1
|
Ouyang Z, Chen X, Wang Z, Xu Y, Deng Z, Xing L, Zhang L, Hu M, Li H, Lian T, Gao F, Liu C, Zhou Y, Sun L, Wang YC, Liu D. Azithromycin-loaded PLGA microspheres coated with silk fibroin ameliorate inflammation and promote periodontal tissue regeneration. Regen Biomater 2024; 12:rbae146. [PMID: 39791015 PMCID: PMC11717352 DOI: 10.1093/rb/rbae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/06/2024] [Accepted: 12/08/2024] [Indexed: 01/12/2025] Open
Abstract
Periodontitis, a widespread inflammatory disease, is the major cause of tooth loss in adults. While mechanical periodontal therapy benefits the periodontal disease treatment, adjunctive periodontal therapy is also necessary. Topically applied anti-inflammatory agents have gained considerable attention in periodontitis therapy. Although azithromycin (AZM) possesses excellent anti-inflammatory properties, its bioavailability is limited owing to poor water solubility and the absence of sustained release mechanisms. Herein, we synthesized biodegradable microspheres (AZM@PLGA-SF) for sustained AZM release to locally ameliorate periodontal inflammation and facilitate periodontal tissue regeneration. AZM was encapsulated in poly (lactic-co-glycolic acid) (PLGA) microspheres (AZM@PLGA) using single emulsion-solvent evaporation, followed by surface coating with silk fibroin (SF) via electrostatic adsorption, reducing the initial burst release of AZM. In vivo, local treatment with AZM@PLGA-SF microspheres significantly reduced periodontal inflammation and restored periodontal tissue to healthy levels. Mechanically, the formulated microspheres regulated the periodontal inflammatory microenvironment by reducing the levels of pro-inflammatory cytokines (tumor necrosis factor -α, interleukin [IL]-6, interferon-γ, IL-2, and IL-17A) in gingival crevicular fluid and promoted the expression of anti-inflammatory cytokines (IL-4 and IL-10). AZM@PLGA-SF microspheres demonstrated excellent biological safety. Therefore, we introduce an anti-inflammatory therapy for periodontitis with substantial potential for mitigating periodontal inflammation and encouraging the repair and regeneration of periodontal tissues.
Collapse
Affiliation(s)
- Zhaoguang Ouyang
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Tianjin Medical University Institute of Stomatology, Tianjin 300070, PR China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510013, PR China
| | - Xiaoyu Chen
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Tianjin Medical University Institute of Stomatology, Tianjin 300070, PR China
| | - Zhengyang Wang
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Tianjin Medical University Institute of Stomatology, Tianjin 300070, PR China
| | - Yue Xu
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Tianjin Medical University Institute of Stomatology, Tianjin 300070, PR China
| | - Zhe Deng
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MA 21205, USA
| | - Liangyu Xing
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Tianjin Medical University Institute of Stomatology, Tianjin 300070, PR China
| | - Li Zhang
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Tianjin Medical University Institute of Stomatology, Tianjin 300070, PR China
| | - Meilin Hu
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Tianjin Medical University Institute of Stomatology, Tianjin 300070, PR China
| | - Haocong Li
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Tianjin Medical University Institute of Stomatology, Tianjin 300070, PR China
| | - Tengye Lian
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Tianjin Medical University Institute of Stomatology, Tianjin 300070, PR China
| | - Feng Gao
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Tianjin Medical University Institute of Stomatology, Tianjin 300070, PR China
| | - Chunyi Liu
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Tianjin Medical University Institute of Stomatology, Tianjin 300070, PR China
| | - Yangyang Zhou
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Tianjin Medical University Institute of Stomatology, Tianjin 300070, PR China
| | - Lu Sun
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48105, USA
- Periodontal and Implant Microsurgery Academy (PiMA), University of Michigan School of Dentistry, Ann Arbor, MI 48105, USA
| | - Ying ChengYao Wang
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, PR China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, PR China
| | - Dayong Liu
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Tianjin Medical University Institute of Stomatology, Tianjin 300070, PR China
- School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, Hebei 050011, PR China
| |
Collapse
|
2
|
