1
|
Wu M, Yuan S, Liu K, Wang C, Wen F. Gastric Cancer Signaling Pathways and Therapeutic Applications. Technol Cancer Res Treat 2024; 23:15330338241271935. [PMID: 39376170 PMCID: PMC11468335 DOI: 10.1177/15330338241271935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 10/09/2024] Open
Abstract
Gastric cancer (GC) is a prevalent malignant tumor and ranks as the second leading cause of death among cancer patients worldwide. Due to its hidden nature and difficulty in detection, GC has a high incidence and poor prognosis. Traditional treatment methods such as systemic chemotherapy, radiotherapy, and surgical resection are commonly used, but they often fail to achieve satisfactory curative effects, resulting in a very low 5-year survival rate for GC patients. Currently, targeted therapy and immunotherapy are prominent areas of research both domestically and internationally. These methods hold promise for the treatment of GC. This article focuses on the signaling pathways associated with the development of GC, as well as the recent advancements and applications of targeted therapy and immunotherapy. The aim is to provide fresh insights for the clinical treatment of GC.
Collapse
Affiliation(s)
- Mingfang Wu
- The Second Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Shiman Yuan
- The Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Kai Liu
- The Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Chenyu Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Feng Wen
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| |
Collapse
|
2
|
Chu Z, Zhu M, Luo Y, Hu Y, Feng X, Wang H, Sunagawa M, Liu Y. PTBP1 plays an important role in the development of gastric cancer. Cancer Cell Int 2023; 23:195. [PMID: 37670313 PMCID: PMC10478210 DOI: 10.1186/s12935-023-03043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Polypyrimidine tract binding protein 1 (PTBP1) has been found to play an important role in the occurrence and development of various tumors. At present, the role of PTBP1 in gastric cancer (GC) is still unknown and worthy of further investigation. METHODS We used bioinformatics to analyze the expression of PTBP1 in patients with GC. Cell proliferation related experiments were used to detect cell proliferation after PTBP1 knockdown. Skeleton staining, scanning electron microscopy and transmission electron microscopy were used to observe the changes of actin skeleton. Proliferation and actin skeleton remodeling signaling pathways were detected by Western Blots. The relationship between PTBP1 and proliferation of gastric cancer cells was further detected by subcutaneous tumor transplantation. Finally, tissue microarray data from clinical samples were used to further explore the expression of PTBP1 in patients with gastric cancer and its correlation with prognosis. RESULTS Through bioinformatics studies, we found that PTBP1 was highly expressed in GC patients and correlated with poor prognosis. Cell proliferation and cycle analysis showed that PTBP1 down-regulation could significantly inhibit cell proliferation. The results of cell proliferation detection related experiments showed that PTBP1 down-regulation could inhibit the division and proliferation of GC cells. Furthermore, changes in the morphology of the actin skeleton of cells showed that PTBP1 down-regulation inhibited actin skeletal remodeling in GC cells. Western Blots showed that PTBP1 could regulate proliferation and actin skeleton remodeling signaling pathways. In addition, we constructed PTBP1 Cas9-KO mouse model and performed xenograft assays to further confirm that down-regulation of PTBP1 could inhibit the proliferation of GC cells. Finally, tissue microarray was used to further verify the close correlation between PTBP1 and poor prognosis in patients with GC. CONCLUSIONS Our study demonstrates for the first time that PTBP1 may affect the proliferation of GC cells by regulating actin skeleton remodeling. In addition, PTBP1 is closely related to actin skeleton remodeling and proliferation signaling pathways. We suppose that PTBP1 might be a potential target for the treatment of GC.
Collapse
Affiliation(s)
- Zewen Chu
- The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Miao Zhu
- The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Yuanyuan Luo
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Yaqi Hu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Xinyi Feng
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Haibo Wang
- The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China.
| | - Masataka Sunagawa
- Department of physiology, School of Medicine, Showa University, Tokyo, Japan.
| | - Yanqing Liu
- The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China.
| |
Collapse
|
3
|
Xia C, Yin S, To KKW, Fu L. CD39/CD73/A2AR pathway and cancer immunotherapy. Mol Cancer 2023; 22:44. [PMID: 36859386 PMCID: PMC9979453 DOI: 10.1186/s12943-023-01733-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/26/2023] [Indexed: 03/03/2023] Open
Abstract
Cancer development is closely associated with immunosuppressive tumor microenvironment (TME) that attenuates antitumor immune responses and promotes tumor cell immunologic escape. The sequential conversion of extracellular ATP into adenosine by two important cell-surface ectonucleosidases CD39 and CD73 play critical roles in reshaping an immunosuppressive TME. The accumulated extracellular adenosine mediates its regulatory functions by binding to one of four adenosine receptors (A1R, A2AR, A2BR and A3R). The A2AR elicits its profound immunosuppressive function via regulating cAMP signaling. The increasing evidence suggests that CD39, CD73 and A2AR could be used as novel therapeutic targets for manipulating the antitumor immunity. In recent years, monoclonal antibodies or small molecule inhibitors targeting the CD39/CD73/A2AR pathway have been investigated in clinical trials as single agents or in combination with anti-PD-1/PD-L1 therapies. In this review, we provide an updated summary about the pathophysiological function of the adenosinergic pathway in cancer development, metastasis and drug resistance. The targeting of one or more components of the adenosinergic pathway for cancer therapy and circumvention of immunotherapy resistance are also discussed. Emerging biomarkers that may be used to guide the selection of CD39/CD73/A2AR-targeting treatment strategies for individual cancer patients is also deliberated.
