1
|
Shrestha P, Duwa R, Lee S, Kwon TK, Jeong JH, Yook S. ROS-responsive thioketal nanoparticles delivering system for targeted ulcerative colitis therapy with potent HDAC6 inhibitor, tubastatin A. Eur J Pharm Sci 2024; 201:106856. [PMID: 39032536 DOI: 10.1016/j.ejps.2024.106856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Ulcerative colitis (UC) is a common gastrointestinal problem characterized by the mucosal injury primarily affecting the large intestine. Currently available therapies are not satisfactory as evidenced by high relapse rate and adverse effects. In this study we aimed to develop an effective drug delivery system using reactive oxygen species (ROS)-responsive thioketal nanoparticles (TKNP), to deliver tubastatin A, a potent HDAC6 inhibitor, to the inflamed colon in mice with ulcerative colitis (UC). TKNPs were synthesized by step-growth polymerization from an acetal exchange reaction while TUBA-TKNP was prepared using the single emulsion solvent evaporation technique. Our developed nanoparticle showed release of tubastatin A only in presence of ROS which is found to be highly present at the site of inflamed colon. Oral administration of TUBA-TKNP resulted in the higher accumulation of tubastatin A at the inflamed colon site and decreased the inflammation as evidenced by reduced infiltration of immune cells and decreased level of pro-inflammatory cytokines in TUBA-TKNP treated mice. In summary, our results show the successful localization of tubastatin A at the site of colon inflammation through TUBA-TKNP delivery, as well as resolution of clinical features of UC in mice.
Collapse
Affiliation(s)
- Prabhat Shrestha
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ramesh Duwa
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Radiology, Molecular Imaging Program at Standford (MIPS), School of Medicine, Standford University, Standford, California 94305, USA
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
2
|
Yimiti M, Fei X, Yang H, Yang X, Li S, Tuoheniyazi H, Liu D, Ma J, Xie J, Zheng J, Song Z, Li Q, Xu D, Zhao Y, Gu Z. HDAC6 inhibitor promotes reactive oxygen species-meditated clearance of Staphylococcus aureus in macrophage. Clin Exp Pharmacol Physiol 2024; 51:e13866. [PMID: 38719209 DOI: 10.1111/1440-1681.13866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 05/30/2024]
Abstract
Staphylococcus aureus (S. aureus) pneumonia has become an increasingly important public health problem. Recent evidence suggests that epigenetic modifications are critical in the host immune defence against pathogen infection. In this study, we found that S. aureus infection induces the expression of histone deacetylase 6 (HDAC6) in a dose-dependent manner. Furthermore, by using a S. aureus pneumonia mouse model, we showed that the HDAC6 inhibitor, tubastatin A, demonstrates a protective effect in S. aureus pneumonia, decreasing the mortality and destruction of lung architecture, reducing the bacterial burden in the lungs and inhibiting inflammatory responses. Mechanistic studies in primary bone marrow-derived macrophages demonstrated that the HDAC6 inhibitors, tubastatin A and tubacin, reduced the intracellular bacterial load by promoting bacterial clearance rather than regulating phagocytosis. Finally, N-acetyl-L- cysteine, a widely used reactive oxygen species (ROS) scavenger, antagonized ROS production and significantly inhibited tubastatin A-induced S. aureus clearance. These findings demonstrate that HDAC6 inhibitors promote the bactericidal activity of macrophages by inducing ROS, an important host factor for S. aureus clearance and production. Our study identified HDAC6 as a suitable epigenetic modification target for preventing S. aureus infection, and tubastatin A as a useful compound in treating S. aureus pneumonia.
Collapse
Affiliation(s)
- Maimaitiaili Yimiti
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Fei
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Yang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobao Yang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuhui Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huxidanmu Tuoheniyazi
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danping Liu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junrui Ma
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Zheng
- Blood Transfusion Department, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong, China
| | - Zhen Song
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingtian Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dakang Xu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Zhao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhidong Gu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laboratory Medicine, Ruijin-Hainan Hospital, Shanghai Jiao Tong University School of Medicine (Hainan Boao Research Hospital), Qionghai, Hainan, China
| |
Collapse
|
3
|
Wu L, Deng H, Feng X, Xie D, Li Z, Chen J, Mo Z, Zhao Q, Hu Z, Yi S, Meng S, Wang J, Li X, Lin B, Gao Z. Interferon-γ + Th1 activates intrahepatic resident memory T cells to promote HBsAg loss by inducing M1 macrophage polarization. J Med Virol 2024; 96:e29627. [PMID: 38659381 DOI: 10.1002/jmv.29627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
The immune mechanism underlying hepatitis B surface antigen (HBsAg) loss, particularly type I inflammatory response, during pegylated interferon-α (PEG-IFN) therapy remains unclear. In this study, we aimed to elucidate such immune mechanisms. Overall, 82 patients with chronic hepatitis B (CHB), including 41 with HBsAg loss (cured group) and 41 uncured patients, received nucleos(t)ide analogue and PEG-IFN treatments. Blood samples from all patients, liver tissues from 14 patients with CHB, and hepatic perfusate from 8 liver donors were collected for immune analysis. Jurkat, THP-1 and HepG2.2.15 cell lines were used in cell experiments. The proportion of IFN-γ+ Th1 cells was higher in the cured group than in the uncured group, which was linearly correlated with HBsAg decline and alanine aminotransferase (ALT) levels during treatment. However, CD8+ T cells were weakly associated with HBsAg loss. Serum and intrahepatic levels of Th1 cell-associated chemokines (C-X-C motif chemokine ligand [CXCL] 9, CXCL10, CXCL11, IFN-γ) were significantly lower in the cured patients than in patients with a higher HBsAg quantification during therapy. Serum from cured patients induced more M1 (CD68+CD86+ macrophage) cells than that from uncured patients. Patients with chronic HBV infection had significantly lower proportions of CD86+ M1 and CD206+ M2 macrophages in their livers than healthy controls. M1 polarization of intrahepatic Kupffer cells promoted HBsAg loss by upregulating the effector function of tissue-resident memory T cells with increased ALT levels. IFN-γ+ Th1 activates intrahepatic resident memory T cells to promote HBsAg loss by inducing M1 macrophage polarization.