de Rossi LS, Nakama RP, Dos Santos LF, Berto-Pereira L, Malvezi AD, Lovo-Martins MI, Canizares Cardoso AP, Tozoni-Filho LC, Jussiani EI, de Freitas AMD, Martins-Pinge MC, Pinge-Filho P. Metabolic syndrome promotes resistance to aspirin in mitigating bone loss in murine periodontal disease. Life Sci 2024; 359:123224. [PMID: 39515415 DOI: 10.1016/j.lfs.2024.123224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
AIMS This study aimed to investigate the protective effects of aspirin (ASA) on alveolar bone loss in a mouse model with metabolic syndrome (MetS) and concurrent periodontal disease (PD). Specifically, the study sought to determine whether ASA could mitigate bone loss in MetS and non-MetS animals with PD and explore the correlation between gingival nitric oxide (NO) levels and bone resorption. MAIN METHODS Newborn female Swiss mice were administered monosodium glutamate (MSG) (4 mg/g) during the initial 5 days of life to induce MetS (MetS group), while the control group (SAL) was administered saline. On the 60th day, PD was induced in both groups. Half of the animals were treated daily with ASA (40 mg/kg). MetS was characterized by the Lee index, blood glucose, and cardiovascular parameters. Maxillae were evaluated by microtomography and histopathology, showing significant bone loss after PD induction. KEY FINDINGS Animals with MetS exhibited higher alveolar bone loss than controls. SAL animals treated with ASA had less bone loss than their MetS counterparts. Gingival NO levels were elevated in animals with PD, and a strong correlation was found between NO levels and bone resorption. ASA reduced NO in non-MetS animals, but MetS animals were resistant to this effect. SIGNIFICANCE These findings suggest a protective mechanism of ASA against bone loss in non-MetS animals with PD, an effect that was not observed in MetS animals. Consequently, this study provides novel insights into the intricate relationship between MetS and PD in mice.
Collapse
Affiliation(s)
- Lucas Sobral de Rossi
- Department of Immunology, Parasitology and General Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | - Raquel Pires Nakama
- Department of Immunology, Parasitology and General Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Leonardo Berto-Pereira
- Department of Immunology, Parasitology and General Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | - Aparecida Donizette Malvezi
- Department of Immunology, Parasitology and General Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | - Maria Isabel Lovo-Martins
- Department of Immunology, Parasitology and General Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | - Ana Paula Canizares Cardoso
- Department of Immunology, Parasitology and General Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | - Luiz Claúdio Tozoni-Filho
- Department of Immunology, Parasitology and General Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | | | | | | | - Phileno Pinge-Filho
- Department of Immunology, Parasitology and General Pathology, State University of Londrina, Londrina, Paraná, Brazil; Department of Microbiology, State University of Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
3
|
Kim K, Kim JH, Kim I, Seong S, Koh JT, Kim N. Sestrin2 inhibits RANKL-induced osteoclastogenesis through AMPK activation and ROS inhibition. Free Radic Biol Med 2024; 211:77-88. [PMID: 38101586 DOI: 10.1016/j.freeradbiomed.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Sestrins are stress-responsive proteins with antioxidant properties. They participate in cellular redox balance and protect against oxidative damage. This study investigated the effects of Sestrin2 (Sesn2) on osteoclast differentiation and function. Overexpressing Sesn2 in osteoclast precursor cells significantly inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastogenesis. This was assessed as reduced expression of various osteoclast markers, including c-Fos, nuclear factor of activated T cells 1 (NFATc1), osteoclast-associated receptor, tartrate-resistant acid phosphatase, and cathepsin K. Conversely, downregulation of Sesn2 produced the opposite effect. Mechanistically, Sesn2 overexpression enhanced AMPK activation and the nuclear translocation of nuclear factor erythroid-derived factor 2-related factor 2 (Nrf2), promoting antioxidant enzymes. Moreover, azithromycin (Azm) induced Sesn2 expression, which suppressed RANKL-induced osteoclast differentiation. Specifically, Azm treatment reduced RANKL-induced production of reactive oxygen species in osteoclasts. Furthermore, intraperitoneal administration of Azm ameliorated RANKL-induced bone loss by reducing osteoclast activity in mice. Taken together, our results suggested that Azm-induced Sesn2 act as a negative regulator of RANKL-induced osteoclast differentiation through the AMPK/NFATc1 signaling pathway. Concisely, targeting Sesn2 can be a potential pharmacological intervention in osteoporosis.
