1
|
Fan J, Zheng S, Wang M, Yuan X. The critical roles of caveolin-1 in lung diseases. Front Pharmacol 2024; 15:1417834. [PMID: 39380904 PMCID: PMC11458383 DOI: 10.3389/fphar.2024.1417834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Caveolin-1 (Cav-1), a structural and functional component in the caveolae, plays a critical role in transcytosis, endocytosis, and signal transduction. Cav-1 has been implicated in the mediation of cellular processes by interacting with a variety of signaling molecules. Cav-1 is widely expressed in the endothelial cells, smooth muscle cells, and fibroblasts in the various organs, including the lungs. The Cav-1-mediated internalization and regulation of signaling molecules participate in the physiological and pathological processes. Particularly, the MAPK, NF-κB, TGFβ/Smad, and eNOS/NO signaling pathways have been involved in the regulatory effects of Cav-1 in lung diseases. The important effects of Cav-1 on the lungs indicate that Cav-1 can be a potential target for the treatment of lung diseases. A Cav-1 scaffolding domain peptide CSP7 targeting Cav-1 has been developed. In this article, we mainly discuss the structure of Cav-1 and its critical roles in lung diseases, such as pneumonia, acute lung injury (ALI), asthma, chronic obstructive pulmonary disease (COPD), pulmonary hypertension, pulmonary fibrosis, and lung cancer.
Collapse
Affiliation(s)
| | | | | | - Xiaoliang Yuan
- Department of Respiratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
2
|
Feng YD, Ye W, Tian W, Meng JR, Zhang M, Sun Y, Zhang HN, Wang SJ, Wu KH, Liu CX, Liu SY, Cao W, Li XQ. Old targets, new strategy: Apigenin-7-O-β-d-(-6″-p-coumaroyl)-glucopyranoside prevents endothelial ferroptosis and alleviates intestinal ischemia-reperfusion injury through HO-1 and MAO-B inhibition. Free Radic Biol Med 2022; 184:74-88. [PMID: 35398494 DOI: 10.1016/j.freeradbiomed.2022.03.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/13/2022]
Abstract
With the increasing morbidity and mortality, intestinal ischemia/reperfusion injury (IIRI) has attracted more and more attention, but there is no efficient therapeutics at present. Apigenin-7-O-β-D-(-6″-p-coumaroyl)-glucopyranoside (APG) is a new flavonoid glycoside isolated from Clematis tangutica that has strong antioxidant abilities in previous studies. However, the pharmacodynamic function and mechanism of APG on IIRI remain unknown. This study aimed to investigate the effects of APG on IIRI both in vivo and in vitro and identify the potential molecular mechanism. We found that APG could significantly improve intestinal edema and increase Chiu's score. MST analysis suggested that APG could specifically bind to heme oxygenase 1 (HO-1) and monoamine oxidase b (MAO-B). Simultaneously, APG could attenuate ROS generation and Fe2+ accumulation, maintain mitochondria function thus inhibit ferroptosis with a dose-dependent manner. Moreover, we used siRNA silencing technology to confirm that knocking down both HO-1 and MAO-B had a positive effect on intestine. In addition, we found the HO-1 and MAO-B inhibitors also could reduce endothelial cell loss and protect vascular endothelial after reperfusion. We demonstrate that APG plays a protective role on decreasing activation of HO-1 and MAO-B, attenuating IIRI-induced ROS generation and Fe2+ accumulation, maintaining mitochondria function thus inhibiting ferroptosis.
Collapse
Affiliation(s)
- Ying-Da Feng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China; Shaanxi Key Laboratory of "Qin Medicine" Research and Development, Xi'an, Shaanxi, 710032, China
| | - Wen Ye
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China; Shaanxi Key Laboratory of "Qin Medicine" Research and Development, Xi'an, Shaanxi, 710032, China
| | - Wen Tian
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China; Shaanxi Key Laboratory of "Qin Medicine" Research and Development, Xi'an, Shaanxi, 710032, China
| | - Jing-Ru Meng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China; Shaanxi Key Laboratory of "Qin Medicine" Research and Development, Xi'an, Shaanxi, 710032, China
| | - Meng Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China; Shaanxi Key Laboratory of "Qin Medicine" Research and Development, Xi'an, Shaanxi, 710032, China
| | - Yang Sun
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China; Shaanxi Key Laboratory of "Qin Medicine" Research and Development, Xi'an, Shaanxi, 710032, China
| | - Hui-Nan Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China; Shaanxi Key Laboratory of "Qin Medicine" Research and Development, Xi'an, Shaanxi, 710032, China
| | - Shou-Jia Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China; Shaanxi Key Laboratory of "Qin Medicine" Research and Development, Xi'an, Shaanxi, 710032, China
| | - Ke-Han Wu
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China; Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen-Xu Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China; Shaanxi Key Laboratory of "Qin Medicine" Research and Development, Xi'an, Shaanxi, 710032, China
| | - Shao-Yuan Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China; Shaanxi Key Laboratory of "Qin Medicine" Research and Development, Xi'an, Shaanxi, 710032, China
| | - Wei Cao
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China; Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiao-Qiang Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China; Shaanxi Key Laboratory of "Qin Medicine" Research and Development, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|