Collapse
Affiliation(s)
- Lili Wu
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Hong Deng
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao Feng
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongying Xie
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhihui Li
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junfeng Chen
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhishuo Mo
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiyi Zhao
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhaoxia Hu
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuhong Yi
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shibo Meng
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jialei Wang
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Li
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bingliang Lin
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiliang Gao
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| |
Collapse
|
4
|
Zhang QQ, Zhang WJ, Chang S. HDAC6 inhibition: a significant potential regulator and therapeutic option to translate into clinical practice in renal transplantation. Front Immunol 2023; 14:1168848. [PMID: 37545520 PMCID: PMC10401441 DOI: 10.3389/fimmu.2023.1168848] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/30/2023] [Indexed: 08/08/2023] Open
Abstract
Histone deacetylase 6 (HDAC6), an almost exclusively cytoplasmic enzyme, plays an essential role in many biological processes and exerts its deacetylation-dependent/independent effects on a variety of target molecules, which has contributed to the flourishing growth of relatively isoform-specific enzyme inhibitors. Renal transplantation (RT) is one of the alternatively preferred treatments and the most cost-effective treatment approaches for the great majority of patients with end-stage renal disease (ESRD). HDAC6 expression and activity have recently been shown to be increased in kidney disease in a number of studies. To date, a substantial amount of validated studies has identified HDAC6 as a pivotal modulator of innate and adaptive immunity, and HDAC6 inhibitors (HDAC6i) are being developed and investigated for use in arrays of immune-related diseases, making HDAC6i a promising therapeutic candidate for the management of a variety of renal diseases. Based on accumulating evidence, HDAC6i markedly open up new avenues for therapeutic intervention to protect against oxidative stress-induced damage, tip the balance in favor of the generation of tolerance-related immune cells, and attenuate fibrosis by inhibiting multiple activations of cell profibrotic signaling pathways. Taken together, we have a point of view that targeting HDAC6 may be a novel approach for the therapeutic strategy of RT-related complications, including consequences of ischemia-reperfusion injury, induction of immune tolerance in transplantation, equilibrium of rejection, and improvement of chronic renal graft interstitial fibrosis after transplantation in patients. Herein, we will elaborate on the unique function of HDAC6, which focuses on therapeutical mechanism of action related to immunological events with a general account of the tantalizing potential to the clinic.
Collapse
Affiliation(s)
- Qian-qian Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Wei-jie Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Sheng Chang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
5
|
Malik MUUH, Hashmi N, Khan M, Aabdin ZU, Sami R, Aljahani AH, Al-Eisa RA, Moawadh MS, Algehainy NA. Nutraceutical Effect of Resveratrol on the Mammary Gland: Focusing on the NF-κb /Nrf2 Signaling Pathways. Animals (Basel) 2023; 13:ani13071266. [PMID: 37048522 PMCID: PMC10093560 DOI: 10.3390/ani13071266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
The aim of this study is to evaluate the defensive role of resveratrol, which is antagonistic to the oxidative stress and inflammation that is prompted by LPS in mammary tissue of female mice. Thirty adult mice were distributed into three groups (n = 10) control (CON), lipopolysaccharides at 2.5 mg/kg (LPS), and lipopolysaccharides at 2.5 mg/kg with 2 mg/kg of resveratrol (RES + LPS). The treatments were applied for 15 consecutive days. Spectrophotometry was used to quantify ROS in the blood, and proinflammatory cytokines concentrations were determined through radioimmunoassay. NF-κB, Jnk, IL-1β, Erk, IL-6, Nrf2 and TNF-α were quantified by RT-qPCR, and Western blots were used to quantifyP65 and pP65 protein intensities. MDA production was considerably increased, and the activity of T-AOC declined in the LPS treatment in comparison with the CON group but was significantly reversed in the RES + LPS group. Proinflammatory cytokines production and the genes responsible for inflammation and oxidative stress also showed higher mRNA and pP65 protein intensity in the LPS group, while Nrf2 showed a remarkable decline in mRNA expression in the LPS versus the CON group. All these mRNA intensities were reversed in the RES + LPS group. There were no remarkable changes in P65 protein intensity observed between the CON, LPS, and RES + LPS groups. In conclusion, resveratrol acts as a protective agent to modulate cellular inflammation and oxidative stress caused by LPS in mammary tissue of female mice.
