
Collapse
Affiliation(s)
- Yujun Tang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiuping Liu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuxiang Feng
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Zhang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhenghao Xu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengping Wen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yun Zhang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
23
|
Tu Y, Wang K, Jia X, Tan L, Han B, Zhang Q, Li Y, He C. Isolation and Identification of Antiarthritic Constituents from Glycine tabacina and Network Pharmacology-Based Prediction of Their Protective Mechanisms against Rheumatoid Arthritis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10664-10677. [PMID: 32530618 DOI: 10.1021/acs.jafc.0c00878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Glycine tabacina (Labill.) Benth is an edible medicinal herb for rheumatoid arthritis (RA) treatment in folk medicine. Current phytochemical research on this dried herb led to the isolation of eight new coumestans, named glytabastan A-H (1-8), and twenty-three known compounds 9-31. Their structures were elucidated using spectroscopic methods. The antiarthritic activities of all isolates were evaluated, and the results showed that coumestans 1-6 and 8-10 could inhibit arthritic inflammation in vitro, while coumestans 1, 2, 9, and 10 significantly blocked the osteoclastogenesis induced by receptor activator of nuclear factor (NF) κB ligand (RANKL). Moreover, network pharmacological analysis revealed that the anti-RA effect of G. tabacina involved multitargets, multipathways such as PI3K/Akt and MAPK signaling pathways, and various biological processes such as inflammatory response and cytokine-mediated signaling pathways. These results suggested that this species and its novel coumestans could serve as potential antiarthritic agents for functional food or medicinal use.
Collapse
Affiliation(s)
- Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Kai Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Xuejing Jia
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lihua Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Bing Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Qingwen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| |
Collapse
|
24
|
Cascão R, Vidal B, Carvalho T, Lopes IP, Romão VC, Goncalves J, Moita LF, Fonseca JE. Celastrol Efficacy by Oral Administration in the Adjuvant-Induced Arthritis Model. Front Med (Lausanne) 2020; 7:455. [PMID: 33015082 PMCID: PMC7505947 DOI: 10.3389/fmed.2020.00455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
Background: We previously demonstrated that celastrol has significant anti-inflammatory and bone protective effects when administered via the intraperitoneal route. For further preclinical evaluation, an effective oral administration of celastrol is crucial. Here we aimed to study the therapeutic dose range for its oral administration. Methods: Celastrol (1–25 μg/g/day, N = 5/group) was administrated orally to female adjuvant-induced arthritis (AIA) rats after 8 days of disease induction for a period of 14 days. A group of healthy (N = 8) and arthritic (N = 15) gender- and age-matched Wistar rats was used as controls. During the treatment period, the inflammatory score, ankle perimeter, and body weight were measured. At the end of the treatment, the animals were sacrificed, blood was collected for clinical pathology, necropsy was performed with collection of internal organs for histopathological analysis, and paw samples were used for disease scoring. Results: Doses higher than 2.5 μg/g/day of celastrol reduced the inflammatory score and ankle swelling, preserved joint structure, halted bone destruction, and diminished the number of synovial CD68+ macrophages. Bone resorption and turnover were also reduced at 5 and 7.5 μg/g/day doses. However, the dose of 7.5 μg/g/day was associated with thymic and liver lesions, and higher doses showed severe toxicity. Conclusion: Oral administration of celastrol above 2.5 μg/g/day ameliorates arthritis. This data supports and gives relevant information for the development of a preclinical test of celastrol in the setting of a chronic model of arthritis since rheumatoid arthritis is a long-term disease.
Collapse
Affiliation(s)
- Rita Cascão
- Unidade de Investigação em Reumatologia, Faculdade de Medicina, Instituto de Medicina Molecular-João Lobo Antunes, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal
| | - Bruno Vidal
- Unidade de Investigação em Reumatologia, Faculdade de Medicina, Instituto de Medicina Molecular-João Lobo Antunes, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal
| | - Tânia Carvalho
- Comparative Pathology Unit, Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Inês Pascoal Lopes
- Unidade de Investigação em Reumatologia, Faculdade de Medicina, Instituto de Medicina Molecular-João Lobo Antunes, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal
| | - Vasco C Romão
- Unidade de Investigação em Reumatologia, Faculdade de Medicina, Instituto de Medicina Molecular-João Lobo Antunes, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal.,Serviço de Reumatologia e Doenças Ósseas Metabólicas, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - João Goncalves
- Faculdade de Farmácia, iMed - Research Institute of Medicines, Universidade de Lisboa, Lisbon, Portugal
| | - Luis Ferreira Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - João Eurico Fonseca
- Unidade de Investigação em Reumatologia, Faculdade de Medicina, Instituto de Medicina Molecular-João Lobo Antunes, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal.,Serviço de Reumatologia e Doenças Ósseas Metabólicas, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| |
Collapse
|
25
|
Imtiyaz Z, Lin YT, Cheong UH, Jassey A, Liu HK, Lee MH. Compounds isolated from Euonymus spraguei Hayata induce ossification through multiple pathways. Saudi J Biol Sci 2020; 27:2227-2237. [PMID: 32884403 PMCID: PMC7451737 DOI: 10.1016/j.sjbs.2020.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 11/23/2022] Open
Abstract
The process of bone metabolism includes catabolism of old or mature bone and anabolism of new bone, carried out by osteoclasts and osteoblasts respectively. Any imbalance in this process results in loss of bone mass or osteoporosis. Drugs available to combat osteoporosis have certain adverse effects and are unable to improve bone formation, hence identifying new agents to fulfil these therapeutic gaps is required. To expand the scope of potential agents that enhance bone formation, we identified Euonymus spraguei Hayata as a plant material that possesses robust osteogenic potential using human osteoblast cells. We isolated three compounds, syringaresinol (1), syringin (2), and (−)-epicatechin (3), from E. spraguei. Results demonstrated that syringin (2), and (−)-epicatechin (3), increased alkaline phosphatase activity significantly up to 131.01% and 130.67%, respectively; they also elevated mineral deposition with respective values of up to 139.39% and 138.33%. In addition, 2 and 3 modulated autophagy and the bone morphogenetic protein (BMP)-2 signaling pathway. Our findings demonstrated that 2 and 3 induced osteogenesis by targeting multiple pathways and therefore can be considered as potent multi-targeted drugs for bone formation against osteoporosis.
