1
|
Tunbridge MJ, Luo X, Thomson AW. Negative Vaccination Strategies for Promotion of Transplant Tolerance. Transplantation 2024; 108:1715-1729. [PMID: 38361234 PMCID: PMC11265982 DOI: 10.1097/tp.0000000000004911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Organ transplantation requires the use of immunosuppressive medications that lack antigen specificity, have many adverse side effects, and fail to induce immunological tolerance to the graft. The safe induction of tolerance to allogeneic tissue without compromising host responses to infection or enhancing the risk of malignant disease is a major goal in transplantation. One promising approach to achieve this goal is based on the concept of "negative vaccination." Vaccination (or actively acquired immunity) involves the presentation of both a foreign antigen and immunostimulatory adjuvant to the immune system to induce antigen-specific immunity. By contrast, negative vaccination, in the context of transplantation, involves the delivery of donor antigen before or after transplantation, together with a "negative adjuvant" to selectively inhibit the alloimmune response. This review will explore established and emerging negative vaccination strategies for promotion of organ or pancreatic islet transplant tolerance. These include donor regulatory myeloid cell infusion, which has progressed to early-phase clinical trials, apoptotic donor cell infusion that has advanced to nonhuman primate models, and novel nanoparticle antigen-delivery systems.
Collapse
Affiliation(s)
- Matthew J. Tunbridge
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Department of Medicine (Nephrology), Duke University Medical Center, Durham, North Carolina, USA
| | - Xunrong Luo
- Department of Medicine (Nephrology), Duke University Medical Center, Durham, North Carolina, USA
| | - Angus W. Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Sato N, Marubashi S. Induction of Immune Tolerance in Islet Transplantation Using Apoptotic Donor Leukocytes. J Clin Med 2021; 10:5306. [PMID: 34830586 PMCID: PMC8625503 DOI: 10.3390/jcm10225306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/31/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Allogeneic islet transplantation has become an effective treatment option for severe Type 1 diabetes with intractable impaired awareness due to hypoglycemic events. Although current immunosuppressive protocols effectively prevent the acute rejection associated with initial T cell activation in recipients, chronic rejection has remained an obstacle for achieving long-term allogeneic islet engraftment. The development of donor-specific immune tolerance to the allograft is the ultimate goal given its potential ability to overcome chronic rejection and disregard the need for maintenance immunosuppression, which may be toxic to islet grafts. Recently, a breakthrough in tolerance induction during allogeneic islet transplantation using apoptotic donor lymphocytes (ADLs) in a non-human primate model had been reported. Several studies have suggested that the clonal depletion, anergy, and expansion of the antigen-specific regulatory immune network are the mechanisms for donor-specific tolerance with ADLs, which act synergistically to induce robust transplant tolerance. This achievement represents a huge step forward toward the clinical application of immune tolerance induction. We herein summarize the reported operational induction therapies in islet transplantation using the ADLs. Moreover, a few obstacles for the engraftment of transplanted islets, such as islet immunogenicity and instant blood-mediated response, which need to be resolved in the future, are also discussed.
Collapse
Affiliation(s)
| | - Shigeru Marubashi
- Department of Hepato–Biliary–Pancreatic and Transplant Surgery, Fukushima Medical University, Hikagigaoka-1, Fukushima 960-1295, Japan;
| |
Collapse
|
3
|
Zhou B, Zhang Y, Zhang D, Zhang Y, Xie J, Zhang X, Ding J, Su Y, Guo S, Zhuang R. ECDI-fixed donor splenocytes prolong skin allograft survival by promoting M2 macrophage polarization and inducing regulatory T cells. FASEB Bioadv 2019; 1:706-718. [PMID: 32123816 PMCID: PMC6996306 DOI: 10.1096/fba.2019-00029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 03/29/2019] [Accepted: 09/30/2019] [Indexed: 11/27/2022] Open
Abstract
Rejection is a common complication of allogeneic tissue transplantation. Fixation of splenocytes (SP) with 1-ethyl-3-(3'-dimethylaminopropyl)-carbodiimide (ECDI) induces immune tolerance in recipients post-transplantation; however, the mechanism underlying this effect remains unclear. Here, we determined the mechanisms of ECDI-fixed donor SP (ECDI-SP) in inducing tolerance in skin allograft transplantation. C57BL/6-recipient mice that received Balb/c full-thickness skin transplants with two infusions of donor-derived ECDI-SP, along with rapamycin showed superior skin allograft survival and lower inflammatory cell infiltration than mice that received rapamycin-only treatment. In ECDI-SP-treated mice, the levels of anti-inflammatory cytokines such as interleukin (IL)-10 in sera were markedly increased, whereas the expression of inflammatory cytokines was significantly suppressed. Splenic macrophages were significantly polarized to the alternative activated macrophage (M2) phenotype, with expansion of CD4+Foxp3+ regulatory T cells (Tregs) in the spleen and draining lymph nodes. Allostimulatory activity of ECDI-SP in vitro and donor-specific ex vivo hyporesponsiveness were observed. C57BL/6 macrophages engulfed allogeneic Balb/c-derived ECDI-SP, polarized to the M2 phenotype, with pronounced cAMP response element-binding (CREB) protein phosphorylation. By facilitating increased IL-10 expression, ECDI-SP induced M2 polarization and Treg production, inhibiting effector T-cell proliferation. Thus, ECDI-SP modulates macrophage M2 polarization by increasing CREB phosphorylation and promoting Treg production to suppress allogeneic skin graft rejection.