Collapse
Affiliation(s)
| | - Nighat Hashmi
- Rural Health Center Garh Maharaja, Tehsil Ahmed PurSial, Jhang 35080, Pakistan
| | - Marium Khan
- Quaid-e Azam Medical College, Bahawalpur, Affliated University of Health Sciences Lahore Punjab, Lahore 54600, Pakistan
| | - Zain Ul Aabdin
- Department of Preventive Veterinary Medicine and Public Health, Faculty of Veterinary and Animal Sciences, Ziauddin University, Link Road Campus Education City Kathore, Karachi Sindh 75000, Pakistan
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amani H Aljahani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rasha A Al-Eisa
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mamdoh S Moawadh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Naseh A Algehainy
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
6
|
Xue Y, Gan B, Zhou Y, Wang T, Zhu T, Peng X, Zhang X, Zhou Y. Advances in the Mechanistic Study of the Control of Oxidative Stress Injury by Modulating HDAC6 Activity. Cell Biochem Biophys 2023; 81:127-139. [PMID: 36749475 PMCID: PMC9925596 DOI: 10.1007/s12013-022-01125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/14/2022] [Indexed: 02/08/2023]
Abstract
Oxidative stress is defined as an injury resulting from a disturbance in the dynamic equilibrium of the redox environment due to the overproduction of active/radical oxygen exceeding the antioxidative ability of the body. This is a key step in the development of various diseases. Oxidative stress is modulated by different factors and events, including the modification of histones, which are the cores of nucleosomes. Histone modification includes acetylation and deacetylation of certain amino acid residues; this process is catalyzed by different enzymes. Histone deacetylase 6 (HDAC6) is a unique deacetylating protease that also catalyzes the deacetylation of different nonhistone substrates to regulate various physiologic processes. The intimate relationship between HDAC6 and oxidative stress has been demonstrated by different studies. The present paper aims to summarize the data obtained from a mechanistic study of HDAC6 and oxidative stress to guide further investigations on mechanistic characterization and drug development.
Collapse
Affiliation(s)
- Yuanye Xue
- grid.410560.60000 0004 1760 3078Department of Pathophysiology, Guangdong Medical University, Dongguan, 523808 China
| | - Bing Gan
- grid.410560.60000 0004 1760 3078The Third Affiliated Hospital of Guangdong Medical University, Fo Shan, 528000 Guangdong China
| | - Yanxing Zhou
- grid.410560.60000 0004 1760 3078School of Medical Technology, Guangdong Medical University, Dongguan, 523808 China
| | - Tingyu Wang
- grid.410560.60000 0004 1760 3078Department of Pathophysiology, Guangdong Medical University, Dongguan, 523808 China
| | - Tong Zhu
- grid.410560.60000 0004 1760 3078Department of Pathophysiology, Guangdong Medical University, Dongguan, 523808 China
| | - Xinsheng Peng
- Biomedical Innovation Center, Guangdong Medical University, Dongguan, 523808, China. .,Institute of Marine Medicine, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Xiangning Zhang
- Department of Pathophysiology, Guangdong Medical University, Dongguan, 523808, China.
| | - Yanfang Zhou
- Department of Pathophysiology, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
7
|
Tan Y, Liu Q, Li Z, Yang S, Cui L. Epigenetics-mediated pathological alternations and their potential in antiphospholipid syndrome diagnosis and therapy. Autoimmun Rev 2022; 21:103130. [PMID: 35690246 DOI: 10.1016/j.autrev.2022.103130] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022]
Abstract
APS (antiphospholipid syndrome) is a systematic autoimmune disease accompanied with venous or arterial thrombosis and poor pregnant manifestations, partly attributing to the successive elevated aPL (antiphospholipid antibodies) and provoked prothrombotic and proinflammatory molecules production. Nowadays, most researches focus on the laboratory detection and clinic features of APS, but its precise etiology remains to be deeply explored. As we all know, the dysfunction of ECs (endothelial cells), monocytes, platelets, trophoblasts and neutrophils are key contributors to APS progression. Especially, their epigenetic variations, mainly including the promoter CpGs methylation, histone PTMs (post-translational modifications) and ncRNAs (noncoding RNAs), result in genes expression or silence engaged in inflammation initiation, thrombosis formation, autoimmune activation and APOs (adverse pregnancy outcomes) in APS. Given the potential of epigenetic markers serving as diagnostic biomarkers or therapeutic targets of APS, and the encouraging advancements in epigenetic drugs are being made. In this review, we would systematically introduce the epigenetic underlying mechanisms for APS progression, comprehensively elucidate the functional mechanisms of epigenetics in boosting ECs, monocytes, platelets, trophoblasts and neutrophils. Lastly, the application of epigenetic alterations for probing novel diagnostic, specific therapeutic and prognostic strategies would be proposed.