Collapse
Affiliation(s)
- Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea; Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Inyoung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea; Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeong-Tae Koh
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea; Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
4
|
Mao H, Gong T, Sun Y, Yang S, Qiao X, Yang D. Bacterial growth stage determines the yields, protein composition, and periodontal pathogenicity of Porphyromonas gingivalis outer membrane vesicles. Front Cell Infect Microbiol 2023; 13:1193198. [PMID: 37900318 PMCID: PMC10602934 DOI: 10.3389/fcimb.2023.1193198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction P. gingivalis (W83), as the keystone pathogen in chronic periodontitis, has been found to be tightly bound to systemic diseases. Outer membrane vesicles (OMVs) produced by P. gingivalis (W83) are thought to serve key functions in bacterial virulence and pathogenicity. This study aims to comprehend the biological functions of P. gingivalis OMVs isolated from different growth stages by comparing their physicochemical properties and pathogenicity. Methods Protein composition was analyzed via isotope-labeled relative and absolute quantification (iTRAQ). Macrophage polarization and the expression of IL-6 and IL-1β were detected. The proliferation, migration, osteogenic differentiation, and IL-1b/NLRP3 expression of periodontal ligament stem cells (PDLSCs) were evaluated. P. gingivalis/P. gingivalis OMVs-induced periodontal models were also constructed in Sprague Dawley rats. Results The protein composition of P. gingivalis OMVs isolated from different growth stages demonstrated obvious differences ranging from 25 KDa to 75 KDa. In the results of flow cytometry, we found that in vitro experiments the M1 subtype of macrophages was more abundant in the late-log OMVs and stationary OMVs groups which boosted the production of inflammatory cytokines more than pre-log OMVs. Compared to pre-log OMVs, late-log OMVs and stationary OMVs had more pronounced inhibitory effects on proliferation, migration, and early osteogenesis of PDLSCs. The NLRP3 inflammasome was activated to a larger extent in the stationary OMVs group. Micro-computed tomography (Micro CT), hematoxylin-eosin staining (HE), and tartrate acid phosphatase (TRAP) results showed that the periodontal damage in the stationary OMVs group was worse than that in the pre-log OMVs and late-log OMVs group, but almost equal to that in the positive control group (P. gingivalis). Discussion In general, both in vivo and in vitro experiments showed that late-log OMVs and stationary OMVs have more significant pathogenicity in periodontal disease.
Collapse
Affiliation(s)
- Hongchen Mao
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ting Gong
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuting Sun
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Shiyao Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Xin Qiao
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Deqin Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
5
|
Tamura H, Maekawa T, Domon H, Sirisereephap K, Isono T, Hirayama S, Hiyoshi T, Sasagawa K, Takizawa F, Maeda T, Terao Y, Tabeta K. Erythromycin Restores Osteoblast Differentiation and Osteogenesis Suppressed by Porphyromonas gingivalis Lipopolysaccharide. Pharmaceuticals (Basel) 2023; 16:303. [PMID: 37259446 PMCID: PMC9959121 DOI: 10.3390/ph16020303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 04/11/2024] Open
Abstract
The macrolide erythromycin (ERM) inhibits excessive neutrophil accumulation and bone resorption in inflammatory tissues. We previously reported that the expression of developmental endothelial locus-1 (DEL-1), an endogenous anti-inflammatory factor induced by ERM, is involved in ERM action. Furthermore, DEL-1 is involved in the induction of bone regeneration. Therefore, in this study, we investigated whether ERM exerts an osteoblastogenic effect by upregulating DEL-1 under inflammatory conditions. We performed in vitro cell-based mechanistic analyses and used a model of Porphyromonas gingivalis lipopolysaccharide (LPS)-induced periodontitis to evaluate how ERM restores osteoblast activity. In vitro, P. gingivalis LPS stimulation suppressed osteoblast differentiation and bone formation. However, ERM treatment combined with P. gingivalis LPS stimulation upregulated osteoblast differentiation-related factors and Del1, indicating that osteoblast differentiation was restored. Alveolar bone resorption and gene expression were evaluated in a periodontitis model, and the results confirmed that ERM treatment increased DEL-1 expression and suppressed bone loss by increasing the expression of osteoblast-associated factors. In conclusion, ERM restores bone metabolism homeostasis in inflammatory environments possibly via the induction of DEL-1.