Collapse
Affiliation(s)
- Zuha Imtiyaz
- Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Yi-Tzu Lin
- Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Ut-Hang Cheong
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Alagie Jassey
- College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Hui-Kang Liu
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan
| | - Mei-Hsien Lee
- Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.,Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.,Center for Reproductive Medicine and Sciences, Taipei Medical University Hospital, Taipei 110, Taiwan
| |
Collapse
|
26
|
Wang R, Bao B, Bao C, Wang S, Ur Rahman S, Hou C, Elango J, Wu W. Resveratrol and Celastrol Loaded Collagen Dental Implants Regulate Periodontal Ligament Fibroblast Growth and Osteoclastogenesis of Bone Marrow Macrophages. Chem Biodivers 2020; 17:e2000295. [PMID: 32649040 DOI: 10.1002/cbdv.202000295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Collagen is widely used for dental therapy in several ways such as films, 3D matrix, and composites, besides traditional Chinese medicine (TCM), has been used in tissue regeneration and wound healing application for centuries. Hence, the present study was targeted for the first time to fabricate collagen film with TCM such as resveratrol and celastrol in order to investigate the human periodontal ligament fibroblasts (HPLF) growth and bone marrow macrophages (BMM) derived osteoclastogenesis. Further, the physicochemical, mechanical and biological activities of collagen-TCM films crosslinked by glycerol and EDC-NHS (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-N-hydroxysulfosuccinimide) were investigated. Collagen film characterization was significantly regulated by the nature of plasticizers like hydrophobic and degree of polarity. Interestingly, the collagen film's denaturation temperature was increased by EDC-NHS than glycerol. FT-IR data confirmed the functional group changes due to chemical interaction of collagen with TCM. Morphological changes of HPLF cells cultured in control and collagen films were observed by SEM. Importantly, the addition of resveratrol upregulated the proliferation of HPLF cells, while osteoclastogenesis of BMM cells treated with mCSF-RANKL was significantly downregulated by celastrol. Accordingly, the collagen-TCM film could be an interesting material for dental regeneration, and especially it is a therapeutic target to restrain the elevated bone resorption during osteoporosis.
Collapse
Affiliation(s)
- Ruijie Wang
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Bin Bao
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Chunling Bao
- East Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201306, P. R. China
| | - Shujun Wang
- Jiangsu Ocean University, Lianyungang, 222005, P. R. China
| | - Saeed Ur Rahman
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Punjab, 54000, Pakistan
| | - Chunyu Hou
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Jeevithan Elango
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China.,National R&D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai, Shanghai, 201306, P. R. China
| |
Collapse
|
27
|
Celastrol ameliorates autoimmune disorders in Trex1-deficient mice. Biochem Pharmacol 2020; 178:114090. [DOI: 10.1016/j.bcp.2020.114090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
|
28
|
Zhang Y, Ma C, Liu C, Wu W. NF-κB promotes osteoclast differentiation by overexpressing MITF via down regulating microRNA-1276 expression. Life Sci 2020; 258:118093. [PMID: 32673666 DOI: 10.1016/j.lfs.2020.118093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Nuclear factor-kappa B (NF-κB) is an important nuclear transcription factor in cells, involving in a series of processes such as cell proliferation, apoptosis, and differentiation. In this study, we explored the specific mechanism of NF-κB on the differentiation of osteoclasts. METHODS MicroRNAs (miRNAs) expression microarray data GSE105027 related to osteoarthritis was obtained to screen out the differentially expressed miRNA. Phorbol-12-myristate-13-acetate (PMA) was used to induce THP-1 cells to differentiate into macrophages, followed by induction to osteoclasts using macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). ELISA and RT-qPCR were conducted to examine IL-6 and IL-1β expression. The binding of NF-κB to the miR-1276 promoter region was demonstrated by ChIP assay, and targeting relationship between miR-1276 and MITF was verified by dual luciferase reporter assay. KK, iKBα, NF-kB, p-IKK, p-iKBα, p-NF-kB expression was analyzed by western blot. NF-κB and miR-1276 expression in osteoclasts was examined later. After gain- and less-of-function study, the effects on osteoclast differentiation were detected by TRAP-positive osteoclasts, TRAP activity, TRAP-5b content, F-Actin expression, as well as osteoclast differentiation marker genes expression. RESULTS NF-κB was activated in osteoclasts, and down-regulation of NF-κB inhibited osteoclast differentiation. Next, miR-1276 was downregulated in osteoclasts after differentiation from monocytes. Meanwhile, NF-κB decreased the expression of miR-1276 by binding to the miR-1276 promoter, thereby elevating MITF expression, thereby promoting osteoclast differentiation. CONCLUSION In summary, NF-κB promoted osteoclast differentiation through downregulating miR-1276 to upregulate MITF.
Collapse
Affiliation(s)
- Yandong Zhang
- Department of Rheumatology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Chengyuan Ma
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Chunshui Liu
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Wei Wu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, PR China.
| |
Collapse
|
29
|
Zhang Q, Peng W, Wei S, Wei D, Li R, Liu J, Peng L, Yang S, Gao Y, Wu C, Pu X. Guizhi-Shaoyao-Zhimu decoction possesses anti-arthritic effects on type II collagen-induced arthritis in rats via suppression of inflammatory reactions, inhibition of invasion & migration and induction of apoptosis in synovial fibroblasts. Biomed Pharmacother 2019; 118:109367. [DOI: 10.1016/j.biopha.2019.109367] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 01/09/2023] Open
|
30
|
Li XZ, Zhang SN. Herbal compounds for rheumatoid arthritis: Literatures review and cheminformatics prediction. Phytother Res 2019; 34:51-66. [PMID: 31515874 DOI: 10.1002/ptr.6509] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/31/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic disease characterized by autoimmunity, joint inflammation, and cartilage destruction, which affects 0.5-1% of the population. Many compounds from herbal medicines show the potentials to treat RA. On this basis, the compounds with good pharmacokinetic behaviors and drug-likeness properties will be further studied and developed. Therefore, the herbal compounds with anti-RA activities were reviewed in this paper, and the cheminformatics tools were used to predict their drug-likeness properties and pharmacokinetic parameters. A total of 90 herbal compounds were analyzed, which were reported to be effective on RA models through anti-inflammation, chondroprotection, immunoregulation, antiangiogenesis, and antioxidation. Most of the herbal compounds have good drug-likeness properties. Most of the compounds can be an alternative and valuable source for anti-RA drug discovery.