Collapse
Affiliation(s)
- Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, 528000, China. .,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 515150, China.
| | - Shuanghong Yin
- grid.284723.80000 0000 8877 7471Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, 528000 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Kenneth K. W. To
- grid.10784.3a0000 0004 1937 0482School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
4
|
Li B. Why do tumor-infiltrating lymphocytes have variable efficacy in the treatment of solid tumors? Front Immunol 2022; 13:973881. [PMID: 36341370 PMCID: PMC9635507 DOI: 10.3389/fimmu.2022.973881] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/14/2022] [Indexed: 07/30/2023] Open
Abstract
Lymphocytes in tumor tissue are called tumor-infiltrating lymphocytes (TILs), and they play a key role in the control and treatment of tumor diseases. Since the discovery in 1987 that cultured TILs can kill tumor cells more than 100 times more effectively than T-cells cultured from peripheral blood in melanoma, it has been confirmed that cultured TILs can successfully cure clinical patients with melanoma. Since 1989, after we investigated TIL isolation performance from solid tumors, we modified some procedures to increase efficacy, and thus successfully established new TIL isolation and culture methods in 1994. Moreover, our laboratory and clinicians using our cultured TILs have published more than 30 papers. To improve the efficacy of TILs, we have been carrying out studies of TIL efficacy to treat solid tumor diseases for approximately 30 years. The three main questions of TIL study have been "How do TILs remain silent in solid tumor tissue?", "How do TILs attack homologous and heterologous antigens from tumor cells of solid tumors?", and "How do TILs infiltrate solid tumor tissue from a distance into tumor sites to kill tumor cells?". Research on these three issues has increasingly answered these questions. In this review I summarize the main issues surrounding TILs in treating solid tumors. This review aims to study the killing function of TILs from solid tumor tissues, thereby ultimately introducing the optimal strategy for patients suffering from solid tumors through personalized immunotherapy in the near future.
Collapse
Affiliation(s)
- Biaoru Li
- Georgia Cancer Center and Department of Pediatrics, Medical College at Georgia (GA), Augusta, GA, United States
| |
Collapse
|
5
|
Wang J, Du L, Chen X. Adenosine signaling: Optimal target for gastric cancer immunotherapy. Front Immunol 2022; 13:1027838. [PMID: 36189223 PMCID: PMC9523428 DOI: 10.3389/fimmu.2022.1027838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancy and leading cause of cancer-related deaths worldwide. Due to asymptomatic or only nonspecific early symptoms, GC patients are usually in the advanced stage at first diagnosis and miss the best opportunity of treatment. Immunotherapies, especially immune checkpoint inhibitors (ICIs), have dramatically changed the landscape of available treatment options for advanced-stage cancer patients. However, with regards to existing ICIs, the clinical benefit of monotherapy for advanced gastric cancer (AGC) is quite limited. Therefore, it is urgent to explore an optimal target for the treatment of GC. In this review, we summarize the expression profiles and prognostic value of 20 common immune checkpoint-related genes in GC from Gene Expression Profiling Interactive Analysis (GEPIA) database, and then find that the adenosinergic pathway plays an indispensable role in the occurrence and development of GC. Moreover, we discuss the pathophysiological function of adenosinergic pathway in cancers. The accumulation of extracellular adenosine inhibits the normal function of immune effector cells and facilitate the effect of immunosuppressive cells to foster GC cells proliferation and migration. Finally, we provide insights into potential clinical application of adenosinergic-targeting therapies for GC patients.
