1
|
Shan L, Tao M, Zhang W, Zhao JD, Liu XC, Fang ZH, Gao JR. Comprehensive analysis of the m 6A demethylase FTO in endothelial dysfunction by MeRIP sequencing. Exp Cell Res 2024; 442:114268. [PMID: 39343042 DOI: 10.1016/j.yexcr.2024.114268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
N6-methyladenosine (m6A) is the most general post-transcriptional modification of eukaryotic mRNAs and long-stranded non-coding RNAs. In this process, It has been shown that FTO associates with the m6A mRNA demethylase and plays a role in diabetic vascular endothelial dysfunction. In the present study, we detected FTO protein expression in HUVECs by Western blot and found that FTO was highly expressed in all disease groups relative to the control group. To explore the mechanism of FTO in T2DM vasculopathy, we performed an analysis by methylated RNA immunoprecipitation sequencing (MeRIP-seq) to elucidate the role of aberrant m6A modification and mRNA expression in endothelial dysfunction. The results showed 202 overlapping genes with varying m6A modifications and varied mRNA expression, and GO and KEGG enrichment analysis revealed that these genes were predominantly enriched in pathways associated with T2DM complications and endothelial dysfunction. By an integrated analysis of MeRIP-seq and RNA-seq results, the IGV plots showed elevated kurtosis of downstream candidate gene modifications, which may be downstream targets for FTO to exercise biological functions. HOXA9 and PLAU mRNA expression levels were significantly down after FTO inhibition. In the current work, we set up a typological profile of the m6A genes among HUVECs as well as uncovered a hidden relationship between RNA methylation modifications for T2DM vasculopathy-associated genes. Taken together, this study indicates that endothelial functional impairment is present in T2DM patients and may be related to aberrant expression of FTO.
Collapse
Affiliation(s)
- Li Shan
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Meng Tao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230011, Anhui, China
| | - Wei Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230011, Anhui, China
| | - Jin-Dong Zhao
- The Key Laboratory of Xin'an Medicine, Hefei, 230012, China
| | - Xiao-Chuang Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Zhao-Hui Fang
- The Key Laboratory of Xin'an Medicine, Hefei, 230012, China
| | - Jia-Rong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.
| |
Collapse
|
2
|
Vu QV, Vu NT, Baba K, Sasaki S, Tamura R, Morimoto K, Hirano H, Osada H, Kataoka T. Porphyrin derivatives inhibit tumor necrosis factor α-induced gene expression and reduce the expression and increase the cross-linked forms of cellular components of the nuclear factor κB signaling pathway. Eur J Pharmacol 2024; 977:176747. [PMID: 38880218 DOI: 10.1016/j.ejphar.2024.176747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/01/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The transcription factor nuclear factor κB (NF-κB) is activated by proinflammatory cytokines, such as tumor necrosis factor α (TNF-α) and Toll-like receptor (TLR) ligands. Screening of NPDepo chemical libraries identified porphyrin derivatives as anti-inflammatory compounds that strongly inhibited the up-regulation of intercellular adhesion molecule-1 (ICAM-1) expression induced by TNF-α, interleukin-1α, the TLR3 ligand, and TLR4 ligand in human umbilical vein endothelial cells. In the present study, the mechanisms of action of porphyrin derivatives were further elucidated using human lung adenocarcinoma A549 cells. Porphyrin derivatives, i.e., dimethyl-2,7,12,18-tetramethyl-3,8-di(1-methoxyethyl)-21H,23H-porphine-13,17-dipropionate (1) and pheophorbide a (2), inhibited TNF-α-induced ICAM-1 expression and decreased the TNF-α-induced transcription of ICAM-1, vascular cell adhesion molecule-1, and E-selectin genes. 1 and 2 reduced the expression of the NF-κB subunit RelA protein for 1 h, which was not rescued by the inhibition of proteasome- and lysosome-dependent protein degradation. In addition, 1 and 2 decreased the expression of multiple components of the TNF receptor 1 complex, and this was accompanied by the appearance of their cross-linked forms. As common components of the NF-κB signaling pathway, 1 and 2 also cross-linked the α, β, and γ subunits of the inhibitor of NF-κB kinase complex and the NF-κB subunits RelA and p50. Cellular protein synthesis was prevented by 2, but not by 1. Therefore, the present results indicate that porphyrin derivative 1 reduced the expression and increased the cross-linked forms of cellular components required for the NF-κB signaling pathway without affecting global protein synthesis.