Collapse
Affiliation(s)
- Yuan Tan
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Qi Liu
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Zhongxin Li
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Shuo Yang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
8
|
Shalev Y, Hadaya O, Bransi-Nicola R, Landau S, Azaizeh H, Muklada H, Glasser T, Roth Z, Deutch-Traubman T, Haj-Zaroubi M, Argov-Argaman N. Entourage effect for phenolic compounds on production and metabolism of mammary epithelial cells. Heliyon 2022; 8:e09025. [PMID: 35846481 PMCID: PMC9280384 DOI: 10.1016/j.heliyon.2022.e09025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/26/2021] [Accepted: 02/24/2022] [Indexed: 11/05/2022] Open
Abstract
Primary culture of mammary epithelial cells (MEC) was exposed to ethyl-acetate, chloroform and hexane extracts of Pistacia lentiscus (lentisk). The hexane extract contained mainly ethyl gallate whereas the chloroform extract contained mainly ethyl-gallate with smaller amount of gallic acid, and the ethyl-acetate extract contained mainly rutin, gallic acid and myricetin. Ethyl acetate extract increased secretion of protein and fat and improved mitochondrial activity. The enhancing effect on protein production was attributed to myricetin, one of the polyphenols in the ethyl-acetate extract whereas gallic acid did not affect protein production or secretion. Interestingly, exposure to the isolated polyphenols did not improve mitochondrial productivity and activity as effectively as exposure to the complete plant extract. The results indicated that polyphenols improve production of milk constituents by MEC, through different modes of action for different polyphenols suggesting an additive or even synergistic effect on production traits of mammary cells.
Collapse
|
9
|
Urošević M, Nikolić L, Gajić I, Nikolić V, Dinić A, Miljković V. Curcumin: Biological Activities and Modern Pharmaceutical Forms. Antibiotics (Basel) 2022; 11:antibiotics11020135. [PMID: 35203738 PMCID: PMC8868220 DOI: 10.3390/antibiotics11020135] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-hepta-1,6-diene-3,5-dione) is a natural lipophilic polyphenol that exhibits significant pharmacological effects in vitro and in vivo through various mechanisms of action. Numerous studies have identified and characterised the pharmacokinetic, pharmacodynamic, and clinical properties of curcumin. Curcumin has an anti-inflammatory, antioxidative, antinociceptive, antiparasitic, antimalarial effect, and it is used as a wound-healing agent. However, poor curcumin absorption in the small intestine, fast metabolism, and fast systemic elimination cause poor bioavailability of curcumin in human beings. In order to overcome these problems, a number of curcumin formulations have been developed. The aim of this paper is to provide an overview of recent research in biological and pharmaceutical aspects of curcumin, methods of sample preparation for its isolation (Soxhlet extraction, ultrasound extraction, pressurised fluid extraction, microwave extraction, enzyme-assisted aided extraction), analytical methods (FTIR, NIR, FT-Raman, UV-VIS, NMR, XRD, DSC, TLC, HPLC, HPTLC, LC-MS, UPLC/Q-TOF-MS) for identification and quantification of curcumin in different matrices, and different techniques for developing formulations. The optimal sample preparation and use of an appropriate analytical method will significantly improve the evaluation of formulations and the biological activity of curcumin.
Collapse
|
10
|
Selenium and Taurine Combination Is Better Than Alone in Protecting Lipopolysaccharide-Induced Mammary Inflammatory Lesions via Activating PI3K/Akt/mTOR Signaling Pathway by Scavenging Intracellular ROS. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5048375. [PMID: 34938382 PMCID: PMC8687852 DOI: 10.1155/2021/5048375] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/07/2021] [Accepted: 11/20/2021] [Indexed: 01/03/2023]
Abstract
Mastitis is mainly induced by gram-negative bacterial infections, causing devastating economic losses to the global cattle industry. Both selenium (Se) and taurine (Tau) exhibit multiple biological effects, including reducing inflammation. However, no studies have reported the protective effect of the combined use of Se and Tau against mastitis, and the underlying mechanisms remain unclear. In this study, lipopolysaccharide (LPS), the vital virulence factor of gram-negative bacteria, was used to construct the in vivo and vitro mastitis models. The results of in vivo model showed that Se and Tau combination was more effective than either substance alone in reducing tissue hyperemia, edema, and neutrophil infiltration in the mammary acinar cavity, improving the blood-milk barrier in LPS-induced mice mastitis, and decreasing the expression of proinflammatory factors and the activity of MPO. Moreover, Se and Tau combination significantly increased the levels of LPS-induced reduction in PI3K/Akt/mTOR, but the expressions of TLRs and NLRP3 were not significantly changed in the mammary tissue. In the in vitro experiments, the effects of Se and Tau combination or alone on inflammatory factors, inflammatory mediators, MPO activity, and blood-milk barrier were consistent with those in vivo. The Se and Tau combination has also been found to increase the survival rate of BMECs compared with each substance alone via promoting cellular proliferation and inhibiting apoptosis. Also, it has been confirmed that this combination could restore the LPS-induced inhibition in the PI3K/Akt/mTOR signaling pathway. Inhibition of mTOR by Rapamycin counteracted the combined protection of SeMet and Tau against LPS-induced inflammatory damage, the inhibition of PI3K by LY294002 blocked the activation of mTOR, and the accumulation of ROS by the ROS agonist blocked the activation of PI3K. In conclusion, these findings suggested that Se and Tau combination was better than either substance alone in protecting LPS-induced mammary inflammatory lesions by upregulating the PI3K/Akt/mTOR signaling pathway.