Collapse
Affiliation(s)
- Xu-Zhao Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area, PR China
| | - Shuai-Nan Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area, PR China
| |
Collapse
|
31
|
Lv H, Jiang L, Zhu M, Li Y, Luo M, Jiang P, Tong S, Zhang H, Yan J. The genus Tripterygium: A phytochemistry and pharmacological review. Fitoterapia 2019; 137:104190. [DOI: 10.1016/j.fitote.2019.104190] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022]
|
32
|
He G, Ma R. Overview of Molecular Mechanisms Involved in Herbal Compounds for Inhibiting Osteoclastogenesis from Macrophage Linage RAW264.7. Curr Stem Cell Res Ther 2019; 15:570-578. [PMID: 31269885 DOI: 10.2174/1574888x14666190703144917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/03/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022]
Abstract
Differentiation from RAW264.7 cells to osteoclasts rely on many signaling pathways, such as NF-κB, MAPK, Akt and others. However, the specific underlying mechanisms are not clear. Recently, much works have focused on the inhibitory effects of plant derived compounds in the differentiation from RAW264.7 to osteoclasts. However, the specific mechanisms remain unclear. In this paper, we summarize a lot of plant derived compounds which exert blocking effect on the progression of differentiation via signaling pathways.
Collapse
Affiliation(s)
- Gaole He
- Department of Spine, Honghui-Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Rui Ma
- Department of Anesthesiology, Xi'an Children's Hospital, Xi'an, China
| |
Collapse
|
33
|
Peng J, Lu X, Xie K, Xu Y, He R, Guo L, Han Y, Wu S, Dong X, Lu Y, Liu Z, Cao W, Gong M. Dynamic Alterations in the Gut Microbiota of Collagen-Induced Arthritis Rats Following the Prolonged Administration of Total Glucosides of Paeony. Front Cell Infect Microbiol 2019; 9:204. [PMID: 31245305 PMCID: PMC6581682 DOI: 10.3389/fcimb.2019.00204] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/27/2019] [Indexed: 01/01/2023] Open
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease linked to chronic inflammation. Dysbiosis of the gut microbiota has been proposed to contribute to the risk of RA, and a large number of researchers have investigated the gut-joint axis hypothesis using the collagen-induced arthritis (CIA) rats. However, previous studies mainly involved short-term experiments; very few used the CIA model to investigate changes in gut microbiota over time. Moreover, previous research failed to use the CIA model to carry out detailed investigations of the effects of drug treatments upon inflammation in the joints, hyperplasia of the synovium, imbalance in the ratios of Th1/Th2 and Th17/Treg cells, intestinal cytokines and the gut microbiota following long-term intervention. In the present study, we carried out a 16-week experiment to investigate changes in the gut microbiota of CIA rats, and evaluated the modulatory effect of total glucosides of paeony (TGP), an immunomodulatory agent widely used in the treatment of RA, after 12 weeks of administration. We found that taxonomic differences developed in the microbial structure between the CIA group and the Control group. Furthermore, the administration of TGP was able to correct 78% of these taxonomic differences, while also increase the relative abundance of certain forms of beneficial symbiotic bacteria. By the end of the experiment, TGP had reduced body weight, thymus index and inflammatory cell infiltration in the ankle joint of CIA rats. Furthermore, the administration of TGP had down-regulated the synovial content of VEGF and the levels of Th1 cells and Th17 cells in CIA rats, and up-regulated the levels of Th2 cells and Treg cells. The administration of TGP also inhibited the levels of intestinal cytokines, secretory immunoglobulin A (SIgA) and Interferon-γ (IFN-γ). In conclusion, the influence of TGP on dynamic changes in gut microbiota, along with the observed improvement of indicators related to CIA symptoms during 12 weeks of administration, supported the hypothesis that the microbiome may play a role in TGP-mediated therapeutic effects in CIA rats. The present study also indicated that the mechanism underlying these effects may be related to the regulation of intestinal mucosal immunity remains unknown and deserves further research attention.
Collapse
MESH Headings
- Animals
- Ankle Joint/pathology
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/drug therapy
- Bacteria/classification
- Bacteria/drug effects
- Body Weight/drug effects
- Collagen/adverse effects
- Cytokines/metabolism
- Disease Models, Animal
- Drugs, Chinese Herbal
- Dysbiosis
- Feces/microbiology
- Gastrointestinal Microbiome/drug effects
- Gastrointestinal Microbiome/genetics
- Gastrointestinal Microbiome/physiology
- Glucosides/pharmacology
- Immunity
- Immunity, Mucosal
- Immunoglobulin A, Secretory
- Immunomodulation
- Inflammation
- Interferon-gamma/metabolism
- Male
- Paeonia/chemistry
- Rats
- Rats, Sprague-Dawley
- Symbiosis
- T-Lymphocytes, Regulatory/drug effects
- Th1 Cells/drug effects
- Th17 Cells/drug effects
- Th2 Cells/drug effects
- Vascular Endothelial Growth Factor A
Collapse
Affiliation(s)
- Jine Peng
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Xuran Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Kaili Xie
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Yongsong Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Rui He
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Li Guo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Yaxin Han
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Sha Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Xuerong Dong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Zhengyue Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Wei Cao
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Muxin Gong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| |
Collapse
|
34
|
Song C, Yang X, Lei Y, Zhang Z, Smith W, Yan J, Kong L. Evaluation of efficacy on RANKL induced osteoclast from RAW264.7 cells. J Cell Physiol 2018; 234:11969-11975. [PMID: 30515780 DOI: 10.1002/jcp.27852] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/13/2018] [Indexed: 02/01/2023]
Abstract
Established RAW264.7 cell lines for osteoclastic differentiation has been widely engaged in bone homeostasis research, however, the efficacy of RANKL independently stimulating has rarely been defined, because protocols were usually developed and modified by various laboratories. Otherwise, problematic issues are also lie in the cell's seeding density, RANKL stimulating time point, and distinguishing osteoclastogenesis ability of RANKL-treated RAW264.7 cells. Therefore, in the current study, we examined the efficacy of various concentrations of RANKL-treated RAW264.7 for its osteoclastic differentiation with or without pretreated other costimulators such as: LPS and/or M-CSF. The oteoclastogenesis ability of RANKL-treated RAW264.7 cells was demonstrated by bone resorption pit, F-actin, and osteoclastogenesis specific marker studies. Besides that, through tartrate-resistant acid phosphatase (TRAP) staining, we clarified to start the treatment with 30 ng/ml RANKL at 12 hr after seeded RAW264.7 with the density of 6.25 × 10 3 cells/cm 2 manifested an significantly increased number of multinucleated osteoclastic cells. Overall, our results establishing an optimal method for RANKL independently inducing RAW 264.7 cell osteoclastic differentiation, which could efficiently generate osteoclasts in vitro for significant advances in our understanding of bone biology.