Collapse
Affiliation(s)
- Quy Van Vu
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Nhat Thi Vu
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kosuke Baba
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Saki Sasaki
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ryuichi Tamura
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kyoko Morimoto
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hiroyuki Hirano
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan; Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
3
|
Yokota Y, Takaki K, Baba K, Sasaki S, Hirano H, Osada H, Kataoka T. Amiodarone inhibits the Toll-like receptor 3-mediated nuclear factor κB signaling pathway by blocking organelle acidification. Biochem Biophys Res Commun 2024; 708:149801. [PMID: 38531219 DOI: 10.1016/j.bbrc.2024.149801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Toll-like receptor (TLR) agonists or pro-inflammatory cytokines converge to activate the nuclear factor κB (NF-κB) signaling pathway, which provokes inflammatory responses. In the present study, we identified amiodarone hydrochloride as a selective inhibitor of the TLR3-mediated NF-κB signaling pathway by screening the RIKEN NPDepo Chemical Library. In human umbilical vein endothelial cells (HUVEC), amiodarone selectively inhibited the expression of intercellular adhesion molecule-1 (ICAM-1) induced by polyinosinic-polycytidylic acid (Poly(I:C)), but not tumor necrosis factor-α, interleukin-1α, or lipopolysaccharide. In response to a Poly(I:C) stimulation, amiodarone at 20 μM reduced the up-regulation of mRNA expression encoding ICAM-1, vascular cell adhesion molecule-1, and E-selectin. The nuclear translocation of the NF-κB subunit RelA was inhibited by amiodarone at 15-20 μM in Poly(I:C)-stimulated HUVEC. Amiodarone diminished the fluorescent dots of LysoTracker® Red DND-99 scattered over the cytoplasm of HUVEC. Therefore, the present study revealed that amiodarone selectively inhibited the TLR3-mediated NF-κB signaling pathway by blocking the acidification of intracellular organelles.
Collapse
Affiliation(s)
- Yuka Yokota
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Keiko Takaki
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kosuke Baba
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Saki Sasaki
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hiroyuki Hirano
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan; Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
4
|
Pérez R, Burgos V, Marín V, Camins A, Olloquequi J, González-Chavarría I, Ulrich H, Wyneke U, Luarte A, Ortiz L, Paz C. Caffeic Acid Phenethyl Ester (CAPE): Biosynthesis, Derivatives and Formulations with Neuroprotective Activities. Antioxidants (Basel) 2023; 12:1500. [PMID: 37627495 PMCID: PMC10451560 DOI: 10.3390/antiox12081500] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 08/27/2023] Open
Abstract
Neurodegenerative disorders are characterized by a progressive process of degeneration and neuronal death, where oxidative stress and neuroinflammation are key factors that contribute to the progression of these diseases. Therefore, two major pathways involved in these pathologies have been proposed as relevant therapeutic targets: The nuclear transcription factor erythroid 2 (Nrf2), which responds to oxidative stress with cytoprotecting activity; and the nuclear factor NF-κB pathway, which is highly related to the neuroinflammatory process by promoting cytokine expression. Caffeic acid phenethyl ester (CAPE) is a phenylpropanoid naturally found in propolis that shows important biological activities, including neuroprotective activity by modulating the Nrf2 and NF-κB pathways, promoting antioxidant enzyme expression and inhibition of proinflammatory cytokine expression. Its simple chemical structure has inspired the synthesis of many derivatives, with aliphatic and/or aromatic moieties, some of which have improved the biological properties. Moreover, new drug delivery systems increase the bioavailability of these compounds in vivo, allowing its transcytosis through the blood-brain barrier, thus protecting brain cells from the increased inflammatory status associated to neurodegenerative and psychiatric disorders. This review summarizes the biosynthesis and chemical synthesis of CAPE derivatives, their miscellaneous activities, and relevant studies (from 2010 to 2023), addressing their neuroprotective activity in vitro and in vivo.
Collapse
Affiliation(s)
- Rebeca Pérez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (R.P.); (V.M.)
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 4780000, Chile;
| | - Víctor Marín
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (R.P.); (V.M.)
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain;
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, 08028 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Jordi Olloquequi
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain;
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Iván González-Chavarría
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas Universidad de Concepción, Concepción 4030000, Chile;
| | - Henning Ulrich
- Department of Biochemistry, Instituto de Química, Universidad de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, SP, Brazil;
| | - Ursula Wyneke
- Facultad de Medicina, Universidad de Los Andes, Santiago 111711, Chile; (U.W.)
