1
|
Yan J, Li T, Ji K, Zhou X, Yao W, Zhou L, Huang P, Zhong K. Safranal alleviates pentetrazole-induced epileptic seizures in mice by inhibiting the NF-κB signaling pathway and mitochondrial-dependent apoptosis through GSK-3β inactivation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118408. [PMID: 38823659 DOI: 10.1016/j.jep.2024.118408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saffron, a traditional Chinese medicine, is derived from Crocus sativus L. stigmas and has been reported to possess neuroprotective properties and potentially contribute to the inhibition of apoptosis and inflammation. Safranal, a potent monothyral aldehyde, is a main component of saffron that has been reported to have antiepileptic activity. However, the specific mechanism by which safranal suppresses epileptic seizures via its antiapoptotic and anti-inflammatory properties is unclear. AIM To evaluate the effect of safranal on seizure severity, inflammation, and postictal neuronal apoptosis in a mouse model of pentetrazole (PTZ)-induced seizures and explore the underlying mechanism involved. MATERIALS AND METHODS The seizure stage and latency of stage 2 and 4 were quantified to assess the efficacy of safranal in mitigating PTZ-induced epileptic seizures in mice. Electroencephalography (EEG) was employed to monitor epileptiform afterdischarges in each experimental group. The cognitive abilities and motor functions of the mice were evaluated using the novel object recognition test and the open field test, respectively. Neurons were quantified using hematoxylin and eosin staining. Additionally, bioinformatics tools were utilized to predict the interactions between safranal and specific target proteins. Glycogen synthase kinase-3β (GSK-3β), mitochondrial apoptosis-related proteins, and inflammatory factor levels were analyzed through western blotting. Tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) concentrations in brain tissue were assessed by ELISA. RESULTS Safranal decreased the average seizure stage and increased the lantency of stage 2 and 4 seizures in PTZ-induced epileptic mice. Additionally, safranal exhibited neuroprotective effects on hippocampal CA1 and CA3 neurons and reduced hyperactivity caused by postictal hyperexcitability. Bioinformatics analysis revealed that safranal can bind to five specific proteins, including GSK-3β. By promoting Ser9 phosphorylation and inhibiting GSK-3β activity, safranal effectively suppressed the NF-κB signaling pathway. Moreover, the findings indicate that safranal treatment can decrease TNF-α and IL-1β levels in the cerebral tissues of epileptic mice and downregulate mitochondrial apoptosis-related proteins, including Bcl-2, Bax, Bak, Caspase 9, and Caspase 3. CONCLUSION Safranal can suppress the NF-κB signaling pathway and mitochondrial-dependent apoptosis through GSK-3β inactivation, suggesting that it is a promising therapeutic agent for epilepsy treatment.
Collapse
Affiliation(s)
- Jieping Yan
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China
| | - Tingting Li
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Kaiyue Ji
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Xinyue Zhou
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310014, China
| | - Weiyi Yao
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Department of Pharmacology, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Liujing Zhou
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310014, China
| | - Ping Huang
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| | - Kai Zhong
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310014, China.
| |
Collapse
|
2
|
Atienza-Navarro I, Del Marco A, Angeles Garcia-Perez MDL, Raya-Marin A, Gil C, Martinez A, Benavente-Fernandez I, Lubian-Lopez S, Garcia-Alloza M. VP3.15 reduces acute cerebellum damage after germinal matrix-intraventricular hemorrhage of the preterm newborn. Biomed Pharmacother 2024; 180:117586. [PMID: 39413619 DOI: 10.1016/j.biopha.2024.117586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024] Open
Abstract
Germinal matrix-intraventricular hemorrhage (GM-IVH) is one of the most common complications of the preterm newborn. The pathology of the GM-IVH is not completely understood and even regions distant from the lesion area are severely affected. It has been suggested that cerebellar diaschisis may underlie the neurodevelopmental problems that many of these kids show, including cerebral palsy, attention deficit disorders or hyperactivity. Additionally, GM-IVH has no successful treatment. VP3.15 is a dual action phosphodiesterase 7 (PDE7) and glycogen synthase kinase-3β (GSK-3β) inhibitor that limits neuroinflammation and neuronal loss. Therefore, it might also provide a relevant tool to reduce complications associated with GM-IVH. We have used a murine model of GM-IVH to analyze the short and long-term effects of VP3.15 in brain pathology and behavioral complications. In our hands, the induction of unilateral GM-IVH to P7 CD1 mice results in a short-term (P14) compromise of the cerebellar neuronal population and Purkinje cells arborization, an increase of microglia burden in the nuclei and an overall increase of punctuate cerebellar hemorrhages. Whereas brain alterations are no longer observed in the long term (P110), these animals present overt hyperactivity when analyzed in the adulthood, supporting the long-term behavioral impairment. Also, hyperactivity significantly correlates with ipsi and contralateral cerebellar sizes, neuronal densities and myelin basic protein levels. Importantly, treatment with VP3.15 significantly reduces neuronal loss, Purkinje cells simplification, the presence of cerebellar hemorrhages, as well as hyperactivity. Altogether, our data support the neuroprotective effects of VP3.15 in GM-IVH of the PT.
Collapse
Affiliation(s)
- Isabel Atienza-Navarro
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain; Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | - Angel Del Marco
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain; Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | | | - Alvaro Raya-Marin
- Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | - Carmen Gil
- Centro de Investigaciones Biologicas Margarita Salas-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Ana Martinez
- Centro de Investigaciones Biologicas Margarita Salas-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain; Centro de Investigaciones Biomedicas en Red en Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, Madrid 28031, Spain
| | - Isabel Benavente-Fernandez
- Area of Pediatrics, Department of Child and Mother Health and Radiology, School of Medicine, University of Cadiz, Cadiz, Spain; Section of Neonatology, Division of Pediatrics, Puerta del Mar University Hospital, Cadiz, Spain
| | - Simon Lubian-Lopez
- Area of Pediatrics, Department of Child and Mother Health and Radiology, School of Medicine, University of Cadiz, Cadiz, Spain; Section of Neonatology, Division of Pediatrics, Puerta del Mar University Hospital, Cadiz, Spain.