Collapse
Affiliation(s)
- Chengchao Song
- Department of Spine surgery, Honghui Hospital, School of Medicine, Xi'an Jiaotong University, Shaanxi, China.,Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Heilongjiang, China
| | - Xiaobin Yang
- Department of Spine surgery, Honghui Hospital, School of Medicine, Xi'an Jiaotong University, Shaanxi, China
| | - Yongsheng Lei
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhen Zhang
- Department of Spine surgery, Honghui Hospital, School of Medicine, Xi'an Jiaotong University, Shaanxi, China
| | - Wanli Smith
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland
| | - Jinglong Yan
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lingbo Kong
- Department of Spine surgery, Honghui Hospital, School of Medicine, Xi'an Jiaotong University, Shaanxi, China
| |
Collapse
|
35
|
Zhang Y, Wang Z, Xie X, Wang J, Wang Y, Peng QS, Zhang M, Wu D, Liu N, Wang HB, Sun WC. Tatarinan N inhibits osteoclast differentiation through attenuating NF-κB, MAPKs and Ca 2+-dependent signaling. Int Immunopharmacol 2018; 65:199-211. [PMID: 30316078 DOI: 10.1016/j.intimp.2018.09.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 02/08/2023]
Abstract
Osteoclasts are multinucleated cells that originate from hemopoietic stem cells. Targeting over activated osteoclasts is thought to be an effective therapeutic approach to osteoporosis. In a previous study, we reported that Tatarinan O, a lignin-like compound, suppressed RANKL-induced osteoclastogenesis. In this study, we further examined the effects on osteoclast formation of three lignin-like compounds including Tatarinan N (TN), Tatarinan U (TU) and Tatarinan V (TV), all containing a common structure of asarone. We found that only TN suppressed RANKL-induced osteoclast differentiation, bone resorption pit formation and F-acting ring formation. TU and TV did not influence RANKL-induced osteoclastogenesis. We also found that TN dose-dependently inhibited the expression of osteoclastogenesis-associated genes, including TRAP, cathepsin K and MMP-9. Furthermore, we found that TN down-regulated the key transcription factor NFATc1 and c-Fos by preventing the activation of NF-κB and phosphorylation of MAPKs including ERK1/2 and p38 but not JNK. TN attenuated calcineurin expression via suppression of the Btk-PLCγ2 cascade and reduction of intracellular Ca2+, modulating NFATc1 activation. Taking together, our results indicated that TN might have therapeutic potential for osteoporosis.
Collapse
Affiliation(s)
- Yuxin Zhang
- Key Laboratory of Zoonosis, Ministry of Education, The Second Hospital of Jilin University, Changchun, China; Key Laboratory of Molecular Enzymology & Engineering, Ministry of Education, College of Life Science, Jilin University, Changchun, China
| | - Zhi Wang
- Key Laboratory of Molecular Enzymology & Engineering, Ministry of Education, College of Life Science, Jilin University, Changchun, China
| | - Xiaona Xie
- The First Hospital of Jilin University, Changchun, China
| | - Jing Wang
- College of Chemistry and Biology, Beihua University, Jilin, China
| | - Yingjian Wang
- Department of Gynaecology and Obstetrics, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Qi-Sheng Peng
- Key Laboratory of Zoonosis, Ministry of Education, The Second Hospital of Jilin University, Changchun, China
| | - Maolin Zhang
- Key Laboratory of Zoonosis, Ministry of Education, The Second Hospital of Jilin University, Changchun, China
| | - Donglin Wu
- Jilin Provincial Center for Disease Control and Prevention, Changchun, China
| | - Ning Liu
- Key Laboratory of Zoonosis, Ministry of Education, The Second Hospital of Jilin University, Changchun, China.
| | - Hong-Bing Wang
- School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Wan-Chun Sun
- Key Laboratory of Zoonosis, Ministry of Education, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
36
|
Wu T, Li F, Sha X, Li F, Zhang B, Ma W, Liu M, Yang W, Li H, Tao H. A novel recombinant RANKL vaccine prepared by incorporation of an unnatural amino acid into RANKL and its preventive effect in a murine model of collagen-induced arthritis. Int Immunopharmacol 2018; 64:326-332. [PMID: 30243068 DOI: 10.1016/j.intimp.2018.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammatory synovitis, bone atrophy, and subsequent progressive destruction of articular tissue. Targeted inhibition of receptor activator of NF-kB ligand (RANKL) has been highly successful in preventing RA-mediated bone erosion in animal models and patients, suggesting that development of a RANKL vaccine might be of therapeutic value. Our previous study has shown that the recombinant RANKL vaccine Y234pNO2Phe, generated by replacement of a single tyrosine residue (Tyr234) in murine RANKL (mRANKL) with p-nitrophenylalanine (pNO2Phe), induces a high titer antibody response and prevents ovariectomy (OVX)-induced bone loss in mice. This aim of this study was to further evaluate the vaccine's preventive effects in a murine model of collagen-induced arthritis. The results of this study showed that Y234pNO2Phe not only induced a high titer antibody response and inhibited osteoclastogenesis but also significantly prevented bone erosion and ameliorated the severity of a collagen-induced arthritis (CIA) model in mice. Moreover, use of the vaccine improved the clinical situations of the CIA mice. These results suggest a potential application of an anti-RANKL vaccine in the treatment of RA-induced bone erosion.