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Santiago 7620001, Chile
| | - Alejandro Luarte
- Facultad de Medicina, Universidad de Los Andes, Santiago 111711, Chile; (U.W.)
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Santiago 7620001, Chile
| | - Leandro Ortiz
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia 5110566, Chile;
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (R.P.); (V.M.)
| |
Collapse
|
5
|
Lin HB, Li FX, Zhang JY, You ZJ, Xu SY, Liang WB, Zhang HF. Cerebral-Cardiac Syndrome and Diabetes: Cardiac Damage After Ischemic Stroke in Diabetic State. Front Immunol 2021; 12:737170. [PMID: 34512671 PMCID: PMC8430028 DOI: 10.3389/fimmu.2021.737170] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
Cerebral-cardiac syndrome (CCS) refers to cardiac dysfunction following varying brain injuries. Ischemic stroke is strongly evidenced to induce CCS characterizing as arrhythmia, myocardial damage, and heart failure. CCS is attributed to be the second leading cause of death in the post-stroke stage; however, the responsible mechanisms are obscure. Studies indicated the possible mechanisms including insular cortex injury, autonomic imbalance, catecholamine surge, immune response, and systemic inflammation. Of note, the characteristics of the stroke population reveal a common comorbidity with diabetes. The close and causative correlation of diabetes and stroke directs the involvement of diabetes in CCS. Nevertheless, the role of diabetes and its corresponding molecular mechanisms in CCS have not been clarified. Here we conclude the features of CCS and the potential role of diabetes in CCS. Diabetes drives establish a “primed” inflammatory microenvironment and further induces severe systemic inflammation after stroke. The boosted inflammation is suspected to provoke cardiac pathological changes and hence exacerbate CCS. Importantly, as the key element of inflammation, NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome is indicated to play an important role in diabetes, stroke, and the sequential CCS. Overall, we characterize the corresponding role of diabetes in CCS and speculate a link of NLRP3 inflammasome between them.
Collapse
Affiliation(s)
- Hong-Bin Lin
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Feng-Xian Li
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jin-Yu Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Jian You
- Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital, Liuzhou, China
| | - Shi-Yuan Xu
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Wen-Bin Liang
- University of Ottawa Heart Institute and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hong-Fei Zhang
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Zheng S, Zhang H, Liu R, Huang CL, Li H, Deng ZY, Tsao R. Do short chain fatty acids and phenolic metabolites of the gut have synergistic anti-inflammatory effects? – New insights from a TNF-α-induced Caco-2 cell model. Food Res Int 2021; 139:109833. [DOI: 10.1016/j.foodres.2020.109833] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022]
|
7
|
Burgos V, Paz C, Saavedra K, Saavedra N, Foglio MA, Salazar LA. Drimenol, isodrimeninol and polygodial isolated from Drimys winteri reduce monocyte adhesion to stimulated human endothelial cells. Food Chem Toxicol 2020; 146:111775. [DOI: 10.1016/j.fct.2020.111775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
|
8
|
Vo NT, Sasaki S, Miyake Y, Nguyen NT, Dang PH, Thi Nguyen MT, Kataoka T. α-Conidendrin inhibits the expression of intercellular adhesion molecule-1 induced by tumor necrosis factor-α in human lung adenocarcinoma A549 cells. Eur J Pharmacol 2020; 890:173651. [PMID: 33049301 DOI: 10.1016/j.ejphar.2020.173651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022]
Abstract
α-Conidendrin is a lignan isolated from Taxus wallichiana and other species. In the present study, we demonstrated that α-conidendrin inhibited the cell-surface expression of intercellular adhesion molecule-1 (ICAM-1) induced by tumor necrosis factor-α (TNF-α) at an IC50 value of 40-60 μM in human lung adenocarcinoma A549 cells. α-Conidendrin decreased ICAM-1 protein and mRNA expression levels at concentrations of 40-100 μM in TNF-α-stimulated A549 cells. The TNF-α-induced mRNA expression of vascular cell adhesion molecule-1, E-selectin, and cyclooxygenase-2 was also reduced by α-conidendrin. In the TNF-α-induced nuclear factor κB (NF-κB) signaling pathway, α-conidendrin did not influence the translocation of the NF-κB subunit RelA from the cytoplasm to the nucleus at concentrations up to 100 μM. A chromatin immunoprecipitation assay revealed that α-conidendrin at 100 μM reduced the binding of RelA to the ICAM-1 promoter in response to a stimulation with TNF-α. Collectively, these results indicated that α-conidendrin interfered with the DNA binding of RelA to the ICAM-1 promoter, thereby reducing ICAM-1 transcription.