Collapse
Affiliation(s)
- Junqing Wang
- School of the 1St Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Linyong Du
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiangjian Chen, ; Linyong Du,
| | - Xiangjian Chen
- School of the 1St Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiangjian Chen, ; Linyong Du,
| |
Collapse
|
6
|
Liu G, Yang S, Liu Y, Xu Y, Qiu H, Sun J, Song J, Shi L. The adenosine-A2a receptor regulates the radioresistance of gastric cancer via PI3K-AKT-mTOR pathway. Int J Clin Oncol 2022; 27:911-920. [PMID: 35122587 DOI: 10.1007/s10147-022-02123-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/19/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Radiotherapy is a key strategy in gastric cancer (GC) treatment. However, radioresistance remains a serious concern. It is unclear whether the accumulation of adenosine A2a receptor (ADO-A2aR) is related to radioresistance in GC. In this study, the molecular role of ADO-A2aR in GC radioresistance was investigated. METHODS Colony formation assays were used to assess the role of ADO-A2aR on radioresistance. GC stem cell surface marker expression (including Nanog, OCT-4, SOX-2 and CD44) and PI3K/AKT/mTOR signaling pathway associated protein levels (including phosphorylated PI3K, phosphorylated AKT and phosphorylated mTOR) were determined via western blotting, flow cytometry and immunofluorescence. In addition, the role of ADO-A2aR on radioresistance was explored in vivo using murine xenograft models. RESULTS ADO-A2aR regulated GC cell stemness both in vitro and in vivo. This was shown to induce radioresistance in GC. ADO-A2aR was revealed to significantly induce cell cycle arrest and promote GC cell apoptosis. These activities were closely linked to activation of the PI3K/AKT/mTOR pathway. CONCLUSION This study identified that ADO enhances GC cell stemness via interaction with A2aR and subsequent activation of the PI3K/AKT/mTOR pathway. Ultimately, this resulted in radioresistance. A2aR is a potential target to improve GC radiosensitivity.
Collapse
Affiliation(s)
- Guihong Liu
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China.,Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Song Yang
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China.,Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Yang Liu
- Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Yumei Xu
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Hui Qiu
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Jian Sun
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China.,Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Jun Song
- Departments of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China. .,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China.
| | - Linsen Shi
- Departments of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China.
| |
Collapse
|
7
|
Purinergic P2Y2 and P2X4 Receptors Are Involved in the Epithelial-Mesenchymal Transition and Metastatic Potential of Gastric Cancer Derived Cell Lines. Pharmaceutics 2021; 13:pharmaceutics13081234. [PMID: 34452195 PMCID: PMC8398939 DOI: 10.3390/pharmaceutics13081234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is a major health concern worldwide, presenting a complex pathophysiology that has hindered many therapeutic efforts so far. In this context, purinergic signaling emerges as a promising pathway for intervention due to its known role in cancer cell proliferation and migration. In this work, we explored in more detail the role of purinergic signaling in GC with several experimental approaches. First, we measured extracellular ATP concentrations on GC-derived cell lines (AGS, MKN-45, and MKN-74), finding higher levels of extracellular ATP than those obtained for the non-tumoral gastric cell line GES-1. Next, we established the P2Y2 and P2X4 receptors (P2Y2R and P2X4R) expression profile on these cells and evaluated their role on cell proliferation and migration after applying overexpression and knockdown strategies. In general, a P2Y2R overexpression and P2X4R downregulation pattern were observed on GC cell lines, and when these patterns were modified, concomitant changes in cell viability were observed. These modifications on gene expression also modified transepithelial electrical resistance (TEER), showing that higher P2Y2R levels decreased TEER, and high P2X4R expression had the opposite effect, suggesting that P2Y2R and P2X4R activation could promote and suppress epithelial-mesenchymal transition (EMT), respectively. These effects were confirmed after treating AGS cells with UTP, a P2Y2R-agonist that modified the expression patterns towards mesenchymal markers. To further characterize the effects of P2Y2R activation on EMT, we used cDNA microarrays and observed that UTP induced important transcriptional changes on several cell processes like cell proliferation induction, apoptosis inhibition, cell differentiation induction, and cell adhesion reduction. These results suggest that purinergic signaling plays a complex role in GC pathophysiology, and changes in purinergic balance can trigger tumorigenesis in non-tumoral gastric cells.
Collapse
|
8
|
Papale M. A Review of Proteomics Strategies to Study T-Cell Activation and Function in Cancer Disease. Methods Mol Biol 2021; 2325:125-136. [PMID: 34053055 DOI: 10.1007/978-1-0716-1507-2_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Cytotoxic T-cells play a key role in natural response to cancer and in immunotherapy. Understanding in an ever more thorough and complete way the mechanisms underlying their activation and/or those that prevent it is a crucial challenge for the success of the therapy. Proteomics can make a decisive contribution to achieving this goal as it brings together a range of technologies that potentially allow the expression levels of thousands of proteins to be analyzed at the same time. In the first part of this chapter, after an overview of the main mechanisms that determine T-cell dysfunction, new MS-based approaches to characterizing T-cell subpopulations in the tumor microenvironment will be described. The second part of the chapter will focus on the main strategies for cancer immunotherapy, from the selective blockage of inhibitory receptor to CAR T therapy. Examples of proteomics application to tumor microenvironment analysis will be reported to illustrate how these innovative approaches can contribute significantly to understanding the cellular and molecular mechanisms that regulate an effective response to therapy.
