1
|
Tekin I, Kosova F. The level pro-inflammatory and anti-inflammatory biomarkers in patients with chronic mechanical low back pain under pulse radiofrequency therapy. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.03.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Low back pain is a frequent and recurrent condition, often with a non-specific cause. Conventional treatment methods are generally insufficient in the treatment of chronic low back pain. The aim of the study was to estimate the level of IFN, IL-1, IL-6 (proinflammatory), IL-10, IL-4 (anti-inflammatory) and VEGF proteins in the serum of patients with chronic mechanical low back pain under Pulse radiofrequency (PRF) therapy. The study was carried out on 40 patients 20-60 years old, diagnosed with chronic low back pain for at least 4 months, primary complaint on lumbosacral low back pain, pain intensity VAS (visual analog scale) score of 5 and above, not responding well to conservative treatment (analgesic drugs, physiotherapy, etc.). Therapeutic Radiofrequency applications were carried out with an RF generator (RFG 3C Plus, Radionics). Blood samples were taken 1 day before interventional treatment (control), then 1 day (group1) and 15 days (group 2) after. The serum level of IFN, IL-1, IL-6, IL-10, IL-4 and VEGF l was analyzed with ELISA test. It was shown that as a result of PRF treatment the level of IL-1 was decreased while the levels of IL-4 and IL-6 were increased. It was concluded that the increase in serum levels of proinflammatory cytokines may be correlated with the severity of pain and that the increase in the level of anti-inflammatory cytokines reduces pain by reducing inflammation. Keywords: chronic low back pain, cytokines, radiofrequency therapy
Collapse
|
2
|
Lv Y, Zhang J, Wang C. Self-assembled chitosan nanoparticles for intranasal delivery of recombinant protein interleukin-17 receptor C (IL-17RC): preparation and evaluation in asthma mice. Bioengineered 2021; 12:3029-3039. [PMID: 34180764 PMCID: PMC8806589 DOI: 10.1080/21655979.2021.1940622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Asthma is mentioned as a chronic airway inflammatory disease, whose pathogenesis is complicated. The promotion of inflammation in asthma by IL-17A and IL-17F has been confirmed. In addition to covalent homodimers, both cytokines are also able to form heterodimers, further inducing downstream pathways via binding to the IL-17RA and IL-17RC receptor complex. In recent years, IL-17RA and its signal transduction pathway have been extensively researched. IL-17RC, however, remains relatively unexplored. In the present study, we self-assembled chitosan (CS) nanoparticles for intranasal delivery of recombinant protein IL-17RC (rIL-17RC) and preliminarily investigated its effect on a murine model of allergic asthma induced by ovalbumin (OVA). rIL-17RC was produced by the prokaryotic expression system and encapsulated into the CS nanoparticles via ionic cross-linking technique. The results showed that CS-RC nanoparticles via intranasal intervention significantly caused inhibition of mucus secretion and airway inflammatory cell infiltration, and reduced IL-4, IL-17, IL-17F levels in BALF. Hence, delivering receptor proteins such as IL-17RC, through CS nanoparticles as a carrier, could be an attractive therapeutic intervention for asthma.
Collapse
Affiliation(s)
- Yongli Lv
- Department of Paediatrics, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Jianhua Zhang
- Department of Paediatrics, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Chaoying Wang
- Department of Paediatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
3
|
Zaidi SR, Blakey JD. Why are people with asthma susceptible to pneumonia? A review of factors related to upper airway bacteria. Respirology 2019; 24:423-430. [PMID: 30887658 DOI: 10.1111/resp.13528] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022]
Abstract
Asthma and pneumonia are common respiratory conditions globally, affecting individuals of all ages. Streptococcus pneumoniae is the predominant bacterial cause of pneumonia, with nasopharyngeal carriage an important step towards invasive and pulmonary disease. Vaccines provide individual protection, and also prevent nasopharyngeal carriage, providing herd immunity. Asthma is associated with an increased risk of pneumonia, but there is limited information on the underlying mechanism of this predisposition. Both asthma and its treatment may conceivably alter propensity to, and density of, carriage through an altered epithelial microenvironment driven by disease-related inflammation or treatment-related immunomodulation, for example with inhaled corticosteroids. The relative importance of these factors could impact the efficacy of vaccines in this vulnerable patient population. In this review, we summarize the evidence for an increased risk of pneumonia in asthma, and discuss factors affecting nasopharyngeal carriage in the context of current guidelines for pneumococcal vaccination.