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain; Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cadiz, Spain.
| |
Collapse
|
3
|
Yuan X, Xia Y, Jiang P, Chen J, Wang C. Neuroinflammation Targeting Pyroptosis: Molecular Mechanisms and Therapeutic Perspectives in Stroke. Mol Neurobiol 2024; 61:7448-7465. [PMID: 38383921 DOI: 10.1007/s12035-024-04050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Pyroptosis is a recently identified type of pro-inflammatory programmed cell death (PCD) mediated by inflammasomes and nucleotide oligomerization domain-like receptors (NLs) and dependent on members of the caspase family. Pyroptosis has been widely reported to participate in the occurrence and progression of various inflammatory diseases, including stroke, a frequently lethal disease with high prevalence and many complications. To date, there have been no effectively therapeutic strategies and methods for treating stroke. Pyroptosis is thought to be closely related to the occurrence and development of stroke. Understanding inflammatory responses induced by the activation of pyroptosis would be hopeful to provide feasible approaches and strategies. Targeting on molecules in the upstream or downstream of pyroptosis pathway has shown promise in the treatment of stroke. The present review summarizes current research on the characteristics of pyroptosis, the function and pathological phenomena of pyroptosis in stroke, the molecule mechanisms related to inflammatory pathways, and the drugs and other molecules that can affect outcomes after stroke. These findings may help identify possible targets or new strategies for the diagnosis and treatment of stroke.
Collapse
Affiliation(s)
- Xiwen Yuan
- Neurobiology Key Laboratory of Jining Medical University, Jining, 272067, China
| | - Yiwen Xia
- Neurobiology Key Laboratory of Jining Medical University, Jining, 272067, China
| | - Pei Jiang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, 272011, China
| | - Jing Chen
- Neurobiology Key Laboratory of Jining Medical University, Jining, 272067, China.
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| | - Chunmei Wang
- Neurobiology Key Laboratory of Jining Medical University, Jining, 272067, China.
| |
Collapse
|
4
|
Bagwe Parab S, Kaur G. Emoxypine succinate modulates behavioral and molecular responses in zebrafish model of iron Overload-Induced neuroinflammation via CDK5/GSK3- β and NLRP3 inflammasome pathway. Brain Res 2024; 1846:149236. [PMID: 39270994 DOI: 10.1016/j.brainres.2024.149236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/11/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Excessive iron accumulation in the brain plays a significant role in neurodegenerative processes, contributing to the pathogenesis of Alzheimer's disease (AD). AD, a prominent neurological disorder affecting the central nervous system, is characterized by the accumulation of beta-amyloid (Aβ) and tau phosphorylation. This accumulation leads to the subsequent development of cognitive impairments, particularly in learning and memory functions. This study investigates the neuroprotective effects of emoxypine succinate in a zebrafish model of iron overload-induced neurodegeneration. Iron was administered to the zebrafish for 28 days to induce neurodegeneration. Following induction, Emoxypine succinate was employed as a treatment intervention for 14 days (concentrations of 4 mg/L, 8 mg/L, and 12 mg/L). Following the end of the treatment, behavioral tests (Y maze test, Novel tank test) were conducted on the zebrafish, and the biochemical (MDA, Catalase, SOD, GSH) and molecular parameters (AchE, Iron levels, IL-1β, TNF-α, CDK-5, GSK-3β, and NLRP3) of the zebrafish brain were also assessed. In the novel tank test, emoxypine succinate-treated groups exhibited significantly increased time in the upper zone (p < 0.001), higher distance travelled (p < 0.001), and shorter latency to the top (p < 0.001) compared to the negative control. Similarly, the Y-maze test revealed improved time in the novel arm (p < 0.001) and total distance travelled (p < 0.001) in treated groups versus the negative control. Assessment of oxidative stress parameters demonstrated significant reductions in oxidative stress in emoxypine succinate-treated groups. Furthermore, AChE activity decreased significantly (p < 0.001), and brain iron levels decreased substantially (p < 0.001) in treated groups, indicating positive therapeutic outcomes. Molecular analysis showed a significant reduction in pro-inflammatory markers like IL-1β, TNF-α, CDK-5, GSK-3β, and NLRP3 (p < 0.001). This comprehensive study highlights the potential efficacy of emoxypine succinate in mitigating neurodegeneration associated with iron dysregulation.
Collapse
Affiliation(s)
- Siddhi Bagwe Parab
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai 56, India; Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai, India
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai 56, India.
| |
Collapse
|
5
|
Li J, Zhang Y, Tang R, Liu H, Li X, Lei W, Chen J, Jin Z, Tang J, Wang Z, Yang Y, Wu X. Glycogen synthase kinase-3β: A multifaceted player in ischemia-reperfusion injury and its therapeutic prospects. J Cell Physiol 2024; 239:e31335. [PMID: 38962880 DOI: 10.1002/jcp.31335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/05/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024]
Abstract
Ischemia-reperfusion injury (IRI) results in irreversible metabolic dysfunction and structural damage to tissues or organs, posing a formidable challenge in the field of organ implantation, cardiothoracic surgery, and general surgery. Glycogen synthase kinase-3β (GSK-3β) a multifunctional serine/threonine kinase, is involved in a variety of biological processes, including cell proliferation, apoptosis, and immune response. Phosphorylation of its tyrosine 216 and serine 9 sites positively and negatively regulates the activation and inactivation of the enzyme. Significantly, inhibition or inactivation of GSK-3β provides protection against IRI, making it a viable target for drug development. Though numerous GSK-3β inhibitors have been identified to date, the development of therapeutic treatments remains a considerable distance away. In light of this, this review summarizes the complicated network of GSK-3β roles in IRI. First, we provide an overview of GSK-3β's basic background. Subsequently, we briefly review the pathological mechanisms of GSK-3β in accelerating IRI, and highlight the latest progress of GSK-3β in multiorgan IRI, encompassing heart, brain, kidney, liver, and intestine. Finally, we discuss the current development of GSK-3β inhibitors in various organ IRI, offering a thorough and insightful reference for GSK-3β as a potential target for future IRI therapy.
