1
|
Xiao C, Huang Y, Cui X, Wei Q, Ji Q, Liu Y, Fei S, Pan Y, Xu X, Pan H, Bao G. Adjuvant Efficacy of the ECMS-Oil on Immune Responses against Bordetella bronchiseptica in Mice through the TLR2/MyD88/NF-κB Pathway. J Immunol Res 2023. [DOI: 10.1155/2023/1011659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Bordetella infection can be efficiently prevented through vaccination. The current study investigated the effects of an extract of Cochinchina momordica seed (ECMS) combined with oil on the immune responses to the inactivated Bordetella vaccine in mice. Serum IgG and IgG1 level was significantly increased in ECMS-oil group compared to any other group (
) 2 weeks after immunization, while groups ECMS200 μg/400 μg-oil had a markedly higher level of serum IgG2b and IgG3 than any other groups (
). Moreover, lipopolysaccharide/ConA-stimulated proliferation of splenocytes was significantly enhanced in ECMS 400 μg-oil immunized mice in comparison with mice in any other group (
). RT-PCR assay revealed that while ECMS800 μg-oil group had significantly higher levels of serum IL-4, IL-10, Toll-like receptor (TLR)2, and IL-1 beta than any other group (
), the levels of serum IL-2, IL-4, and IL-10 were markedly increased in ECMS 400 μg-oil group as compared to any other groups (
). Blood analysis showed that ECMS800 μg-oil and oil groups had a significantly higher number of immunocytes than any other groups (
). There were significant differences in the number of IgG+, IgG2b+, and IgA+ cells in the lung between ECMS800 μg-oil group and any other groups (
). Western blot analysis demonstrated that stimulation with ECMS 25 μg/mL or 50 ng/mL led to a significant increase in the expression of TLR2, MyD88, and NF-κB in Raw264.7 cells (
). Compared with any other group, the expression of MyD88 was markedly increased in the cells stimulated with ECMS 50 ng/mL, as indicated by the RT-PCR analysis (
). Overall, we observed that ECMS-oil efficiently enhanced the humoral or cellular immune responses against Bordetella and suggested that the mechanism of adjuvant activity of ECMS-oil might involve TLR2/MyD88/NF-κB signaling pathway.
Collapse
|
2
|
Feng S, Li A, Wang B, Hu L, Li S, Li Y, Yu Y, Zhang H, Yuan J. Enhancement of antiviral activity of egg yolk antibodies against Chinese sacbrood virus. Virus Res 2022; 319:198878. [PMID: 35882266 DOI: 10.1016/j.virusres.2022.198878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 10/16/2022]
Abstract
Chinese sacbrood virus (CSBV) poses a serious threat to the apiculture of China. Although several approaches have been attempted to control CSBV infection, their applications have been greatly limited in practical breeding of honeybees due to poor effectiveness. Egg yolk antibodies (EYA) have shown a promising protection for bees against CSBV infection. This study was conducted to produce high titer EYA and then further improve their antiviral effect. Among three vaccination groups, the EYA titer in graphene oxide-chitosan group was highest (1.591 ± 0.145), in Freund's group was modest (1.195 ± 0.040), and in white oil group was lowest (1.058 ± 0.056). After three injections of each vaccine in hens, EYA were produced at the highest level with a 14-day period. After application of EYA for more than two years in actual bee breeding, prevention and treatment assays showed that EYA confered 98.9 to 100% protection from CSBV infection. The mortality of the control group reached to a range of 91.2 to 100%. This study demonstrated that the high titer EYA have been successfully prepared with significant anti-CSBV activity and that these antibodies may feasibly be used for CSBV treatment to meet the practical needs of apiculture.
Collapse
Affiliation(s)
- Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; Luoyang Fengzaokang Biotechnological Co. Ltd., Luoyang, Henan 471000, China; School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Baiyan Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Lina Hu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Yalan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Yangfan Yu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Haizhou Zhang
- Luoyang Fengzaokang Biotechnological Co. Ltd., Luoyang, Henan 471000, China
| | - Juan Yuan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| |
Collapse
|
3
|
Safety and Efficacy of the Bordetella bronchiseptica Vaccine Combined with a Vegetable Oil Adjuvant and Multi-Omics Analysis of Its Potential Role in the Protective Response of Rabbits. Pharmaceutics 2022; 14:pharmaceutics14071434. [PMID: 35890330 PMCID: PMC9317422 DOI: 10.3390/pharmaceutics14071434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Infectious respiratory diseases caused by Bordetella bronchiseptica (Bb) are seriously endangering the development of the rabbit industry in China. Unfortunately, no licensed vaccines are available for this pathogen. The present study was designed to determine whether the inactivated Bb antigen formulated with vegetable oil adjuvant (named E515) which contains soybean oil, vitamin E, and ginseng saponins, functions as a safe and effective vaccine (E515-Bb) against Bb infection in rabbits. Based on local and systemic reactions, both the E515 adjuvant alone and the E515-Bb vaccine exhibited good safety in rabbits. Immune response analysis implies that rabbits immunized with the E515-Bb vaccine produced significantly higher, earlier, and longer-lasting specific antibody responses and activated Th1/Th2/Th17 cell responses than those immunized with the aluminum hydroxide (Alum)-adjuvanted Bb vaccine (Alum-Bb) or Bb antigen alone. Moreover, the E515-Bb vaccine effectively protected rabbits from Bb infection. Additionally, integrated multi-omics analysis revealed that the immunoprotective effect of the E515-Bb vaccine was achieved through upregulation of the complement and coagulation cascades and cell adhesion molecule (CAM) pathways, and the downregulation of the P53 pathway. Overall, these results indicate that the E515-Bb vaccine is safe, elicits an efficient immune response and provides good protection against Bb infection in rabbits. Thus, the E515-adjuvanted Bb vaccine can be considered a promising candidate vaccine for preventing Bb infection.