Collapse
Affiliation(s)
- Seher R Zaidi
- Department of Respiratory Medicine, Royal Liverpool University Hospital, Liverpool, UK.,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - John D Blakey
- Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia.,Medical School, Curtin University, Perth, WA, Australia
| |
Collapse
|
4
|
Yosri H, Said E, Elkashef WF, Gameil NM. Modulatory role of gabapentin against ovalbumin-induced asthma, bronchial and airway inflammation in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 64:18-25. [PMID: 30286334 DOI: 10.1016/j.etap.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/05/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Allergic asthma is a type of chronic immune-mediated inflammatory lung disorders with constantly increased worldwide prevalence. Gabapentin is an L-type calcium channel blocker used essentially as antiepileptic and recently has been indicated for management of post-operative and neuropathic pains as an anti-inflammatory. The current study was conducted to evaluate the anti-inflammatory and anti-allergic properties of gabapentin in a mouse-model of Ovalbumin-induced allergic asthma. Mice received OVA (10 mg) adsorbed on Al(OH)3 on days 0 and 7 and were challenged by exposure to nebulized OVA solution (1%) form days 14-16. Asthma induction was associated with significant biochemical, oxidative and inflammatory imbalance. Daily oral gabapentin (50 mg/kg), significantly reduced lung inflammatory cells counts', serum LDH and catalase activities and lung/body weight index. Moreover, gabapentin significantly increased lung GSH concentration and enhanced SOD activity. Lung contents of TNFα, IL-4 and IL-13 significantly declined as well. IL-13; is the major contributor to airway hyper-responsiveness; the charetrestic hallmark of asthma and IL-4; a major chemoattractant cytokine. Lung histopathology significantly improved parallel to the biochemical improvements. In conclusion; Gabapentin's modulatory effect on IL-4, IL-13 and TNFα activities accounts for the observed anti-inflammatory and anti-allergic properties.
Collapse
Affiliation(s)
- Haidy Yosri
- Dep. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eman Said
- Dep. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Wagdi F Elkashef
- Dep. of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nariman M Gameil
- Dep. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Machelart A, Potemberg G, Van Maele L, Demars A, Lagneaux M, De Trez C, Sabatel C, Bureau F, De Prins S, Percier P, Denis O, Jurion F, Romano M, Vanderwinden JM, Letesson JJ, Muraille E. Allergic Asthma Favors Brucella Growth in the Lungs of Infected Mice. Front Immunol 2018; 9:1856. [PMID: 30147700 PMCID: PMC6095999 DOI: 10.3389/fimmu.2018.01856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022] Open
Abstract
Allergic asthma is a chronic Th2 inflammatory disease of the lower airways affecting a growing number of people worldwide. The impact of infections and microbiota composition on allergic asthma has been investigated frequently. Until now, however, there have been few attempts to investigate the impact of asthma on the control of infectious microorganisms and the underlying mechanisms. In this work, we characterize the consequences of allergic asthma on intranasal (i.n.) infection by Brucella bacteria in mice. We observed that i.n. sensitization with extracts of the house dust mite Dermatophagoides farinae or the mold Alternaria alternata (Alt) significantly increased the number of Brucella melitensis, Brucella suis, and Brucella abortus in the lungs of infected mice. Microscopic analysis showed dense aggregates of infected cells composed mainly of alveolar macrophages (CD11c+ F4/80+ MHCII+) surrounded by neutrophils (Ly-6G+). Asthma-induced Brucella susceptibility appears to be dependent on CD4+ T cells, the IL-4/STAT6 signaling pathway and IL-10, and is maintained in IL-12- and IFN-γR-deficient mice. The effects of the Alt sensitization protocol were also tested on Streptococcus pneumoniae and Mycobacterium tuberculosis pulmonary infections. Surprisingly, we observed that Alt sensitization strongly increases the survival of S. pneumoniae infected mice by a T cell and STAT6 independent signaling pathway. In contrast, the course of M. tuberculosis infection is not affected in the lungs of sensitized mice. Our work demonstrates that the impact of the same allergic sensitization protocol can be neutral, negative, or positive with regard to the resistance of mice to bacterial infection, depending on the bacterial species.