Collapse
|
11
|
Chang P, Li H, Hu H, Li Y, Wang T. The Role of HDAC6 in Autophagy and NLRP3 Inflammasome. Front Immunol 2021; 12:763831. [PMID: 34777380 PMCID: PMC8578992 DOI: 10.3389/fimmu.2021.763831] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy fights against harmful stimuli and degrades cytosolic macromolecules, organelles, and intracellular pathogens. Autophagy dysfunction is associated with many diseases, including infectious and inflammatory diseases. Recent studies have identified the critical role of the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasomes activation in the innate immune system, which mediates the secretion of proinflammatory cytokines IL-1β/IL-18 and cleaves Gasdermin D to induce pyroptosis in response to pathogenic and sterile stimuli. Accumulating evidence has highlighted the crosstalk between autophagy and NLRP3 inflammasome in multifaceted ways to influence host defense and inflammation. However, the underlying mechanisms require further clarification. Histone deacetylase 6 (HDAC6) is a class IIb deacetylase among the 18 mammalian HDACs, which mainly localizes in the cytoplasm. It is involved in two functional deacetylase domains and a ubiquitin-binding zinc finger domain (ZnF-BUZ). Due to its unique structure, HDAC6 regulates various physiological processes, including autophagy and NLRP3 inflammasome, and may play a role in the crosstalk between them. In this review, we provide insight into the mechanisms by which HDAC6 regulates autophagy and NLRP3 inflammasome and we explored the possibility and challenges of HDAC6 in the crosstalk between autophagy and NLRP3 inflammasome. Finally, we discuss HDAC6 inhibitors as a potential therapeutic approach targeting either autophagy or NLRP3 inflammasome as an anti-inflammatory strategy, although further clarification is required regarding their crosstalk.
Collapse
Affiliation(s)
- Panpan Chang
- Trauma Medicine Center, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), National Center for Trauma Medicine of China, Beijing, China
| | - Hao Li
- Department of Emergency, First Hospital of China Medical University, Shenyang, China
| | - Hui Hu
- Department of Traumatology, Central Hospital of Chongqing University, Chongqing Emergency Medical Center, Chongqing, China
| | - Yongqing Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Tianbing Wang
- Trauma Medicine Center, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), National Center for Trauma Medicine of China, Beijing, China
| |
Collapse
|
12
|
Hamid MA, Moustafa MT, Nashine S, Costa RD, Schneider K, Atilano SR, Kuppermann BD, Kenney MC. Anti-VEGF Drugs Influence Epigenetic Regulation and AMD-Specific Molecular Markers in ARPE-19 Cells. Cells 2021; 10:cells10040878. [PMID: 33921543 PMCID: PMC8069662 DOI: 10.3390/cells10040878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Our study assesses the effects of anti-VEGF (Vascular Endothelial Growth Factor) drugs and Trichostatin A (TSA), an inhibitor of histone deacetylase (HDAC) activity, on cultured ARPE-19 (Adult Retinal Pigment Epithelial-19) cells that are immortalized human retinal pigment epithelial cells. ARPE-19 cells were treated with the following anti-VEGF drugs: aflibercept, ranibizumab, or bevacizumab at 1× and 2× concentrations of the clinical intravitreal dose (12.5 μL/mL and 25 μL/mL, respectively) and analyzed for transcription profiles of genes associated with the pathogenesis age-related macular degeneration (AMD). HDAC activity was measured using the Fluorometric Histone Deacetylase assay. TSA downregulated HIF-1α and IL-1β genes, and upregulated BCL2L13, CASPASE-9, and IL-18 genes. TSA alone or bevacizumab plus TSA showed a significant reduction of HDAC activity compared to untreated ARPE-19 cells. Bevacizumab alone did not significantly alter HDAC activity, but increased gene expression of SOD2, BCL2L13, CASPASE-3, and IL-18 and caused downregulation of HIF-1α and IL-18. Combination of bevacizumab plus TSA increased gene expression of SOD2, HIF-1α, GPX3A, BCL2L13, and CASPASE-3, and reduced CASPASE-9 and IL-β. In conclusion, we demonstrated that anti-VEGF drugs can: (1) alter expression of genes involved in oxidative stress (GPX3A and SOD2), inflammation (IL-18 and IL-1β) and apoptosis (BCL2L13, CASPASE-3, and CASPASE-9), and (2) TSA-induced deacetylation altered transcription for angiogenesis (HIF-1α), apoptosis, and inflammation genes.
Collapse
Affiliation(s)
- Mohamed A. Hamid
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
- Ophthalmology Department, Faculty of Medicine, Minia University, Minia 61111, Egypt
| | - M. Tarek Moustafa
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
- Ophthalmology Department, Faculty of Medicine, Minia University, Minia 61111, Egypt
| | - Sonali Nashine
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
| | - Rodrigo Donato Costa
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
- Instituto Donato Oftalmologia, Poςos de Caldas, MG 37701-528, Brazil
| | - Kevin Schneider
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
| | - Shari R. Atilano
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
| | - Baruch D. Kuppermann
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA
| | - M. Cristina Kenney
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92697, USA
- Correspondence: ; Tel.: +1-949-824-7603
| |
Collapse
|
13
|
Zhang Q, Wang Y, Qu D, Yu J, Yang J. Role of HDAC6 inhibition in sepsis-induced acute respiratory distress syndrome (Review). Exp Ther Med 2021; 21:422. [PMID: 33747162 DOI: 10.3892/etm.2021.9866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) induced by sepsis contributes remarkably to the high mortality rate observed in intensive care units, largely due to a lack of effective drug therapies. Histone deacetylase 6 (HDAC6) is a class-IIb deacetylase that modulates non-nuclear protein functions via deacetylation and ubiquitination. Importantly, HDAC6 has been shown to exert anti-cancer, anti-neurodegeneration, and immunological effects, and several HDAC6 inhibitors have now entered clinical trials. It has also been recently shown to modulate inflammation, and HDAC6 inhibition has been demonstrated to markedly suppress experimental sepsis. The present review summarizes the role of HDAC6 in sepsis-induced inflammation and endothelial barrier dysfunction in recent years. It is proposed that HDAC6 inhibition predominantly ameliorates sepsis-induced ARDS by directly attenuating inflammation, which modulates the innate and adaptive immunity, transcription of pro-inflammatory genes, and protects endothelial barrier function. HDAC6 inhibition protects against sepsis-induced ARDS, thereby making HDAC6 a promising therapeutic target. However, HDAC inhibition may be associated with adverse effects on the embryo sac and oocyte, necessitating further studies.