Collapse
Affiliation(s)
- Jiayan Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yan Zhang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ran Tang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Hui Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xiayun Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Junmin Chen
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xiaopeng Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| |
Collapse
|
6
|
Muhammad RN, Albahairy MA, Abd El Fattah MA, Ibrahim WW. Empagliflozin-activated AMPK elicits neuroprotective properties in reserpine-induced depression via regulating dynamics of hippocampal autophagy/inflammation and PKCζ-mediated neurogenesis. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06663-0. [PMID: 39158617 DOI: 10.1007/s00213-024-06663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024]
Abstract
RATIONALE Major depression has been an area of extensive research during the last decades, for it represents a leading cause of disability and suicide. The stark rise of depression rates influenced by life stressors, economic threats, pandemic era, and resistance to classical treatments, has made the disorder rather challenging. Adult hippocampal neurogenesis and plasticity are particularly sensitive to the dynamic interplay between autophagy and inflammation. In fact, the intricate balance between the two processes contributes to neuronal homeostasis and survival. OBJECTIVES Having demonstrated promising potentials in AMPK activation, a major metabolic sensor and autophagy regulator, empagliflozin (Empa) was investigated for possible antidepressant properties in the reserpine rat model of depression. RESULTS While the reserpine protocol elicited behavioral, biochemical, and histopathological changes relevant to depression, Empa outstandingly hindered these pathological perturbations. Importantly, hippocampal autophagic response markedly declined with reserpine which disrupted the AMPK/mTOR/Beclin1/LC3B machinery and, conversely, neuro-inflammation prevailed under the influence of the NLRP3 inflammasome together with oxidative/nitrative stress. Consequently, AMPK-mediated neurotrophins secretion obviously deteriorated through PKCζ/NF-κB/BDNF/CREB signal restriction. Empa restored hippocampal monoamines and autophagy/inflammation balance, driven by AMPK activation. By promoting the atypical PKCζ phosphorylation (Thr403) which subsequently phosphorylates NF-κB at Ser311, AMPK successfully reinforced BDNF/CREB signal and hippocampal neuroplasticity. The latter finding was supported by hippocampal CA3 toluidine blue staining to reveal intact neurons. CONCLUSION The current study highlights an interesting role for Empa as a regulator of autophagic and inflammatory responses in the pathology of depression. The study also pinpoints an unusual contribution for NF-κB in neurotrophins secretion via AMPK/PKCζ/NF-κB/BDNF/CREB signal transduction. Accordingly, Empa can have special benefits in diabetic patients with depressive symptoms. LIMITATIONS The influence of p-NF-κB (Ser311) on NLRP3 inflammasome assembly and activation has not been investigated, which can represent an interesting point for further research.
Collapse
Affiliation(s)
- Radwa N Muhammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mohammed A Albahairy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Mai A Abd El Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
7
|
Zhou X, Wang J, Yu L, Qiao G, Qin D, Yuen-Kwan Law B, Ren F, Wu J, Wu A. Mitophagy and cGAS-STING crosstalk in neuroinflammation. Acta Pharm Sin B 2024; 14:3327-3361. [PMID: 39220869 PMCID: PMC11365416 DOI: 10.1016/j.apsb.2024.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Mitophagy, essential for mitochondrial health, selectively degrades damaged mitochondria. It is intricately linked to the cGAS-STING pathway, which is crucial for innate immunity. This pathway responds to mitochondrial DNA and is associated with cellular stress response. Our review explores the molecular details and regulatory mechanisms of mitophagy and the cGAS-STING pathway. We critically evaluate the literature demonstrating how dysfunctional mitophagy leads to neuroinflammatory conditions, primarily through the accumulation of damaged mitochondria, which activates the cGAS-STING pathway. This activation prompts the production of pro-inflammatory cytokines, exacerbating neuroinflammation. This review emphasizes the interaction between mitophagy and the cGAS-STING pathways. Effective mitophagy may suppress the cGAS-STING pathway, offering protection against neuroinflammation. Conversely, impaired mitophagy may activate the cGAS-STING pathway, leading to chronic neuroinflammation. Additionally, we explored how this interaction influences neurodegenerative disorders, suggesting a common mechanism underlying these diseases. In conclusion, there is a need for additional targeted research to unravel the complexities of mitophagy-cGAS-STING interactions and their role in neurodegeneration. This review highlights potential therapies targeting these pathways, potentially leading to new treatments for neuroinflammatory and neurodegenerative conditions. This synthesis enhances our understanding of the cellular and molecular foundations of neuroinflammation and opens new therapeutic avenues for neurodegenerative disease research.