Collapse
Affiliation(s)
- Tailin Wu
- Department of Emergency Medicine, The 208th Hospital of People's Liberation Army, Changchun 130000, China
| | - Feng Li
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China; Department of Orthopaedics, The General Hospital of the PLA Rocket Force, Beijing 100088, China
| | - Xin Sha
- Department of Orthopaedics, The 306th Hospital of People's Liberation Army, Beijing 100000, China
| | - Fuyang Li
- Greehey Children's Cancer Research Institute, The University of Texas, Health Science Center at San Antonio, TX, USA
| | - Bobo Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710032, China
| | - Wenrui Ma
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Ming Liu
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Weizhou Yang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710032, China
| | - Huan Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Huiren Tao
- Department of Orthopaedics, Shenzhen University General Hospital, Shenzhen 518000, China.
| |
Collapse
|
37
|
Ma HP, Deng X, Chen DY, Zhu D, Tong JL, Zhao T, Ma JH, Liu YQ. A microfluidic chip-based co-culture of fibroblast-like synoviocytes with osteoblasts and osteoclasts to test bone erosion and drug evaluation. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180528. [PMID: 30839692 PMCID: PMC6170564 DOI: 10.1098/rsos.180528] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/21/2018] [Indexed: 05/04/2023]
Abstract
Targeting fibroblast-like synoviocyte (FLS) migration and invasion-mediated bone erosion is a promising clinical strategy for the treatment of rheumatoid arthritis (RA). Drug sensitivity testing is fundamental to this scheme. We designed a microfluidic chip-based, cell co-cultured platform to mimic RA FLS-mediated bone erosion and perform drug-sensitive assay. Human synovium SW982 cells were cultured in the central channel and migrated to flow through matrigel-coated side channels towards cell culture chamber where RANKL-stimulated osteoclastic RAW264.7 and osteogenic medium (OS)-stimulated bone marrow mesenchymal stem cells (BMSC) were cultured in the microfluidic chip device, mimicking FLS migration and invasion-mediated bone erosion in RA. These SW982 cells showed different migration potentials to osteoclasts and BMSC. The migration of SW982 cells with high expression of cadherin-11 was more potent when SW982 cells were connected with the co-culture of RAW264.7 and BMSC. Simultaneously, in the co-cultured chamber, tartrate-resistant acid phosphatase (TRAP) activity of RANKL-stimulated RAW264.7 cells was enhanced, but alkaline phosphatase (ALP) activity was decreased in comparison with mono-cultured chamber. Furthermore, it was confirmed that celastrol, a positive drug for the treatment of RA, inhibited SW982 cell migration as well as TRAP activity in the cell-cultured microfluidic chips. Thus, the migration and invasion to bone-related cells was reconstituted on the microfluidic model. It may provide an effective anti-RA drug screen model for targeting FLS migration-mediated bone erosion.
Collapse
Affiliation(s)
- Hui-Peng Ma
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Xue Deng
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Deng-Yi Chen
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Di Zhu
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Jin-Ling Tong
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Ting Zhao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Jin-Hui Ma
- People's Liberation Army No. 202 Hospital, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Yan-Qiu Liu
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, People's Republic of China
- Author for correspondence: Yan-Qiu Liu e-mail:
| |
Collapse
|
38
|
Tang L, Luo JR, Li DT, Ge R, Ma YL, Xu F, Liang TG, Ban SR, Li QS. Anti-inflammatory effects of 4- o -methyl-benzenesulfonyl benzoxazolone (MBB) in vivo and in vitro as a novel NSAIDs lead compound. Pharmacol Rep 2018; 70:558-564. [DOI: 10.1016/j.pharep.2017.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 12/08/2017] [Accepted: 12/14/2017] [Indexed: 02/03/2023]
|
39
|
Cascão R, Vidal B, Jalmari Finnilä MA, Lopes IP, Teixeira RL, Saarakkala S, Moita LF, Fonseca JE. Effect of celastrol on bone structure and mechanics in arthritic rats. RMD Open 2017; 3:e000438. [PMID: 28955491 PMCID: PMC5604704 DOI: 10.1136/rmdopen-2017-000438] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/17/2017] [Accepted: 07/28/2017] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is characterised by chronic inflammation leading to articular bone and cartilage damage. Despite recent progress in RA management, adverse effects, lack of efficacy and economic barriers to treatment access still limit therapeutic success. Therefore, safer and less expensive treatments that control inflammation and bone resorption are needed. We have previously shown that celastrol is a candidate for RA treatment. We have observed that it inhibits both interleukin (IL)-1β and tumor necrosis factor (TNF) in vitro, and that it has anti-inflammatory properties and ability to decrease synovial CD68+ macrophages in vivo. Herein our goal was to evaluate the effect of celastrol in local and systemic bone loss. METHODS Celastrol was administrated intraperitoneally at a dose of 1 µg/g/day to female Wistar adjuvant-induced arthritic rats. Rats were sacrificed after 22 days of disease progression, and blood, femurs, tibiae and paw samples were collected for bone remodelling markers quantification, 3-point bending test, micro-CT analysis, nanoindentation and Fourier transform infrared spectroscopy measurements, and immunohistochemical evaluation. RESULTS We have observed that celastrol preserved articular structures and decreased the number of osteoclasts and osteoblasts present in arthritic joints. Moreover, celastrol reduced tartrate-resistant acid phosphatase 5b, procollagen type 1 amino-terminal propeptide and C terminal crosslinked telopeptide of type II collagen serum levels. Importantly, celastrol prevented bone loss and bone microarchitecture degradation. Celastrol also preserved bone nanoproperties and mineral content. Additionally, animals treated with celastrol had less fragile bones, as depicted by an increase in maximum load and yield displacement. CONCLUSIONS These results suggest that celastrol reduces both bone resorption and cartilage degradation, and preserves bone structural properties.