Collapse
Affiliation(s)
- Arnaud Machelart
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d’Immunologie et de Microbiologie, NAmur Research Institute for Life Sciences (NARILIS), Université de Namur, Namur, Belgium
| | - Georges Potemberg
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d’Immunologie et de Microbiologie, NAmur Research Institute for Life Sciences (NARILIS), Université de Namur, Namur, Belgium
| | - Laurye Van Maele
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | - Aurore Demars
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d’Immunologie et de Microbiologie, NAmur Research Institute for Life Sciences (NARILIS), Université de Namur, Namur, Belgium
| | - Maxime Lagneaux
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d’Immunologie et de Microbiologie, NAmur Research Institute for Life Sciences (NARILIS), Université de Namur, Namur, Belgium
| | - Carl De Trez
- Department of Molecular and Cellular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Brussels, Belgium
| | - Catherine Sabatel
- Laboratory of Cellular and Molecular Immunology, GIGA- Research & WELBIO, University of Liège, Liège, Belgium
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA- Research & WELBIO, University of Liège, Liège, Belgium
| | - Sofie De Prins
- Immunology Unit, Scientific Institute for Public Health (WIV-ISP), Brussels, Belgium
| | - Pauline Percier
- Immunology Unit, Scientific Institute for Public Health (WIV-ISP), Brussels, Belgium
| | - Olivier Denis
- Immunology Unit, Scientific Institute for Public Health (WIV-ISP), Brussels, Belgium
| | - Fabienne Jurion
- Immunology Unit, Scientific Institute for Public Health (WIV-ISP), Brussels, Belgium
| | - Marta Romano
- Immunology Unit, Scientific Institute for Public Health (WIV-ISP), Brussels, Belgium
| | | | - Jean-Jacques Letesson
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d’Immunologie et de Microbiologie, NAmur Research Institute for Life Sciences (NARILIS), Université de Namur, Namur, Belgium
| | - Eric Muraille
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d’Immunologie et de Microbiologie, NAmur Research Institute for Life Sciences (NARILIS), Université de Namur, Namur, Belgium
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
6
|
Ritchie ND, Ritchie R, Bayes HK, Mitchell TJ, Evans TJ. IL-17 can be protective or deleterious in murine pneumococcal pneumonia. PLoS Pathog 2018; 14:e1007099. [PMID: 29813133 PMCID: PMC5993294 DOI: 10.1371/journal.ppat.1007099] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/08/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022] Open
Abstract
Streptococcus pneumoniae is the major bacterial cause of community-acquired pneumonia, and the leading agent of childhood pneumonia deaths worldwide. Nasal colonization is an essential step prior to infection. The cytokine IL-17 protects against such colonization and vaccines that enhance IL-17 responses to pneumococcal colonization are being developed. The role of IL-17 in host defence against pneumonia is not known. To address this issue, we have utilized a murine model of pneumococcal pneumonia in which the gene for the IL-17 cytokine family receptor, Il17ra, has been inactivated. Using this model, we show that IL-17 produced predominantly from γδ T cells protects mice against death from the invasive TIGR4 strain (serotype 4) which expresses a relatively thin capsule. However, in pneumonia produced by two heavily encapsulated strains with low invasive potential (serotypes 3 and 6B), IL-17 significantly enhanced mortality. Neutrophil uptake and killing of the serotype 3 strain was significantly impaired compared to the serotype 4 strain and depletion of neutrophils with antibody enhanced survival of mice infected with the highly encapsulated SRL1 strain. These data strongly suggest that IL-17 mediated neutrophil recruitment to the lungs clears infection from the invasive TIGR4 strain but that lung neutrophils exacerbate disease caused by the highly encapsulated pneumococcal strains. Thus, whilst augmenting IL-17 immune responses against pneumococci may decrease nasal colonization, this may worsen outcome during pneumonia caused by some strains.
Collapse
MESH Headings
- Animals
- Bacteremia/immunology
- Bacteremia/microbiology
- Bacterial Capsules/immunology
- Bacterial Capsules/ultrastructure
- Bronchoalveolar Lavage Fluid/cytology
- Bronchoalveolar Lavage Fluid/microbiology
- Disease Models, Animal
- Interleukin-17/immunology
- Lung/cytology
- Lung/enzymology
- Lung/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Nasopharynx/microbiology
- Neutrophils/cytology
- Neutrophils/immunology
- Peroxidase/metabolism
- Phagocytosis
- Pneumonia, Pneumococcal/immunology
- Pneumonia, Pneumococcal/mortality
- Pneumonia, Pneumococcal/prevention & control
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Interleukin-17/genetics
- Specific Pathogen-Free Organisms
- Streptococcus pneumoniae/immunology
- Streptococcus pneumoniae/ultrastructure
Collapse
Affiliation(s)
- Neil D. Ritchie
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ryan Ritchie
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Hannah K. Bayes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Tim J. Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences University of Birmingham, Birmingham, United Kingdom
| | - Tom J. Evans
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
7
|
Chamoun MN, Blumenthal A, Sullivan MJ, Schembri MA, Ulett GC. Bacterial pathogenesis and interleukin-17: interconnecting mechanisms of immune regulation, host genetics, and microbial virulence that influence severity of infection. Crit Rev Microbiol 2018; 44:465-486. [PMID: 29345518 DOI: 10.1080/1040841x.2018.1426556] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interleukin-17 (IL-17) is a pro-inflammatory cytokine involved in the control of many different disorders, including autoimmune, oncogenic, and diverse infectious diseases. In the context of infectious diseases, IL-17 protects the host against various classes of microorganisms but, intriguingly, can also exacerbate the severity of some infections. The regulation of IL-17 expression stems, in part, from the activity of Interleukin-23 (IL-23), which drives the maturation of different classes of IL-17-producing cells that can alter the course of infection. In this review, we analyze IL-17/IL-23 signalling in bacterial infection, and examine the interconnecting mechanisms that link immune regulation, host genetics, and microbial virulence in the context of bacterial pathogenesis. We consider the roles of IL-17 in both acute and chronic bacterial infections, with a focus on mouse models of human bacterial disease that involve infection of mucosal surfaces in the lungs, urogenital, and gastrointestinal tracts. Polymorphisms in IL-17-encoding genes in humans, which have been associated with heightened host susceptibility to some bacterial pathogens, are discussed. Finally, we examine the implications of IL-17 biology in infectious diseases for the development of novel therapeutic strategies targeted at preventing bacterial infection.