Collapse
Affiliation(s)
- Xiaogang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Gan Qiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Fang Ren
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
8
|
Tork MAB, Fotouhi S, Roozi P, Negah SS. Targeting NLRP3 Inflammasomes: A Trojan Horse Strategy for Intervention in Neurological Disorders. Mol Neurobiol 2024:10.1007/s12035-024-04359-2. [PMID: 39042218 DOI: 10.1007/s12035-024-04359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Recently, a growing focus has been on identifying critical mechanisms in neurological diseases that trigger a cascade of events, making it easier to target them effectively. One such mechanism is the inflammasome, an essential component of the immune response system that plays a crucial role in disease progression. The NLRP3 (nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3) inflammasome is a subcellular multiprotein complex that is widely expressed in the central nervous system (CNS) and can be activated by a variety of external and internal stimuli. When activated, the NLRP3 inflammasome triggers the production of proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) and facilitates rapid cell death by assembling the inflammasome. These cytokines initiate inflammatory responses through various downstream signaling pathways, leading to damage to neurons. Therefore, the NLRP3 inflammasome is considered a significant contributor to the development of neuroinflammation. To counter the damage caused by NLRP3 inflammasome activation, researchers have investigated various interventions such as small molecules, antibodies, and cellular and gene therapy to regulate inflammasome activity. For instance, recent studies indicate that substances like micro-RNAs (e.g., miR-29c and mR-190) and drugs such as melatonin can reduce neuronal damage and suppress neuroinflammation through NLRP3. Furthermore, the transplantation of bone marrow mesenchymal stem cells resulted in a significant reduction in the levels of pyroptosis-related proteins NLRP3, caspase-1, IL-1β, and IL-18. However, it would benefit future research to have an in-depth review of the pharmacological and biological interventions targeting inflammasome activity. Therefore, our review of current evidence demonstrates that targeting NLRP3 inflammasomes could be a pivotal approach for intervention in neurological disorders.
Collapse
Affiliation(s)
- Mohammad Amin Bayat Tork
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soroush Fotouhi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Roozi
- Department of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Sahab Negah
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Pardis Campus, Azadi Square, Kalantari Blvd., Mashhad, Iran.
| |
Collapse
|
9
|
Ahmed MA, Kamel EO, Abd-Eldayem AM. Role of cAMP/pCREB and GSK-3β/NF-κB p65 signaling pathways in the renoprotective effect of mirabegron against renal ischemia-reperfusion injury in rats. Eur J Pharmacol 2024; 974:176617. [PMID: 38679120 DOI: 10.1016/j.ejphar.2024.176617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Acute kidney injury and other renal disorders are thought to be primarily caused by renal ischemia-reperfusion (RIR). Cyclic adenosine monophosphate (cAMP) has plenty of physiological pleiotropic effects and preserves tissue integrity and functions. This research aimed to examine the potential protective effects of the β3-adrenergic receptors agonist mirabegron in a rat model of RIR and its underlying mechanisms. Male rats enrolled in this work were given an oral dose of 30 mg/kg mirabegron for two days before surgical induction of RIR. Renal levels of kidney injury molecule-1 (KIM-1), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), Interleukin-10 (IL-10), cAMP, cAMP-responsive element binding protein (pCREB), and glycogen synthase kinase-3 beta (GSK-3β) were assessed along with blood urea nitrogen and serum creatinine. Additionally, caspase-3 and nuclear factor-kappa B (NF-κB) p65 were explored by immunohistochemical analysis. Renal specimens were inspected for histopathological changes. RIR led to renal tissue damage with elevated blood urea nitrogen and serum creatinine levels. The renal KIM-1, MCP-1, TNF-α, and GSK-3β were significantly increased, while IL-10, cAMP, and pCREB levels were reduced. Moreover, upregulation of caspase-3 and NF-κB p65 protein expression was seen in RIR rats. Mirabegron significantly reduced kidney dysfunction, histological abnormalities, inflammation, and apoptosis in the rat renal tissues. Mechanistically, mirabegron mediated these effects via modulation of cAMP/pCREB and GSK-3β/NF-κB p65 signaling pathways. Mirabegron administration could protect renal tissue and maintain renal function against RIR.
Collapse
Affiliation(s)
- Marwa A Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Esam O Kamel
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Ahmed M Abd-Eldayem
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt; Department of Pharmacology, Faculty of Medicine, Merit University, Sohag, Egypt.
| |
Collapse
|
10
|
Kim DW, Lee TK, Ahn JH, Yang SR, Shin MC, Cho JH, Won MH, Kang IJ, Park JH. Porphyran Attenuates Neuronal Loss in the Hippocampal CA1 Subregion Induced by Ischemia and Reperfusion in Gerbils by Inhibiting NLRP3 Inflammasome-Mediated Neuroinflammation. Mar Drugs 2024; 22:170. [PMID: 38667787 PMCID: PMC11050983 DOI: 10.3390/md22040170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Porphyran, a sulfated polysaccharide found in various species of marine red algae, has been demonstrated to exhibit diverse bioactivities, including anti-inflammatory effects. However, the protective effects of porphyran against cerebral ischemia and reperfusion (IR) injury have not been investigated. The aim of this study was to examine the neuroprotective effects of porphyran against brain IR injury and its underlying mechanisms using a gerbil model of transient forebrain ischemia (IR in the forebrain), which results in pyramidal cell (principal neuron) loss in the cornu ammonis 1 (CA1) subregion of the hippocampus on day 4 after IR. Porphyran (25 and 50 mg/kg) was orally administered daily for one week prior to IR. Pretreatment with 50 mg/kg of porphyran, but not 25 mg/kg, significantly attenuated locomotor hyperactivity and protected pyramidal cells located in the CA1 area from IR injury. The pretreatment with 50 mg/kg of porphyran significantly suppressed the IR-induced activation and proliferation of microglia in the CA1 subregion. Additionally, the pretreatment significantly inhibited the overexpressions of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing protein-3 (NLRP3) inflammasome complex, and pro-inflammatory cytokines (interleukin 1 beta and interleukin 18) induced by IR in the CA1 subregion. Overall, our findings suggest that porphyran exerts neuroprotective effects against brain IR injury, potentially by reducing the reaction (activation) and proliferation of microglia and reducing NLRP3 inflammasome-mediated neuroinflammation.