Collapse
Affiliation(s)
- Rita Cascão
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Bruno Vidal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mikko Arttu Jalmari Finnilä
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Inês Pascoal Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rui Lourenço Teixeira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Department of Rheumatology, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisbon Academic Medical Centre, Lisbon, Portugal
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | | | - João Eurico Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Department of Rheumatology, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisbon Academic Medical Centre, Lisbon, Portugal
| |
Collapse
|
40
|
Cascão R, Fonseca JE, Moita LF. Celastrol: A Spectrum of Treatment Opportunities in Chronic Diseases. Front Med (Lausanne) 2017; 4:69. [PMID: 28664158 PMCID: PMC5471334 DOI: 10.3389/fmed.2017.00069] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/19/2017] [Indexed: 01/02/2023] Open
Abstract
The identification of new bioactive compounds derived from medicinal plants with significant therapeutic properties has attracted considerable interest in recent years. Such is the case of the Tripterygium wilfordii (TW), an herb used in Chinese medicine. Clinical trials performed so far using its root extracts have shown impressive therapeutic properties but also revealed substantial gastrointestinal side effects. The most promising bioactive compound obtained from TW is celastrol. During the last decade, an increasing number of studies were published highlighting the medicinal usefulness of celastrol in diverse clinical areas. Here we systematically review the mechanism of action and the therapeutic properties of celastrol in inflammatory diseases, namely, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel diseases, osteoarthritis and allergy, as well as in cancer, neurodegenerative disorders and other diseases, such as diabetes, obesity, atherosclerosis, and hearing loss. We will also focus in the toxicological profile and limitations of celastrol formulation, namely, solubility, bioavailability, and dosage issues that still limit its further clinical application and usefulness.
Collapse
Affiliation(s)
- Rita Cascão
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João E Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Rheumatology Department, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisbon Academic Medical Centre, Lisbon, Portugal
| | - Luis F Moita
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
41
|
Celastrol and Its Role in Controlling Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 928:267-289. [PMID: 27671821 DOI: 10.1007/978-3-319-41334-1_12] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Celastrol, a triterpenoid derived from traditional Chinese medicinal plants, has anti-inflammatory, antioxidant, and anticancer activities. Celastrol has shown preventive/therapeutic effects in experimental models of several chronic diseases. These include, chronic inflammatory and autoimmune diseases (e.g., rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, inflammatory bowel disease, and psoriasis), neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis), atherosclerosis, obesity, Type 2 diabetes, and cancer. Celastrol modulates intricate cellular pathways and networks associated with disease pathology, and it interrupts or redirects the aberrant cellular and molecular events so as to limit disease progression and facilitate recovery, where feasible. The major cell signaling pathways modulated by celastrol include the NF-kB pathway, MAPK pathway, JAK/STAT pathway, PI3K/Akt/mTOR pathway, and antioxidant defense mechanisms. Furthermore, celastrol modulates cell proliferation, apoptosis, proteasome activity, heat-shock protein response, innate and adaptive immune responses, angiogenesis, and bone remodeling. Current understanding of the mechanisms of action of celastrol and information about its disease-modulating activities in experimental models have set the stage for testing celastrol in clinical studies as a therapeutic agent for several chronic human diseases.
Collapse
|
42
|
Xuan W, Feng X, Qian C, Peng L, Shi Y, Xu L, Wang F, Tan W. Osteoclast differentiation gene expression profiling reveals chemokine CCL4 mediates RANKL-induced osteoclast migration and invasion via PI3K pathway. Cell Biochem Funct 2017; 35:171-177. [PMID: 28370169 DOI: 10.1002/cbf.3260] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Wenhua Xuan
- Department of Rheumatology; The First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - Xiaoke Feng
- Department of Traditional Chinese Medicine; The First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - Chen Qian
- Department of Rheumatology; The First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - Liuying Peng
- Department of Rheumatology; The First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - Yumeng Shi
- Department of Rheumatology; The First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - Lingxiao Xu
- Department of Rheumatology; The First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - Fang Wang
- Department of Cardiology; The First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - Wenfeng Tan
- Department of Rheumatology; The First Affiliated Hospital of Nanjing Medical University; Nanjing China
| |
Collapse
|
43
|
Luo S, Li P, Li S, Du Z, Hu X, Fu Y, Zhang Z. N,N-Dimethyl Tertiary Amino Group Mediated Dual Pancreas- and Lung-Targeting Therapy against Acute Pancreatitis. Mol Pharm 2017; 14:1771-1781. [PMID: 28247763 DOI: 10.1021/acs.molpharmaceut.7b00028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acute pancreatitis (AP) is a sudden inflammation of the pancreas with high mortality rate worldwide. As a severe complication to AP, acute lung injury has been the major cause of death among patients with AP. Poor penetration across the blood pancreas barrier (BPB) and insufficient drug accumulation at the target site often result in poor therapeutic outcome. Our previous work successfully demonstrated a dual-specific targeting strategy to pancreas and lung using a phenolic propanediamine moiety. Inspired by this, a simplified ligand structure, N,N-dimethyl tertiary amino group, was covalently conjugated to celastrol (CLT) to afford tertiary amino conjugates via either an ester (CP) or an amide linkage (CTA). With sufficient plasma stability, CTA was subjected to the following studies. Compared to CLT, CTA exhibited excellent cellular uptake efficiency in both rat pancreatic acinar cell line (AR42J) and human pulmonary alveolar epithelial cell line (A549). Organic cation transporters were proven to be responsible for this active transport process. Given systemically, CTA specifically distributed to pancreases and lungs in rats thus resulting in a 2.59-fold and 3.31-fold increase in tissue-specific accumulation as compared to CLT. After CTA treatment, tissue lesions were greatly alleviated and the levels of proinflammatory cytokines were downregulated in rats with sodium taurocholate induced AP. Furthermore, CTA demonstrated marginal adverse effect against major organs with reduced cardiac toxicity compared to CLT. Together, tertiary amine mediated dual pancreas- and lung-targeting therapy represents an efficient and safe strategy for AP management.
Collapse
Affiliation(s)
- Shi Luo
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| | - Peiwen Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| | - Sha Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| | - Zhengwu Du
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| | - Xun Hu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| | - Yao Fu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| |
Collapse
|
44
|
Venkatesha SH, Dudics S, Astry B, Moudgil KD. Control of autoimmune inflammation by celastrol, a natural triterpenoid. Pathog Dis 2016; 74:ftw059. [PMID: 27405485 DOI: 10.1093/femspd/ftw059] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2016] [Indexed: 12/19/2022] Open
Abstract
Celastrol is a bioactive compound derived from traditional Chinese medicinal herbs of the Celastraceae family. Celastrol is known to possess anti-inflammatory and anti-oxidant activities. Our studies have highlighted the immunomodulatory attributes of celastrol in adjuvant-induced arthritis (AA), an experimental model of human rheumatoid arthritis (RA). RA is an autoimmune disease characterized by chronic inflammation of the synovial lining of the joints, leading eventually to tissue damage and deformities. Identification of the molecular targets of celastrol such as the NF-κB pathway, MAPK pathway, JAK/STAT pathway and RANKL/OPG pathway has unraveled its strategic checkpoints in controlling arthritic inflammation and tissue damage in AA. The pathological events that are targeted and rectified by celastrol include increased production of pro-inflammatory cytokines; an imbalance between pathogenic T helper 17 and regulatory T cells; enhanced production of chemokines coupled with increased migration of immune cells into the joints; and increased release of mediators of osteoclastic bone damage. Accordingly, celastrol is a promising candidate for further testing in the clinic for RA therapy. Furthermore, the results of other preclinical studies suggest that celastrol might also be beneficial for the treatment of a few other autoimmune diseases besides arthritis.