Collapse
|
4
|
Efficacy of Rg1-Oil Adjuvant on Inducing Immune Responses against Bordetella bronchiseptica in Rabbits. J Immunol Res 2021; 2021:8835919. [PMID: 33575363 PMCID: PMC7864750 DOI: 10.1155/2021/8835919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/17/2020] [Accepted: 01/20/2021] [Indexed: 11/18/2022] Open
Abstract
Bordetella bronchiseptica (B. bronchiseptica) is an obligately aerobic, oxidase- and catalase-positive, nonfermentative Gram-negative coccobacillus. This study is aimed at examining the immune effects of Rg1, Rg1 plus oil, and other common adjuvants on inactivated B. bronchiseptica vaccine in rabbits. The mechanism underlying the adjuvant effect of Rg1 plus oil on the vaccine was also explored. Rg1 (100 μg) plus oil significantly improved the immune effect of B. bronchiseptica vaccine at both the humoral and cellular levels. Rg1-oil adjuvant increased the levels of IL-2 and IL-4 in rabbits after immunization. Rg1 (100 μg) plus oil also significantly increased TLR2 expression and downregulated NF-κB in splenocytes. Rg1-oil adjuvant may increase the levels of IL-2 and IL-4 via upregulating TLR2, thereby enhancing the immune effect of B. bronchiseptica vaccine. In conclusion, Rg1 plus oil could be used as a potential vaccine adjuvant for rabbit B. bronchiseptica vaccine.
Collapse
|
5
|
Xiao C, Huang Y, Wei Q, Liu Y, Ji Q, Li K, Bao G. Comparative Proteomic Analysis Reveals Complex Responses to Bordetella bronchiseptica Infections in the Spleen of Rabbits. Proteomics 2020; 20:e2000117. [PMID: 32820866 DOI: 10.1002/pmic.202000117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/30/2020] [Indexed: 11/07/2022]
Abstract
Bordetella bronchiseptica (B. bronchiseptica) causes a respiratory disease in rabbits. To determine the proteins of B. bronchiseptica in rabbits related to the disease, differentially accumulated proteins in B. bronchiseptica-infected cells are identified by comparative proteomic analysis. Comparative proteomic analysis detects 5814 proteins and quantifies 4854 of these. Fifty eight upregulated and 38 downregulated proteins are identified in spleen tissue after B. bronchiseptica infection of rabbits (both p < 0.05). The significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways are ribosome, biosynthesis of amino acids, biosynthesis of amino acids, protein export, and carbon metabolism etc. (all p < 0.01). Significantly enriched KEGG pathways include 'ocu03010 ribosome' (a); 'ocu00260 glycine, serine threonine metabolism'. Analyses of control and infected spleen cells detect responses to B. bronchiseptica infection. Many differentially affected proteins are evident, and reflect different biological changes and diverse subcellular localizations between control and infected spleen cells. Infection markedly alters the expressions of proteins linked to the serine protease system, with the 'phagosome,' 'biosynthesis of amino acids,' 'glycine, serine threonine metabolism,' 'intestinal immune network for IgA production', and 'amino sugar and nucleotide sugar metabolism' associated with B. bronchiseptica infection. The result will inform studies of responses to B. bronchiseptica infections in rabbits.
Collapse
Affiliation(s)
- Chenwen Xiao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Shiqiao Road 145#, Hangzhou, 310021, China
| | - Yee Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Shiqiao Road 145#, Hangzhou, 310021, China
| | - Qiang Wei
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Shiqiao Road 145#, Hangzhou, 310021, China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Shiqiao Road 145#, Hangzhou, 310021, China
| | - Quanan Ji
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Shiqiao Road 145#, Hangzhou, 310021, China
| | - Ke Li
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Shiqiao Road 145#, Hangzhou, 310021, China
| | - Guolian Bao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Shiqiao Road 145#, Hangzhou, 310021, China
| |
Collapse
|