Collapse
Affiliation(s)
- Massimo Papale
- Clinical Pathology Unit, Department of Laboratory Diagnostics, Policlinic University Hospital "Riuniti", Foggia, Italy.
| |
Collapse
|
9
|
Helms RS, Powell JD. Rethinking the adenosine-A 2AR checkpoint: implications for enhancing anti-tumor immunotherapy. Curr Opin Pharmacol 2020; 53:77-83. [PMID: 32781414 DOI: 10.1016/j.coph.2020.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
Adenosine signaling through A2AR serves as a negative regulator of the immune system. Unique to this suppressive pathway is its ability to impact numerous stromal and immune cells. Additionally, tumors exhibit elevated concentrations of adenosine further advancing the pathway's potential as a powerful target for activating anti-tumor immunity. The promise of this therapeutic strategy has been repeatedly demonstrated in mice, but has so far only yielded limited success in the clinic. Nonetheless, it is notable that many of these observed clinical responses have been in individuals resistant to prior immunotherapy. These observations suggest this pathway is indeed involved in tumor immune evasion. Thus, identifying the disparities between the translational and clinical implementation of this therapy becomes necessary. To this end, this review will revisit how and where adenosine-A2AR signaling regulates the immune system and anti-tumor immunity so as to reveal opportunities for improving the translational success of this immunotherapy.
Collapse
Affiliation(s)
- Rachel S Helms
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, 1650 Orleans Street, CRB-I Rm443, Baltimore, MD, 21231, USA
| | - Jonathan D Powell
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, 1650 Orleans Street, CRB-I Rm443, Baltimore, MD, 21231, USA.
| |
Collapse
|
10
|
Lu J, Chen M, Dong L, Cai L, Zhao M, Wang Q, Li J. Molybdenum disulfide nanosheets: From exfoliation preparation to biosensing and cancer therapy applications. Colloids Surf B Biointerfaces 2020; 194:111162. [PMID: 32512311 DOI: 10.1016/j.colsurfb.2020.111162] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/21/2020] [Accepted: 05/30/2020] [Indexed: 01/11/2023]
Abstract
Over the past few decades, nanotechnology has developed rapidly. Various nanomaterials have been gradually applied in different fields. As a kind of two-dimensional (2D) layered nanomaterial with a graphene-like structure, molybdenum disulfide (MoS2) nanosheets have broad research prospects in the fields of tumor photothermal therapy, biosensors and other biomedical fields because of their unique band gap structure and physical, chemical and optical properties. In this paper, the latest research progress on MoS2 is briefly summarized. Several commonly used exfoliation methods for the preparation of MoS2 nanosheets are reviewed based on the studies in the past five years. Additionally, the current research status of MoS2 nanosheets in the field of biomedicine is introduced. At the end of this review, a brief overview of the limitations of MoS2 research and its future prospects in the field of biomedicine is also provided.
Collapse
Affiliation(s)
- Jiaying Lu
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu China; School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Mingyue Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Lina Dong
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu China
| | - Lulu Cai
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu China
| | - Mingming Zhao
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu China
| | - Qi Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Jingjing Li
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu China; School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
11
|
Selected Literature Watch. J Caffeine Adenosine Res 2019. [DOI: 10.1089/caff.2019.29010.slw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Maimela NR, Liu S, Zhang Y. Fates of CD8+ T cells in Tumor Microenvironment. Comput Struct Biotechnol J 2018; 17:1-13. [PMID: 30581539 PMCID: PMC6297055 DOI: 10.1016/j.csbj.2018.11.004] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 12/24/2022] Open
Abstract
Studies have reported a positive correlation between elevated CD8+ T cells in the tumor microenvironment (TME) and good prognosis in cancer. However, the mechanisms linking T cell tumor-infiltration and tumor rejection are yet to be fully understood. The cells and factors of the TME facilitate tumor development in various ways. CD8+ T cell function is influenced by a number of factors, including CD8+ T cell trafficking and localization into tumor sites; as well as CD8+ T cell growth and differentiation. This review highlights recent literature as well as currently evolving concepts regarding the fates of CD8+ T cells in the TME from three different aspects CD8+ T cell trafficking, differentiation and function. A thorough understanding of factors contributing to the fates of CD8+ T cells will allow researchers to develop new strategies and improve on already existing strategies to facilitate CD8+ T cell mediated anti-tumor function, impede T cell dysfunction and modulate the TME into a less immunosuppressive TME.
Collapse
Affiliation(s)
| | - Shasha Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou 450052, China
| |
Collapse
|