Collapse
Affiliation(s)
- Hikaru Tamura
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Kridtapat Sirisereephap
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Satoru Hirayama
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Karin Sasagawa
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Fumio Takizawa
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Koichi Tabeta
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| |
Collapse
|
6
|
Effect of Administration of Azithromycin and/or Probiotic Bacteria on Bones of Estrogen-Deficient Rats. Pharmaceuticals (Basel) 2022; 15:ph15080915. [PMID: 35893739 PMCID: PMC9331654 DOI: 10.3390/ph15080915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The gut microbiota plays an important role in maintaining homeostasis, including that of the skeletal system. Antibiotics may affect the skeletal system directly or indirectly by influencing the microbiota. Probiotic bacteria have been reported to favorably affect bones in conditions of estrogen deficiency. The aim of this study was to investigate the effects of azithromycin (AZM) administered alone or with probiotic bacteria (Lactobacillus rhamnosus; LR) on bones in estrogen-deficient rats. The experiments were carried out on mature rats divided into five groups: non-ovariectomized (NOVX) control rats, ovariectomized (OVX) control rats, and OVX rats treated with: LR, AZM, or AZM with LR. The drugs were administered for 4 weeks. Serum biochemical parameters, bone mineralization, histomorphometric parameters, and mechanical properties were examined. Estrogen deficiency increased bone turnover and worsened cancellous bone microarchitecture and mechanical properties. The administration of LR or AZM slightly favorably affected some skeletal parameters of estrogen-deficient rats. The administration of AZM with LR did not lead to the addition of the effects observed for the separate treatments, indicating that the effects could be microbiota-mediated.
Collapse
|
7
|
Effect of Azithromycin on Mineralized Nodule Formation in MC3T3-E1 Cells. Curr Issues Mol Biol 2021; 43:1451-1459. [PMID: 34698079 PMCID: PMC8929154 DOI: 10.3390/cimb43030102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 12/24/2022] Open
Abstract
Azithromycin displays immunomodulatory and anti-inflammatory effects in addition to broad-spectrum antimicrobial activity and is used to treat inflammatory diseases, including respiratory and odontogenic infections. Few studies have reported the effect of azithromycin therapy on bone remodeling processes. The aim of this study was to examine the effects of azithromycin on the osteogenic function of osteoblasts using osteoblast-like MC3T3-E1 cells. Cells were cultured in the presence of 0, 0.1, 1, and 10 µg/mL azithromycin, and cell proliferation and alkaline phosphatase (ALPase) activity were determined. In vitro mineralized nodule formation was detected with alizarin red staining. The expression of collagenous and non-collagenous bone matrix protein was determined using real-time PCR or enzyme-linked immunosorbent assays. In cells cultured with 10 µg/mL azithromycin, the ALPase activity and mineralized nodule formation decreased, while the type I collagen, bone sialoprotein, osteocalcin, and osteopontin mRNA expression as well as osteopontin and phosphorylated osteopontin levels increased. These results suggest that a high azithromycin concentration (10 µg/mL) suppresses mineralized nodule formation by decreasing ALPase activity and increasing osteopontin production, whereas low concentrations (≤l.0 µg/mL) have no effect on osteogenic function in osteoblastic MC3T3-E1 cells.