Collapse
Affiliation(s)
- Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Tae-Kyeong Lee
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea;
| | - Ji Hyeon Ahn
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan 50510, Republic of Korea;
| | - Se-Ran Yang
- Department of Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Myoung Cheol Shin
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Republic of Korea; (M.C.S.); (J.H.C.); (M.-H.W.)
| | - Jun Hwi Cho
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Republic of Korea; (M.C.S.); (J.H.C.); (M.-H.W.)
| | - Moo-Ho Won
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Republic of Korea; (M.C.S.); (J.H.C.); (M.-H.W.)
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea;
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
| |
Collapse
|
11
|
Yang K, Zeng L, He Q, Wang S, Xu H, Ge J. Advancements in research on the immune-inflammatory mechanisms mediated by NLRP3 inflammasome in ischemic stroke and the regulatory role of natural plant products. Front Pharmacol 2024; 15:1250918. [PMID: 38601463 PMCID: PMC11004298 DOI: 10.3389/fphar.2024.1250918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/11/2024] [Indexed: 04/12/2024] Open
Abstract
Ischemic stroke (IS) is a major cause of mortality and disability among adults. Recanalization of blood vessels to facilitate timely reperfusion is the primary clinical approach; however, reperfusion itself may trigger cerebral ischemia-reperfusion injury. Emerging evidence strongly implicates the NLRP3 inflammasome as a potential therapeutic target, playing a key role in cerebral ischemia and reperfusion injury. The aberrant expression and function of NLRP3 inflammasome-mediated inflammation in cerebral ischemia have garnered considerable attention as a recent research focus. Accordingly, this review provides a comprehensive summary of the signaling pathways, pathological mechanisms, and intricate interactions involving NLRP3 inflammasomes in cerebral ischemia-reperfusion injury. Moreover, notable progress has been made in investigating the impact of natural plant products (e.g., Proanthocyanidins, methylliensinine, salidroside, α-asarone, acacia, curcumin, morin, ginsenoside Rd, paeoniflorin, breviscapine, sulforaphane, etc.) on regulating cerebral ischemia and reperfusion by modulating the NLRP3 inflammasome and mitigating the release of inflammatory cytokines. These findings aim to present novel insights that could contribute to the prevention and treatment of cerebral ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Liuting Zeng
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi He
- Department of Critical Care Medicine, People’s Hospital of Ningxiang City, Ningxiang, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
12
|
McCurry CM, Sunilkumar S, Subrahmanian SM, Yerlikaya EI, Toro AL, VanCleave AM, Stevens SA, Barber AJ, Sundstrom JM, Dennis MD. NLRP3 Inflammasome Priming in the Retina of Diabetic Mice Requires REDD1-Dependent Activation of GSK3β. Invest Ophthalmol Vis Sci 2024; 65:34. [PMID: 38546584 PMCID: PMC10981446 DOI: 10.1167/iovs.65.3.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/04/2024] [Indexed: 04/01/2024] Open
Abstract
Purpose Inflammasome activation has been implicated in the development of retinal complications caused by diabetes. This study was designed to identify signaling events that promote retinal NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation in response to diabetes. Methods Diabetes was induced in mice by streptozotocin administration. Retinas were examined after 16 weeks of diabetes. Human MIO-M1 Müller cells were exposed to hyperglycemic culture conditions. Genetic and pharmacological interventions were used to interrogate signaling pathways. Visual function was assessed in mice using a virtual optomotor system. Results In the retina of diabetic mice and in Müller cell cultures, NLRP3 and interleukin-1β (IL-1β) were increased in response to hyperglycemic conditions and the stress response protein Regulated in Development and DNA damage 1 (REDD1) was required for the effect. REDD1 deletion prevented caspase-1 activation in Müller cells exposed to hyperglycemic conditions and reduced IL-1β release. REDD1 promoted nuclear factor κB signaling in cells exposed to hyperglycemic conditions, which was necessary for an increase in NLRP3. Expression of a constitutively active GSK3β variant restored NLRP3 expression in REDD1-deficient cells exposed to hyperglycemic conditions. GSK3 activity was necessary for increased NLRP3 expression in the retina of diabetic mice and in cells exposed to hyperglycemic conditions. Müller glia-specific REDD1 deletion prevented increased retinal NLRP3 levels and deficits in contrast sensitivity in diabetic mice. Conclusions The data support a role for REDD1-dependent activation of GSK3β in NLRP3 inflammasome transcriptional priming and in the production of IL-1β by Müller glia in response to diabetes.