Collapse
Affiliation(s)
- Qinghua Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Danhua Qu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jinyan Yu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Junling Yang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
14
|
Dual Pharmacological Targeting of HDACs and PDE5 Inhibits Liver Disease Progression in a Mouse Model of Biliary Inflammation and Fibrosis. Cancers (Basel) 2020; 12:cancers12123748. [PMID: 33322158 PMCID: PMC7763137 DOI: 10.3390/cancers12123748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Chronic liver injury and inflammation leads to excessive deposition of extracellular matrix, known as liver fibrosis, and the distortion of the hepatic parenchyma. Liver fibrosis may progress to cirrhosis, a condition in which hepatic function is impaired and most cases of liver tumors occur. Currently, there are no effective therapies to inhibit and reverse the progression of liver fibrosis, and therefore, chronic liver disease remains a global health problem. In this study we have tested the efficacy of a new class of molecules that simultaneously target two molecular pathways known to be involved in the pathogenesis of hepatic fibrosis. In a clinically relevant mouse model of liver injury and inflammation we show that the combined inhibition of histones deacetylases and the cyclic guanosine monophosphate (cGMP) phosphodiesterase phosphodiesterase 5 (PDE5) results in potent anti-inflammatory and anti-fibrotic effects. Our findings open new avenues for the treatment of liver fibrosis and therefore, the prevention of hepatic carcinogenesis. Abstract Liver fibrosis, a common hallmark of chronic liver disease (CLD), is characterized by the accumulation of extracellular matrix secreted by activated hepatic fibroblasts and stellate cells (HSC). Fibrogenesis involves multiple cellular and molecular processes and is intimately linked to chronic hepatic inflammation. Importantly, it has been shown to promote the loss of liver function and liver carcinogenesis. No effective therapies for liver fibrosis are currently available. We examined the anti-fibrogenic potential of a new drug (CM414) that simultaneously inhibits histone deacetylases (HDACs), more precisely HDAC1, 2, and 3 (Class I) and HDAC6 (Class II) and stimulates the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway activity through phosphodiesterase 5 (PDE5) inhibition, two mechanisms independently involved in liver fibrosis. To this end, we treated Mdr2-KO mice, a clinically relevant model of liver inflammation and fibrosis, with our dual HDAC/PDE5 inhibitor CM414. We observed a decrease in the expression of fibrogenic markers and collagen deposition, together with a marked reduction in inflammation. No signs of hepatic or systemic toxicity were recorded. Mechanistic studies in cultured human HSC and cholangiocytes (LX2 and H69 cell lines, respectively) demonstrated that CM414 inhibited pro-fibrogenic and inflammatory responses, including those triggered by transforming growth factor β (TGFβ). Our study supports the notion that simultaneous targeting of pro-inflammatory and fibrogenic mechanisms controlled by HDACs and PDE5 with a single molecule, such as CM414, can be a new disease-modifying strategy.
Collapse
|
15
|
Inhibition of Histone Deacetylase 6 by Tubastatin A Attenuates the Progress of Osteoarthritis via Improving Mitochondrial Function. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2376-2386. [DOI: 10.1016/j.ajpath.2020.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/01/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022]
|
16
|
Jiang L, Wang J, Liu Z, Jiang A, Li S, Wu D, Zhang Y, Zhu X, Zhou E, Wei Z, Yang Z. Sodium Butyrate Alleviates Lipopolysaccharide-Induced Inflammatory Responses by Down-Regulation of NF-κB, NLRP3 Signaling Pathway, and Activating Histone Acetylation in Bovine Macrophages. Front Vet Sci 2020; 7:579674. [PMID: 33251265 PMCID: PMC7674777 DOI: 10.3389/fvets.2020.579674] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/08/2020] [Indexed: 01/03/2023] Open
Abstract
Sodium butyrate is the sodium salt of butyric acid, which possesses many biological functions including immune system regulation, anti-oxidant and anti-inflammatory ability. The present study was designed to elucidate the anti-inflammatory effects and mechanisms of sodium butyrate on lipopolysaccharide (LPS)-stimulated bovine macrophages. The effect of sodium butyrate on the cell viability of bovine macrophages was assayed by using the CCK-8 kit. Quantitative real-time PCR (qRT-PCR) was used to detect the gene expression of interleukin-6 (IL-6), interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2), and inducible Nitric Oxide Synthase (iNOS). NF-κB, NLRP3 signaling pathway, and histone deacetylase were detected by western blotting. The results showed that sodium butyrate had no significant effect on cell viability at 0-1 mM, and inhibited LPS-induced IL-6, IL-1β, COX-2, and iNOS expression. Moreover, sodium butyrate suppressed LPS (5 μg/ml)-stimulated the phosphorylation of IκB and p65, inhibited the deacetylation of histone H3K9, and has also been found to inhibit protein expression in NLRP3 inflammasomes. Thus, our finding suggested that sodium butyrate relieved LPS-induced inflammatory responses in bovine macrophage by inhibiting the canonical NF-κB, NLRP3 signaling pathway, and histone decetylation, which might be helpful to prevent cow mastitis.