Collapse
Affiliation(s)
- Bo Zhou
- Department of ImmunologyFourth Military Medical UniversityXi'anChina
- Department of Plastic and Reconstructive SurgeryXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Yuan Zhang
- Transplant Immunology LaboratoryFourth Military Medical UniversityXi'anChina
| | - Dongliang Zhang
- Department of Plastic and Reconstructive SurgeryXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Yun Zhang
- Department of ImmunologyFourth Military Medical UniversityXi'anChina
| | - Jiangang Xie
- Transplant Immunology LaboratoryFourth Military Medical UniversityXi'anChina
| | - Xuexin Zhang
- Transplant Immunology LaboratoryFourth Military Medical UniversityXi'anChina
| | - Jianke Ding
- Department of Plastic and Reconstructive SurgeryXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Yingjun Su
- Department of Plastic and Reconstructive SurgeryXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Shuzhong Guo
- Department of Plastic and Reconstructive SurgeryXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Ran Zhuang
- Department of ImmunologyFourth Military Medical UniversityXi'anChina
- Transplant Immunology LaboratoryFourth Military Medical UniversityXi'anChina
| |
Collapse
|
4
|
Ethylene carbodiimide-fixed donor splenocytes combined with cordycepin induce long-term protection to mice cardiac allografts. Transpl Immunol 2019; 56:101196. [DOI: 10.1016/j.trim.2019.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 11/17/2022]
|
5
|
Abstract
PURPOSE OF REVIEW To evaluate role of the lymph node in immune regulation and tolerance in transplantation and recent advances in the delivery of antigen and immune modulatory signals to the lymph node. RECENT FINDINGS Lymph nodes are a primary site of immune cell priming, activation, and modulation, and changes within the lymph node microenvironment have the potential to induce specific regulation, suppression, and potentially tolerance. Antigen enters the lymph node either from tissues via lymphatics, from blood via high endothelial venules, or directly via injection. Here we review different techniques and materials to deliver antigen to the lymph node including microparticles or nanoparticles, ex-vivo antigen presenting cell manipulation, and use of receptor conjugation for specific intralymph node targeting locations. SUMMARY The promising results point to powerful techniques to harness the lymph node microenvironment and direct systemic immune regulation. The materials, techniques, and approaches suggest that translational and clinical trials in nonhuman primate and patients may soon be possible.
Collapse
|
6
|
Lin H, Chen M, Tian F, Tikkanen J, Ding L, Andrew Cheung HY, Nakajima D, Wang Z, Mariscal A, Hwang D, Cypel M, Keshavjee S, Liu M. α 1 -Anti-trypsin improves function of porcine donor lungs during ex-vivo lung perfusion. J Heart Lung Transplant 2018; 37:656-666. [DOI: 10.1016/j.healun.2017.09.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/15/2017] [Accepted: 09/26/2017] [Indexed: 11/28/2022] Open
|
7
|
Ding J, Liu S, Zhang D, Song Y, Ma X, Yi C, Song B, Xiao B, Su Y, Guo S. Transfusion of ethylene carbodiimide–fixed donor splenocytes prolongs survival of vascularized skin allografts. J Surg Res 2018; 221:343-352. [DOI: 10.1016/j.jss.2017.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/24/2017] [Accepted: 06/06/2017] [Indexed: 10/18/2022]
|
8
|
Diehl R, Ferrara F, Müller C, Dreyer AY, McLeod DD, Fricke S, Boltze J. Immunosuppression for in vivo research: state-of-the-art protocols and experimental approaches. Cell Mol Immunol 2016; 14:146-179. [PMID: 27721455 PMCID: PMC5301156 DOI: 10.1038/cmi.2016.39] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 05/30/2016] [Accepted: 05/30/2016] [Indexed: 02/06/2023] Open
Abstract
Almost every experimental treatment strategy using non-autologous cell, tissue or organ transplantation is tested in small and large animal models before clinical translation. Because these strategies require immunosuppression in most cases, immunosuppressive protocols are a key element in transplantation experiments. However, standard immunosuppressive protocols are often applied without detailed knowledge regarding their efficacy within the particular experimental setting and in the chosen model species. Optimization of such protocols is pertinent to the translation of experimental results to human patients and thus warrants further investigation. This review summarizes current knowledge regarding immunosuppressive drug classes as well as their dosages and application regimens with consideration of species-specific drug metabolization and side effects. It also summarizes contemporary knowledge of novel immunomodulatory strategies, such as the use of mesenchymal stem cells or antibodies. Thus, this review is intended to serve as a state-of-the-art compendium for researchers to refine applied experimental immunosuppression and immunomodulation strategies to enhance the predictive value of preclinical transplantation studies.
Collapse
Affiliation(s)
- Rita Diehl
- Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig 04103, Germany
| | - Fabienne Ferrara
- Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig 04103, Germany.,Institute of Vegetative Physiology, Charite University Medicine and Center for Cardiovascular Research, Berlin 10115, Germany
| | - Claudia Müller
- Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig 04103, Germany
| | - Antje Y Dreyer
- Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig 04103, Germany
| | | | - Stephan Fricke
- Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig 04103, Germany
| | - Johannes Boltze
- Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig 04103, Germany.,Fraunhofer Research Institution for Marine Biotechnology and Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck 23562, Germany
| |
Collapse
|
9
|
Chen G, Li J, Chen L, Lai X, Qiu J. α1-Antitrypsin-primed tolerogenic dendritic cells prolong allograft kidney transplants survival in rats. Int Immunopharmacol 2016; 31:216-21. [PMID: 26761724 DOI: 10.1016/j.intimp.2015.12.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/17/2015] [Accepted: 12/23/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Guodong Chen
- Division of Organ Transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Li
- Division of Organ Transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lizhong Chen
- Division of Organ Transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xingqiang Lai
- Division of Organ Transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jiang Qiu
- Division of Organ Transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|