Collapse
Affiliation(s)
- Christopher M. McCurry
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Sandeep M. Subrahmanian
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Esma I. Yerlikaya
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Allyson L. Toro
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Ashley M. VanCleave
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Shaunaci A. Stevens
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Alistair J. Barber
- Department of Ophthalmology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Jeffery M. Sundstrom
- Department of Ophthalmology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Michael D. Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, United States
- Department of Ophthalmology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| |
Collapse
|
13
|
He Q, Meng C, Jia M, Tan J, Huang K, Gan H, Li L, Zhao J. NLRP6 deficiency inhibits neuroinflammation and ameliorates brain injury in ischemic stroke by blocking NLRs inflammasomes activation through proteasomal degradation of pro-caspase-1. Neurobiol Dis 2024; 192:106434. [PMID: 38341160 DOI: 10.1016/j.nbd.2024.106434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024] Open
Abstract
Innate inflammation is crucial for ischemic stroke development. NLRP6, a nucleotide-binding and oligomerization domain-like receptors (NLRs) family member, regulates innate inflammation. Whether NLRP6 regulates neurological damage and neuroinflammation during ischemic stroke remains unclear. We report that NLRP6 is abundantly expressed in microglia and significantly upregulated in the ischemic brain. The brain injury severity was alleviated in NLRP6-deficient mice after ischemic stroke, as evidenced by reduced cerebral infarct volume, decreased neurological deficit scores, improved histopathological morphological changes, ameliorated neuronal denaturation, and relief of sensorimotor dysfunction. In the co-culture OGD/R model, NLRP6 deficiency prevented neuronal death and attenuated microglial cell injury. NLRP6 deficiency blocked several NLRs inflammasomes' activation and abrogated inflammasome-related cytokine production by decreasing the expression of the common effector pro-caspase-1. NLRP6 deficiency reduced pro-caspase-1's protein level by inducing proteasomal degradation. These findings confirm the neuroprotective role of NLRP6 deficiency in ischemic stroke and its underlying regulation mechanism in neuroinflammation and provide a potential therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Qi He
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400010, China; Center for Neuroscience Research, Chongqing Medical University, Chongqing 400010, China
| | - Changchang Meng
- Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong Province 519000, China
| | - Mengjie Jia
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400010, China; Center for Neuroscience Research, Chongqing Medical University, Chongqing 400010, China
| | - Junyi Tan
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400010, China; Center for Neuroscience Research, Chongqing Medical University, Chongqing 400010, China
| | - Keli Huang
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400010, China; Center for Neuroscience Research, Chongqing Medical University, Chongqing 400010, China
| | - Hui Gan
- Center for Neuroscience Research, Chongqing Medical University, Chongqing 400010, China
| | - Lingyu Li
- Center for Neuroscience Research, Chongqing Medical University, Chongqing 400010, China; Department of Pathology, Chongqing Medical University, Chongqing, 400010, China
| | - Jing Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400010, China; Center for Neuroscience Research, Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
14
|
Bonam SR, Mastrippolito D, Georgel P, Muller S. Pharmacological targets at the lysosomal autophagy-NLRP3 inflammasome crossroads. Trends Pharmacol Sci 2024; 45:81-101. [PMID: 38102020 DOI: 10.1016/j.tips.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Many aspects of cell homeostasis and integrity are maintained by the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome. The NLRP3 oligomeric protein complex assembles in response to exogenous and endogenous danger signals. This inflammasome has also been implicated in the pathogenesis of a range of disease conditions, particularly chronic inflammatory diseases. Given that NLRP3 modulates autophagy, which is also a key regulator of inflammasome activity, excessive inflammation may be controlled by targeting this intersecting pathway. However, specific niche areas of NLRP3-autophagy interactions and their reciprocal regulatory mechanisms remain underexplored. Consequently, we lack treatment methods specifically targeting this pivotal axis. Here, we discuss the potential of such strategies in the context of autoimmune and metabolic diseases and propose some research avenues.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Dylan Mastrippolito
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; Strasbourg Institute of Drug Discovery and Development (IMS), Strasbourg, France
| | - Philippe Georgel
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; Strasbourg Institute of Drug Discovery and Development (IMS), Strasbourg, France; Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University, Strasbourg, France
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; Strasbourg Institute of Drug Discovery and Development (IMS), Strasbourg, France; Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University, Strasbourg, France; University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.
| |
Collapse
|
15
|
Lai S, Wang P, Gong J, Zhang S. New insights into the role of GSK-3β in the brain: from neurodegenerative disease to tumorigenesis. PeerJ 2023; 11:e16635. [PMID: 38107562 PMCID: PMC10722984 DOI: 10.7717/peerj.16635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/18/2023] [Indexed: 12/19/2023] Open
Abstract
Glycogen synthase kinase 3 (GSK-3) is a serine/threonine kinase widely expressed in various tissues and organs. Unlike other kinases, GSK-3 is active under resting conditions and is inactivated upon stimulation. In mammals, GSK-3 includes GSK-3 α and GSK-3β isoforms encoded by two homologous genes, namely, GSK3A and GSK3B. GSK-3β is essential for the control of glucose metabolism, signal transduction, and tissue homeostasis. As more than 100 known proteins have been identified as GSK-3β substrates, it is sometimes referred to as a moonlighting kinase. Previous studies have elucidated the regulation modes of GSK-3β. GSK-3β is involved in almost all aspects of brain functions, such as neuronal morphology, synapse formation, neuroinflammation, and neurological disorders. Recently, several comparatively specific small molecules have facilitated the chemical manipulation of this enzyme within cellular systems, leading to the discovery of novel inhibitors for GSK-3β. Despite these advancements, the therapeutic significance of GSK-3β as a drug target is still complicated by uncertainties surrounding the potential of inhibitors to stimulate tumorigenesis. This review provides a comprehensive overview of the intricate mechanisms of this enzyme and evaluates the existing evidence regarding the therapeutic potential of GSK-3β in brain diseases, including Alzheimer's disease, Parkinson's disease, mood disorders, and glioblastoma.