Collapse
Affiliation(s)
- Liqiang Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Jingjing Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ziyi Liu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Aimin Jiang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shuangqiu Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Di Wu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yong Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xingyi Zhu
- College of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Ershun Zhou
- College of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, China
| |
Collapse
|
17
|
Wang X, Li C, Wang Y, Li L, Han Z, Wang G. UFL1 Alleviates LPS-Induced Apoptosis by Regulating the NF-κB Signaling Pathway in Bovine Ovarian Granulosa Cells. Biomolecules 2020; 10:biom10020260. [PMID: 32050508 PMCID: PMC7072671 DOI: 10.3390/biom10020260] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/26/2020] [Accepted: 02/06/2020] [Indexed: 12/20/2022] Open
Abstract
Ubiquitin-like modifier 1 ligating enzyme 1 (UFL1) is an E3 ligase of ubiquitin fold modifier 1 (UFM1), which can act together with its target protein to inhibit the apoptosis of cells. Lipopolysaccharides (LPS) can affect the ovarian health of female animals by affecting the apoptosis of ovarian granulosa cells. The physiological function of UFL1 on the apoptosis of bovine (ovarian) granulosa cells (bGCs) remains unclear; therefore, we focused on the modulating effect of UFL1 on the regulation of LPS-induced apoptosis in ovarian granulosa cells. Our study found that UFL1 was expressed in both the nucleus and cytoplasm of bGCs. The results here demonstrated that LPS caused a significant increase in the apoptosis level of bGCs in cows, and also dramatically increased the expression of UFL1. Furthermore, we found that UFL1 depletion caused a significant increase in apoptosis (increased the expression of BAX/BCL-2 and the activity of caspase-3). Conversely, the overexpression of UFL1 relieved the LPS-induced apoptosis. In order to assess whether the inhibition of bGCs apoptosis involved in the nuclear factor-κB (NF-κB) signaling pathway resulted from UFL1, we detected the expression of NF-κB p-p65. LPS treatment resulted in a significant upregulation in the protein concentration of NF-κB p-p65, and knockdown of UFL1 further increased the phosphorylation of NF-κB p65, while UFL1 overexpression significantly inhibited the expression of NF-κB p-p65. Collectively, UFL1 could suppress LPS-induced apoptosis in cow ovarian granulosa cells, likely via the NF-κB pathway. These results identify a novel role of UFL1 in the modulation of bGC apoptosis, which may be a potential signaling target to improve the reproductive health of dairy cows.
Collapse
Affiliation(s)
| | | | | | - Lian Li
- Correspondence: ; Tel.: +86-25-84395045; Fax: +86-25-84395314
| | | | | |
Collapse
|
18
|
UFL1 Alleviates Lipopolysaccharide-Induced Cell Damage and Inflammation via Regulation of the TLR4/NF- κB Pathway in Bovine Mammary Epithelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6505373. [PMID: 30881595 PMCID: PMC6387704 DOI: 10.1155/2019/6505373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/09/2018] [Accepted: 11/27/2018] [Indexed: 12/25/2022]
Abstract
In recent studies, UFL1 (ubiquitin-like modifier 1 ligating enzyme 1) has been identified as a significant regulator of NF-κB signaling and cellular stress response, yet its physiological function in LPS-stimulated bovine mammary epithelial cells (BMECs) remains unknown. In this study, we investigated the modulating effect of UFL1 on the regulation of LPS-induced inflammation and cell damage, with a focus on apoptosis, ER stress, autophagy, oxidative stress, and the TLR4/NF-κB signaling pathway. The results showed that UFL1 depletion aggravated the LPS-induced inflammatory response and cell damage by positively regulating the TLR4/NF-κB pathway (increased the expression of TLR4, NF-κB P65 in nuclear, and phospho-IκBα), exacerbating LPS-induced ER stress (increased the expression of CHOP, Hsp70, and GRP78), apoptosis (increased the expression of Bax/Bcl-2 and activity of caspase-3), autophagy (increased LC3-II and decreased P62 expression), and oxidative stress (decreased SOD and CAT levels and increased MDA levels). Overexpression of UFL1 suppressed the activation of the TLR4/NF-κB pathway and relieved the LPS-induced ER stress, apoptosis, autophagy, and oxidative stress, thereby alleviating the inflammatory response and cell damage. Collectively, UFL1 may play an important role during the inflammatory response and thereby acts as a potential therapeutic target for bovine mastitis.