Collapse
Affiliation(s)
- Shivaprasad H Venkatesha
- Department of Microbiology and Immunology, Division of Rheumatology, University of Maryland School of Medicine, 685 W. Baltimore Street, HSF-1, Suite 380, Baltimore, MD 21201, USA
| | - Steven Dudics
- Department of Microbiology and Immunology, Division of Rheumatology, University of Maryland School of Medicine, 685 W. Baltimore Street, HSF-1, Suite 380, Baltimore, MD 21201, USA
| | - Brian Astry
- Department of Microbiology and Immunology, Division of Rheumatology, University of Maryland School of Medicine, 685 W. Baltimore Street, HSF-1, Suite 380, Baltimore, MD 21201, USA
| | - Kamal D Moudgil
- Department of Microbiology and Immunology, Division of Rheumatology, University of Maryland School of Medicine, 685 W. Baltimore Street, HSF-1, Suite 380, Baltimore, MD 21201, USA Department of Medicine, Division of Rheumatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
45
|
An J, Hao D, Zhang Q, Chen B, Zhang R, Wang Y, Yang H. Natural products for treatment of bone erosive diseases: The effects and mechanisms on inhibiting osteoclastogenesis and bone resorption. Int Immunopharmacol 2016; 36:118-131. [PMID: 27131574 DOI: 10.1016/j.intimp.2016.04.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/28/2016] [Accepted: 04/18/2016] [Indexed: 01/13/2023]
Abstract
Excessive bone resorption plays a central role on the development of bone erosive diseases, including osteoporosis, rheumatoid arthritis, and periodontitis. Osteoclasts, bone-resorbing multinucleated cells, are differentiated from hemopoietic progenitors of the monocyte/macrophage lineage. Regulation of osteoclast differentiation is considered an effective therapeutic target to the treatment of pathological bone loss. Natural plant-derived products, with potential therapeutic and preventive activities against bone-lytic diseases, have received increasing attention in recent years because of their whole regulative effects and specific pharmacological activities, which are more suitable for long-term use than chemically synthesized medicines. In this review, we summarized the detailed research progress on the active compounds derived from medical plants with potential anti-resorptive effects and their molecular mechanisms on inhibiting osteoclast formation and function. The active ingredients derived from natural plants that are efficacious in suppressing osteoclastogenesis and bone resorption include flavonoids, terpenoids (sesquiterpenoids, diterpenoids, triterpenoids), glycosides, lignans, coumarins, alkaloids, polyphenols, limonoids, quinones and others (steroid, oxoxishhone, fatty acid). Studies have shown that above natural products exert the inhibitory effects via regulating many factors involved in the process of osteoclast differentiation and bone resorption, including the essential cytokines (RANKL, M-CSF), transcription factors (NFATc1, c-Fos), signaling pathways (NF-κB, MAPKs, Src/PI3K/Akt, the calcium ion signaling), osteoclast-specific genes (TRAP, CTSK, MMP-9, integrin β3, OSCAR, DC-STAMP, Atp6v0d2) and local factors (ROS, LPS, NO). The development of osteoclast-targeting natural products is of great value for the prevention or treatment of bone diseases and for bone regenerative medicine.
Collapse
Affiliation(s)
- Jing An
- Translational Medicine Centre, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Dingjun Hao
- Translational Medicine Centre, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Qian Zhang
- Translational Medicine Centre, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Bo Chen
- Translational Medicine Centre, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Rui Zhang
- Translational Medicine Centre, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Yi Wang
- Translational Medicine Centre, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Hao Yang
- Translational Medicine Centre, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China.
| |
Collapse
|
46
|
Venkatesha SH, Astry B, Nanjundaiah SM, Kim HR, Rajaiah R, Yang Y, Tong L, Yu H, Berman BM, Moudgil KD. Control of autoimmune arthritis by herbal extracts and their bioactive components. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2016.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
47
|
Zou YC, Yang XW, Yuan SG, Zhang P, Li YK. Celastrol inhibits prostaglandin E2-induced proliferation and osteogenic differentiation of fibroblasts isolated from ankylosing spondylitis hip tissues in vitro. Drug Des Devel Ther 2016; 10:933-48. [PMID: 27022241 PMCID: PMC4790082 DOI: 10.2147/dddt.s97463] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Heterotopic ossification on the enthesis, which develops after subsequent inflammation, is one of the most distinctive features in ankylosing spondylitis (AS). Prostaglandin E2 (PGE-2) serves as a key mediator of inflammation and bone remodeling in AS. Celastrol, a well-known Chinese medicinal herb isolated from Tripterygium wilfordii, is widely used in treating inflammatory diseases, including AS. It has been proven that it can inhibit lipopolysac-charide-induced expression of various inflammation mediators, such as PGE-2. However, the mechanism by which celastrol inhibits inflammation-induced bone forming in AS is unclear. OBJECTIVE To investigate whether celastrol could inhibit isolated AS fibroblast osteogenesis induced by PGE-2. METHODS Hip synovial tissues were obtained from six AS patients undergoing total hip replacement in our hospital. Fibroblasts were isolated, primarily cultured, and then treated with PGE-2 for osteogenic induction. Different doses of celastrol and indometacin were added to observe their effects on osteogenic differentiation. Cell proliferation, osteogenic markers, alizarin red staining as well as the activity of alkaline phosphatase were examined in our study. RESULTS Celastrol significantly inhibits cell proliferation of isolated AS fibroblasts and in vitro osteogenic differentiation compared with control groups in a time- and dose-dependent manner. CONCLUSION Our results demonstrated that celastrol could inhibit isolated AS fibroblast proliferation and in vitro osteogenic differentiation. The interaction of PI3K/AKT signaling and Wnt protein may be involved in the process. Further studies should be performed in vivo and animal models to identify the potential effect of celastrol on the bone metabolism of AS patients.