Collapse
Affiliation(s)
- Michelle N Chamoun
- a School of Medical Science, and Menzies Health Institute Queensland , Griffith University , Southport , Australia
| | - Antje Blumenthal
- b The University of Queensland Diamantina Institute, Translational Research Institute , Brisbane , Australia
| | - Matthew J Sullivan
- a School of Medical Science, and Menzies Health Institute Queensland , Griffith University , Southport , Australia
| | - Mark A Schembri
- c School of Chemistry and Molecular Biosciences, and Australian Infectious Disease Research Centre , The University of Queensland , Brisbane , Australia
| | - Glen C Ulett
- a School of Medical Science, and Menzies Health Institute Queensland , Griffith University , Southport , Australia
| |
Collapse
|
8
|
Roggenbuck M, Anderson D, Barfod KK, Feelisch M, Geldenhuys S, Sørensen SJ, Weeden CE, Hart PH, Gorman S. Vitamin D and allergic airway disease shape the murine lung microbiome in a sex-specific manner. Respir Res 2016; 17:116. [PMID: 27655266 PMCID: PMC5031331 DOI: 10.1186/s12931-016-0435-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/17/2016] [Indexed: 02/06/2023] Open
Abstract
Background Vitamin D is under scrutiny as a potential regulator of the development of respiratory diseases characterised by chronic lung inflammation, including asthma and chronic obstructive pulmonary disease. It has anti-inflammatory effects; however, knowledge around the relationship between dietary vitamin D, inflammation and the microbiome in the lungs is limited. In our previous studies, we observed more inflammatory cells in the bronchoalveolar lavage fluid and increased bacterial load in the lungs of vitamin D-deficient male mice with allergic airway disease, suggesting that vitamin D might modulate the lung microbiome. In the current study, we examined in more depth the effects of vitamin D deficiency initiated early in life, and subsequent supplementation with dietary vitamin D on the composition of the lung microbiome and the extent of respiratory inflammation. Methods BALB/c dams were fed a vitamin D-supplemented or -deficient diet throughout gestation and lactation, with offspring continued on this diet post-natally. Some initially deficient offspring were fed a supplemented diet from 8 weeks of age. The lungs of naïve adult male and female offspring were compared prior to the induction of allergic airway disease. In further experiments, offspring were sensitised and boosted with the experimental allergen, ovalbumin (OVA), and T helper type 2-skewing adjuvant, aluminium hydroxide, followed by a single respiratory challenge with OVA. Results In mice fed a vitamin D-containing diet throughout life, a sex difference in the lung microbial community was observed, with increased levels of an Acinetobacter operational taxonomic unit (OTU) in female lungs compared to male lungs. This effect was not observed in vitamin D-deficient mice or initially deficient mice supplemented with vitamin D from early adulthood. In addition, serum 25-hydroxyvitamin D levels inversely correlated with total bacterial OTUs, and Pseudomonas OTUs in the lungs. Increased levels of the antimicrobial murine ß-defensin-2 were detected in the bronchoalveolar lavage fluid of male and female mice fed a vitamin D-containing diet. The induction of OVA-induced allergic airway disease itself had a profound affect on the OTUs identified in the lung microbiome, which was accompanied by substantially more respiratory inflammation than that induced by vitamin D deficiency alone. Conclusion These data support the notion that maintaining sufficient vitamin D is necessary for optimal lung health, and that vitamin D may modulate the lung microbiome in a sex-specific fashion. Furthermore, our data suggest that the magnitude of the pro-inflammatory and microbiome-modifying effects of vitamin D deficiency were substantially less than that of allergic airway disease, and that there is an important interplay between respiratory inflammation and the lung microbiome.
Collapse
Affiliation(s)
- Michael Roggenbuck
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Denise Anderson
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, WA, 6008, Australia
| | | | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Sian Geldenhuys
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, WA, 6008, Australia
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Clare E Weeden
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, WA, 6008, Australia
| | - Prue H Hart
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, WA, 6008, Australia
| | - Shelley Gorman
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, WA, 6008, Australia.
| |
Collapse
|