Collapse
Affiliation(s)
- Nghia Trong Vo
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Saki Sasaki
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yasunobu Miyake
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Nhan Trung Nguyen
- Faculty of Chemistry, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Viet Nam; Cancer Research Laboratory, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Viet Nam; Vietnam National University, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Phu Hoang Dang
- Faculty of Chemistry, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Viet Nam; Vietnam National University, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Mai Thanh Thi Nguyen
- Faculty of Chemistry, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Viet Nam; Cancer Research Laboratory, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Viet Nam; Vietnam National University, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; The Center for Advanced Insect Research Promotion (CAIRP), Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
9
|
Kim MJ, Jung SK. Nutraceuticals for prevention of atherosclerosis: Targeting monocyte infiltration to the vascular endothelium. J Food Biochem 2020; 44:e13200. [PMID: 32189369 DOI: 10.1111/jfbc.13200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/28/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death, globally, and is a serious problem in developing countries. Preventing atherosclerosis is key to reducing the risk of developing CVD. Similar to carcinogenesis, atherogenesis can be divided into four stages: initiation, promotion, progression, and acute events. The current study focuses on the promotion stage, which is characterized by circular monocyte penetration into vascular endothelial cells, monocyte differentiation into macrophages, and the formation of foam cells. This early stage of atherogenesis is a major target for nutraceuticals. We discuss nutraceuticals that can potentially inhibit monocyte adhesion to the vascular endothelium, thereby preventing the promotional stage of atherosclerosis. The mechanisms through which these nutraceuticals prevent monocyte adhesion are classified according to the following targets: NF-κB, ROS, MAPKs, and AP-1. Additionally, we discuss promising targets for nutraceuticals that can regulate monocyte adhesion to the endothelium. PRACTICAL APPLICATIONS: Introduction of atherogenesis with initiation, promotion, progression, and acute events provide specific information and factors for each step in the development of atherosclerosis. Functional food or pharmaceutical researchers can set target stages and use them to develop materials that control atherosclerosis. In particular, because it focuses on vascular inflammation via interaction between monocytes and vascular endothelial cells, it provides specific information to researchers developing functional foods that regulate this process. Therefore, this manuscript, unlike previous papers, will provide material information and potential mechanisms of action to researchers who want to develop functional foods that control vascular inflammation rather than vascular lipids.
Collapse
Affiliation(s)
- Min Jeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea.,Institute of Agricultural Science & Technology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
10
|
Suzuki S, Abe J, Kudo Y, Shirai M, Kimura KI. Inhibition of melanin production and promotion of collagen production by the extract of Kuji amber. Biosci Biotechnol Biochem 2020; 84:518-525. [DOI: 10.1080/09168451.2019.1693251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ABSTRACT
Kuji amber is fossilized tree resin of the Late Cretaceous in Japan. In this study, new biological activities of ethanol extract of Kuji amber (EtOH ext.) and supercritical carbon dioxide fluid extract of Kuji amber (scCO2 ext.) were examined. Both EtOH ext. and scCO2 ext. inhibited melanin production in B16 mouse melanoma cells and promoted collagen production in human skin fibroblast SF-TY cells. The scCO2 ext. had more potent activity than that of EtOH ext. and may depend on the efficiency of the extraction. The main new biologically active compound in Kuji amber, kujigamberol had no activities against melanin production, however, it promoted collagen production at low concentrations. A biologically active compound having a different structure, spirolactone norditerpenoid, showed both the inhibition activity against melanin production and the promotion activity of collagen production in a dose dependent manner. EtOH ext. and scCO2 ext., which include both kujigamberol and spirolactone norditerpenoid, have not only anti-allergy activity, but also inhibit melanin production and promote collagen production.
Collapse
Affiliation(s)
- Satoshi Suzuki
- General Headquarters, Misho Corporation Limited, Tokyo, Japan
| | - Junpei Abe
- Chemical Biology Laboratory, Graduate School of Arts and Sciences, Iwate University, Morioka, Japan
| | - Yui Kudo
- Department of Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Masayuki Shirai
- Department of Chemistry and Bioengineering, Faculty of Science and Engineering, Iwate University, Morioka, Japan
| | - Ken-ichi Kimura
- Chemical Biology Laboratory, Graduate School of Arts and Sciences, Iwate University, Morioka, Japan
- Department of Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University, Morioka, Japan
| |
Collapse
|