Collapse
|
19
|
Yang Q, Ali M, El Andaloussi A, Al-Hendy A. The emerging spectrum of early life exposure-related inflammation and epigenetic therapy. CANCER STUDIES AND MOLECULAR MEDICINE : OPEN JOURNAL 2018; 4:13-23. [PMID: 30474062 PMCID: PMC6247815 DOI: 10.17140/csmmoj-4-125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Early life exposure to a variety of insults during sensitive windows of development can reprogram normal physiological responses and alter disease susceptibility later in life. During this process, Inflammation triggered by a variety of adverse exposures plays an important role in the initiation and development of many types of diseases including tumorigenesis. This review article summaries the current knowledge about the role and mechanism of inflammation in development of diseases. In addition, epigenome alteration related to inflammation and treatment options using epigenetic modifiers are highlighted and discussed.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of
Illinois at Chicago, Chicago, IL, USA
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of
Illinois at Chicago, Chicago, IL, USA
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain
Shams University, Cairo, Egypt
| | | | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of
Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
20
|
Rutin protects against lipopolysaccharide-induced mastitis by inhibiting the activation of the NF-κB signaling pathway and attenuating endoplasmic reticulum stress. Inflammopharmacology 2018; 27:77-88. [PMID: 30099676 DOI: 10.1007/s10787-018-0521-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/01/2018] [Indexed: 12/18/2022]
Abstract
Rutin, found widely in traditional Chinese medicine materials, is used to treat eye swelling and pain, hypertension, and hyperlipidemia. In the present study, a mouse mastitis model induced by lipopolysaccharide (LPS) was established to explore rutin's inhibitory mechanism on mastitis via nuclear factor kappa B (NF-κB) inflammatory signaling and the relationship between NF-κB signaling and endoplasmic reticulum (ER) stress. Mice were divided into six groups: Control group, LPS model group, LPS + rutin (25, 50, and 100 mg/kg) and LPS + dexamethasone (DEX) group. DEX, rutin, and PBS (control and LPS groups) were administered 1 h before and 12 h after perfusion of LPS. After LPS stimulation for 24 h, to evaluate rutin's therapeutic effect on mastitis, the mammary tissues of each group were collected to detect histopathological injury, tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6 mRNA and protein levels; and glucose-regulated protein, 78 kDa (GRP78) protein levels. The protein and mRNA levels of TNF-α, IL-1β, and IL-6 in the LPS + rutin group were significantly lower than those in the LPS model group. Similarly, p50/p105, phosphorylated (p)-p65/p65 and p-inhibitor of nuclear factor kappa b kinase subunit beta (p-IKKβ)/IKKβ ratios in the LPS + rutin group (50 mg/kg) and LPS + rutin group (100 mg/kg) decreased significantly. GRP78 protein expression was significantly higher in LPS + rutin group (100 mg/kg). The structure of mammary tissue became gradually more intact and vacuolization of acini decreased as the rutin concentration increased. The nuclear quantity of p65 in the LPS + rutin group decreased significantly in a rutin dose-dependent manner. Rutin had an anti-inflammatory effect in the LPS-induced mouse mastitis model, manifested by inhibition of NF-κB pathway activation and attenuation of ER stress.
Collapse
|
21
|
Kim HM, Ahn C, Kang BT, Kang JH, Jeung EB, Yang MP. Fucoidan suppresses excessive phagocytic capacity of porcine peripheral blood polymorphonuclear cells by modulating production of tumor necrosis factor-alpha by lipopolysaccharide-stimulated peripheral blood mononuclear cells. Res Vet Sci 2018; 118:413-418. [PMID: 29698903 DOI: 10.1016/j.rvsc.2018.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/05/2018] [Accepted: 04/13/2018] [Indexed: 11/30/2022]
Abstract
We examined the effect of fucoidan, an immune modulator, on the phagocytic capacity of porcine peripheral blood polymorphonuclear cells (PMNs) exposed to culture supernatant from lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMCs). For this purpose, we evaluated the phagocytic capacity of porcine PMNs by flow cytometry and measured levels of tumor necrosis factor-alpha (TNF-α) protein and mRNA in porcine PBMCs by enzyme-linked immunosorbent assay (ELISA) and real time-polymerase chain reaction (PCR), respectively. Fucoidan or LPS alone did not affect the phagocytic capacity of PMNs, but phagocytosis by these cells was increased by exposure to culture supernatant from PBMCs treated with fucoidan or LPS. In particular, the culture supernatant from PBMCs treated with LPS revealed excessive phagocytosis of PMNs. This excessive phagocytic capacity was diminished by co-treatment LPS with fucoidan. Production of TNF-α mRNA and protein increased upon treatment of PBMCs with either fucoidan or LPS, but this effect was also diminished by co-treatment LPS with fucoidan. The ability of culture supernatant from PBMCs treated with LPS and/or fucoidan to increase the phagocytic capacity of PMNs was inhibited by anti-recombinant porcine TNF-α polyclonal antibody. These results suggested that fucoidan suppresses the phagocytic capacity of PMNs by modulating TNF-α production by LPS-stimulated PBMCs.
Collapse
Affiliation(s)
- Hyeong-Mok Kim
- Department of Veterinary Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Changhwan Ahn
- Department of Veterinary Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Byeong-Teck Kang
- Department of Veterinary Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ji-Houn Kang
- Department of Veterinary Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Eui-Bae Jeung
- Department of Veterinary Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Mhan-Pyo Yang
- Department of Veterinary Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|