Collapse
Affiliation(s)
- Yu-Cong Zou
- School of Traditional Chinese Medicine, Southern Medical University, Guang Zhou, People’s Republic of China
| | - Xian-Wen Yang
- The Third Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Guang Zhou, People’s Republic of China
| | - Shi-Guo Yuan
- School of Traditional Chinese Medicine, Southern Medical University, Guang Zhou, People’s Republic of China
| | - Pei Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guang Zhou, People’s Republic of China
| | - Yi-Kai Li
- School of Traditional Chinese Medicine, Southern Medical University, Guang Zhou, People’s Republic of China
| |
Collapse
|
48
|
Cascão R, Vidal B, Lopes IP, Paisana E, Rino J, Moita LF, Fonseca JE. Decrease of CD68 Synovial Macrophages in Celastrol Treated Arthritic Rats. PLoS One 2015; 10:e0142448. [PMID: 26658436 PMCID: PMC4676706 DOI: 10.1371/journal.pone.0142448] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/21/2015] [Indexed: 01/08/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disease characterized by cellular infiltration into the joints, hyperproliferation of synovial cells and bone damage. Available treatments for RA only induce remission in around 30% of the patients, have important adverse effects and its use is limited by their high cost. Therefore, compounds that can control arthritis, with an acceptable safety profile and low production costs are still an unmet need. We have shown, in vitro, that celastrol inhibits both IL-1β and TNF, which play an important role in RA, and, in vivo, that celastrol has significant anti-inflammatory properties. Our main goal in this work was to test the effect of celastrol in the number of sublining CD68 macrophages (a biomarker of therapeutic response for novel RA treatments) and on the overall synovial tissue cellularity and joint structure in the adjuvant-induced rat model of arthritis (AIA). Methods Celastrol was administered to AIA rats both in the early (4 days after disease induction) and late (11 days after disease induction) phases of arthritis development. The inflammatory score, ankle perimeter and body weight were evaluated during treatment period. Rats were sacrificed after 22 days of disease progression and blood, internal organs and paw samples were collected for toxicological blood parameters and serum proinflammatory cytokine quantification, as well as histopathological and immunohistochemical evaluation, respectively. Results Here we report that celastrol significantly decreases the number of sublining CD68 macrophages and the overall synovial inflammatory cellularity, and halted joint destruction without side effects. Conclusions Our results validate celastrol as a promising compound for the treatment of arthritis.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Animals
- Anti-Inflammatory Agents/pharmacology
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/immunology
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- Cell Count
- Female
- Gene Expression
- Humans
- Injections, Intraperitoneal
- Interleukin-1beta/genetics
- Interleukin-1beta/immunology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/pathology
- Pentacyclic Triterpenes
- Rats
- Rats, Wistar
- Synovial Membrane/drug effects
- Synovial Membrane/immunology
- Synovial Membrane/pathology
- Treatment Outcome
- Triterpenes/pharmacology
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- Rita Cascão
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- * E-mail:
| | - Bruno Vidal
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Inês P. Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Eunice Paisana
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - José Rino
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | | | - João E. Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Rheumatology Department, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisbon Academic Medical Centre, Lisbon, Portugal
| |
Collapse
|
49
|
Ding Z, Wang Q, Pan X, Zhu Q, Lu H, Wang K, Ni X, Lu Y, Gu J. Expression of receptor activator of nuclear factor-κB ligand is related to sex differences in collagen-induced arthritis. Int Immunopharmacol 2015; 28:892-6. [PMID: 25863233 DOI: 10.1016/j.intimp.2015.03.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/28/2015] [Indexed: 01/06/2023]
Abstract
Osteoclasts are responsible for bone destruction in rheumatoid arthritis, and women show greater disease activity and functional disability than men. This study aimed to examine differences in the pathogenesis of collagen-induced arthritis and osteoclastogenesis between female and male mice in vivo and in vitro. Female mice exhibited worse disease progression and increased osteoclastogenesis, as measured by tartrate-resistant acid phosphatase (TRAP) staining than male mice. Significantly higher levels of CD11b(+) cells were detected in the bone marrow of female mice than that of male mice. Furthermore, the mRNA expression of receptor activator of nuclear factor-κB ligand was higher in female mice that were immunized with or without collagen II. These findings highlighted sex differences in arthritis morbidity and suggested that female mice are more likely to develop arthritis than male mice. Further studies are needed to investigate the mechanisms of sex differences in collagen-induced arthritis.
Collapse
Affiliation(s)
- Zheng Ding
- Translational Medicine Research Center of Jiangning Hospital, Nanjing Medical University and Liver Transplantation Center of First Affiliated Hospital, Nanjing, China
| | - Qi Wang
- Translational Medicine Research Center of Jiangning Hospital, Nanjing Medical University and Liver Transplantation Center of First Affiliated Hospital, Nanjing, China
| | - Xiongxiong Pan
- Department of Anesthesiology, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qin Zhu
- Translational Medicine Research Center of Jiangning Hospital, Nanjing Medical University and Liver Transplantation Center of First Affiliated Hospital, Nanjing, China
| | - Hao Lu
- Translational Medicine Research Center of Jiangning Hospital, Nanjing Medical University and Liver Transplantation Center of First Affiliated Hospital, Nanjing, China
| | - Kunpeng Wang
- Translational Medicine Research Center of Jiangning Hospital, Nanjing Medical University and Liver Transplantation Center of First Affiliated Hospital, Nanjing, China
| | - Xuhao Ni
- Translational Medicine Research Center of Jiangning Hospital, Nanjing Medical University and Liver Transplantation Center of First Affiliated Hospital, Nanjing, China
| | - Yunjie Lu
- Translational Medicine Research Center of Jiangning Hospital, Nanjing Medical University and Liver Transplantation Center of First Affiliated Hospital, Nanjing, China.
| | - Jian Gu
- Translational Medicine Research Center of Jiangning Hospital, Nanjing Medical University and Liver Transplantation Center of First Affiliated Hospital, Nanjing, China.
| |
Collapse
|