Collapse
Affiliation(s)
- Shenjin Lai
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Peng Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jingru Gong
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Shuaishuai Zhang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| |
Collapse
|
16
|
Du X, Amin N, Xu L, Botchway BOA, Zhang B, Fang M. Pharmacological intervention of curcumin via the NLRP3 inflammasome in ischemic stroke. Front Pharmacol 2023; 14:1249644. [PMID: 37915409 PMCID: PMC10616488 DOI: 10.3389/fphar.2023.1249644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Ischemic-induced neuronal injury arises due to low oxygen/nutrient levels and an inflammatory response that exacerbates neuronal loss. NOD-like receptor family pyrin domain-containing 3 (NLRP3) is an important regulator of inflammation after ischemic stroke, with its inhibition being involved in nerve regeneration. Curcumin, a main active ingredient in Chinese herbs, plays a positive role in neuronal repair and neuroprotection by regulating the NLRP3 signaling pathway. Nevertheless, the signaling mechanisms relating to how curcumin regulates NLRP3 inflammasome in inflammation and neural restoration following ischemic stroke are unknown. In this report, we summarize the main biological functions of the NLRP3 inflammasome along with the neuroprotective effects and underlying mechanisms of curcumin via impairment of the NLRP3 pathway in ischemic brain injury. We also discuss the role of medicinal interventions that target the NLRP3 and potential pathways, as well as possible directions for curcumin therapy to penetrate the blood-brain barrier (BBB) and hinder inflammation in ischemic stroke. This report conclusively demonstrates that curcumin has neuroprotective properties that inhibit inflammation and prevent nerve cell loss, thereby delaying the progression of ischemic brain damage.
Collapse
Affiliation(s)
- Xiaoxue Du
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nashwa Amin
- Institute of System Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt
| | - Linhao Xu
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Benson O. A. Botchway
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, China
- Pharmacy Department, Bupa Cromwell Hospital, London, United Kingdom
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Marong Fang
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, China
| |
Collapse
|
17
|
Zheng T, Jiang T, Huang Z, Ma H, Wang M. Role of traditional Chinese medicine monomers in cerebral ischemia/reperfusion injury:a review of the mechanism. Front Pharmacol 2023; 14:1220862. [PMID: 37654609 PMCID: PMC10467294 DOI: 10.3389/fphar.2023.1220862] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is a pathological process wherein reperfusion of an ischemic organ or tissue exacerbates the injury, posing a significant health threat and economic burden to patients and their families. I/R triggers a multitude of physiological and pathological events, such as inflammatory responses, oxidative stress, neuronal cell death, and disruption of the blood-brain barrier (BBB). Hence, the development of effective therapeutic strategies targeting the pathological processes resulting from I/R is crucial for the rehabilitation and long-term enhancement of the quality of life in patients with cerebral ischemia/reperfusion injury (CIRI). Traditional Chinese medicine (TCM) monomers refer to bioactive compounds extracted from Chinese herbal medicine, possessing anti-inflammatory and antioxidative effects, and the ability to modulate programmed cell death (PCD). TCM monomers have emerged as promising candidates for the treatment of CIRI and its subsequent complications. Preclinical studies have demonstrated that TCM monomers can enhance the recovery of neurological function following CIRI by mitigating oxidative stress, suppressing inflammatory responses, reducing neuronal cell death and functional impairment, as well as minimizing cerebral infarction volume. The neuroprotective effects of TCM monomers on CIRI have been extensively investigated, and a comprehensive understanding of their mechanisms can pave the way for novel approaches to I/R treatment. This review aims to update and summarize evidence of the protective effects of TCMs in CIRI, with a focus on their role in modulating oxidative stress, inflammation, PCD, glutamate excitotoxicity, Ca2+ overload, as well as promoting blood-brain barrier repairment and angiogenesis. The main objective is to underscore the significant contribution of TCM monomers in alleviating CIRI.
Collapse
Affiliation(s)
| | | | | | | | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
18
|
Lu W, Ji H, Wu D. SIRT2 plays complex roles in neuroinflammation neuroimmunology-associated disorders. Front Immunol 2023; 14:1174180. [PMID: 37215138 PMCID: PMC10196137 DOI: 10.3389/fimmu.2023.1174180] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Neuroinflammation and neuroimmunology-associated disorders, including ischemic stroke and neurodegenerative disease, commonly cause severe neurologic function deficits, including bradypragia, hemiplegia, aphasia, and cognitive impairment, and the pathological mechanism is not completely clear. SIRT2, an NAD+-dependent deacetylase predominantly localized in the cytoplasm, was proven to play an important and paradoxical role in regulating ischemic stroke and neurodegenerative disease. This review summarizes the comprehensive mechanism of the crucial pathological functions of SIRT2 in apoptosis, necroptosis, autophagy, neuroinflammation, and immune response. Elaborating on the mechanism by which SIRT2 participates in neuroinflammation and neuroimmunology-associated disorders is beneficial to discover novel effective drugs for diseases, varying from vascular disorders to neurodegenerative diseases.
Collapse
|
19
|
Samim Khan S, Janrao S, Srivastava S, Bala Singh S, Vora L, Kumar Khatri D. GSK-3β: An exuberating neuroinflammatory mediator in Parkinson's disease. Biochem Pharmacol 2023; 210:115496. [PMID: 36907495 DOI: 10.1016/j.bcp.2023.115496] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Neuroinflammation is a critical degradative condition affecting neurons in the brain. Progressive neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease (PD) have been strongly linked to neuroinflammation. The trigger point for inflammatory conditions in the cells and body is the physiological immune system. The immune response mediated by glial cells and astrocytes can rectify the physiological alterations occurring in the cell for the time being but prolonged activation leads to pathological progression. The proteins mediating such an inflammatory response, as per the available literature, are undoubtedly GSK-3β, NLRP3, TNF, PPARγ, and NF-κB, along with a few other mediatory proteins. NLRP3 inflammasome is undeniably a principal instigator of the neuroinflammatory response, but the regulatory pathways controlling its activation are still unclear, besides less clarity for the interplay between different inflammatory proteins. Recent reports have suggested the involvement of GSK-3β in regulating NLRP3 activation, but the exact mechanistic pathway remains vague. In the current review, we attempt to provide an elaborate description of crosstalk between inflammatory markers and GSK-3β mediated neuroinflammation progression, linking it to regulatory transcription factors and posttranslational modification of proteins. The recent clinical therapeutic advances targeting these proteins are also discussed in parallel to provide a comprehensive view of the progress made in PD management and lacunas still existing in the field.