Collapse
|
8
|
Tamura H, Maekawa T, Domon H, Hiyoshi T, Hirayama S, Isono T, Sasagawa K, Yonezawa D, Takahashi N, Oda M, Maeda T, Tabeta K, Terao Y. Effects of Erythromycin on Osteoclasts and Bone Resorption via DEL-1 Induction in Mice. Antibiotics (Basel) 2021; 10:antibiotics10030312. [PMID: 33803007 PMCID: PMC8002756 DOI: 10.3390/antibiotics10030312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 01/14/2023] Open
Abstract
Macrolides are used to treat various infectious diseases, including periodontitis. Furthermore, macrolides are known to have immunomodulatory effects; however, the underlying mechanism of their action remains unclear. DEL-1 has emerged as an important factor in homeostatic immunity and osteoclastogenesis. Specifically, DEL-1 is downregulated in periodontitis tissues. Therefore, in the present study, we investigated whether the osteoclastogenesis inhibitory effects of erythromycin (ERM) are mediated through upregulation of DEL-1 expression. We used a ligature-induced periodontitis model in C57BL/6Ncrl wild-type or DEL-1-deficient mice and in vitro cell-based mechanistic studies to investigate how ERM inhibits alveolar bone resorption. As a result of measuring alveolar bone resorption and gene expression in the tooth ligation model, ERM treatment reduced bone loss by increasing DEL-1 expression and decreasing the expression of osteoclast-related factors in wild-type mice. In DEL-1-deficient mice, ERM failed to suppress bone loss and gene expression of osteoclast-related factors. In addition, ERM treatment downregulated osteoclast differentiation and calcium resorption in in vitro experiments with mouse bone marrow-derived macrophages. In conclusion, ERM promotes the induction of DEL-1 in periodontal tissue, which may regulate osteoclastogenesis and decrease inflammatory bone resorption. These findings suggest that ERM may exert immunomodulatory effects in a DEL-1-dependent manner.
Collapse
Affiliation(s)
- Hikaru Tamura
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.T.); (T.H.); (S.H.); (T.I.); (K.S.); (Y.T.)
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan;
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.T.); (K.T.)
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.T.); (T.H.); (S.H.); (T.I.); (K.S.); (Y.T.)
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan;
- Correspondence: (T.M.); (H.D.); Tel.: +81-25-227-2828 (T.M.); +81-227-2840 (H.D.)
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.T.); (T.H.); (S.H.); (T.I.); (K.S.); (Y.T.)
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan;
- Correspondence: (T.M.); (H.D.); Tel.: +81-25-227-2828 (T.M.); +81-227-2840 (H.D.)
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.T.); (T.H.); (S.H.); (T.I.); (K.S.); (Y.T.)
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.T.); (K.T.)
| | - Satoru Hirayama
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.T.); (T.H.); (S.H.); (T.I.); (K.S.); (Y.T.)
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.T.); (T.H.); (S.H.); (T.I.); (K.S.); (Y.T.)
| | - Karin Sasagawa
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.T.); (T.H.); (S.H.); (T.I.); (K.S.); (Y.T.)
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.T.); (K.T.)
| | - Daisuke Yonezawa
- Division of Oral Science for Health Promotion, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan;
| | - Naoki Takahashi
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.T.); (K.T.)
| | - Masataka Oda
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Yamashita 607-8414, Japan;
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan;
| | - Koichi Tabeta
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.T.); (K.T.)
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.T.); (T.H.); (S.H.); (T.I.); (K.S.); (Y.T.)
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan;
| |
Collapse
|
9
|
Micro-computed tomography for evaluating alveolar bone resorption induced by hyperocclusion. J Prosthodont Res 2018; 62:298-302. [DOI: 10.1016/j.jpor.2017.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/14/2017] [Accepted: 11/23/2017] [Indexed: 11/18/2022]
|