Collapse
Affiliation(s)
- Sabiya Samim Khan
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India
| | - Sushmita Janrao
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India.
| | - Shashi Bala Singh
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India.
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK.
| | - Dharmendra Kumar Khatri
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India.
| |
Collapse
|
20
|
Zhang Y, Zhang Q, Bai Y, Zheng H, Ji L, Zhu X, Sun W, Liu X, Zhang S, Li Y, Lu B. Glycogen synthesis kinase-3β involves in the analgesic effect of liraglutide on diabetic neuropathic pain. J Diabetes Complications 2023; 37:108416. [PMID: 36773433 DOI: 10.1016/j.jdiacomp.2023.108416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/11/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
AIMS Explore whether Glycogen synthesis kinase-3β (GSK3β) involved in the analgesic effect of liraglutide on diabetic neuropathic pain (DNP). METHODS DNP was induced by streptozocin (STZ) in WT and GSK3β(S9A) mice, which carried a constitutively active form of GSK3β. DNP mice were intracerebroventricularly injected with liraglutide 5 weeks after STZ injection. The behavior of neuropathic pain was evaluated 2 h after drugs administration. The microglial activation and the expression of NOD-like receptor protein 3 (NLRP3) in microglia in cortex were evaluated. The role of GSK3β in the inhibitory effect of liraglutide on the NLRP3 inflammasome was explored in BV2 microglia. RESULTS Intracerebroventricular administration of liraglutide significantly relieved neuropathic pain and inhibited the activation of cortical microglia in WT mice with DNP. But the effect of liraglutide disappeared in GSK3β(S9A) mice. In BV2 microglia, GSK3β inhibitor significantly suppressed NLRP3 inflammasome activation. And activating GSK3β through GSK3β(S9A) lentivirus significantly blocked the inhibitory effect of liraglutide on NLRP3 inflammasome in BV2 microglia. Intracerebroventricular administration of liraglutide significantly inhibited the expression of NLRP3 in cortex microglia of DNP group in WT mice but failed in GSK3β(S9A) mice. CONCLUSION GSK3β involves in the analgesic effect of liraglutide on DNP through NLRP3 inflammasome in microglia.
Collapse
Affiliation(s)
- Yuanpin Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qi Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuetian Bai
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hangping Zheng
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lijin Ji
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoming Zhu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wanwan Sun
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoxia Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shuo Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yiming Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bin Lu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
21
|
Meng C, Chen S, He Q, Tan J, Wu J, Zhao J. IKZF3 modulates cerebral ischemia/reperfusion injury by inhibiting neuroinflammation. Int Immunopharmacol 2023; 114:109480. [PMID: 36525791 DOI: 10.1016/j.intimp.2022.109480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Neuroinflammation is a key mediator to the pathogenic cascades induced by cerebral ischemia-reperfusion (I/R) injury. IKZF3, a key zinc finger transcription factor in the Ikaros family, has already been shown to modulate a wide range of cell functions and the production of inflammatory mediators. However, the effects of IKZF3 on inflammation and the potential mechanism after cerebral I/R injury remain unclear. In this study, we evaluated the effect of IKZF3 on HT-22 cells under oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro and in mice with MACO in vivo. We found that IKZF3 expression peaked at 12 h after MCAO and OGD/R, and there was high expression of IKZF3 in brain tissues and HT-22 cells. IKZF3 knockdown exacerbated the damage by OGD-induced HT-22 cells injury and MCAO-induced brain injury in mice by regulating the production of inflammatory factors, which promoted the phosphorylation and nuclear transfer of NF-ĸB and may bind with NF-ĸB-p65 in vivo and in vitro. Our results suggested that IKZF3 may provide a new target in improve neurological recovery and reducing neuroinflammation after cerebral I/R injury.
Collapse
Affiliation(s)
- Changchang Meng
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, China
| | - Shiyu Chen
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China
| | - Qi He
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, China
| | - Junyi Tan
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, China
| | - Jingxian Wu
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| | - Jing Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
22
|
Xiao L, Wang M, Shi Y, Xu Y, Gao Y, Zhang W, Wu Y, Deng H, Pan W, Wang W, Sun H. Secondary White Matter Injury Mediated by Neuroinflammation after Intracerebral Hemorrhage and Promising Therapeutic Strategies of Targeting the NLRP3 Inflammasome. Curr Neuropharmacol 2023; 21:669-686. [PMID: 36043798 PMCID: PMC10207923 DOI: 10.2174/1570159x20666220830115018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a neurological disease with high mortality and disability. Recent studies showed that white matter injury (WMI) plays an important role in motor dysfunction after ICH. WMI includes WMI proximal to the lesion and WMI distal to the lesion, such as corticospinal tract injury located at the cervical enlargement of the spinal cord after ICH. Previous studies have tended to focus only on gray matter (GM) injury after ICH, and fewer studies have paid attention to WMI, which may be one of the reasons for the poor outcome of previous drug treatments. Microglia and astrocyte-mediated neuroinflammation are significant mechanisms responsible for secondary WMI following ICH. The NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome activation, has been shown to exacerbate neuroinflammation and brain injury after ICH. Moreover, NLRP3 inflammasome is activated in microglia and astrocytes and exerts a vital role in microglia and astrocytes-mediated neuroinflammation. We speculate that NLRP3 inflammasome activation is closely related to the polarization of microglia and astrocytes and that NLRP3 inflammasome activation may exacerbate WMI by polarizing microglia and astrocytes to the pro-inflammatory phenotype after ICH, while NLRP3 inflammasome inhibition may attenuate WMI by polarizing microglia and astrocytes to the anti-inflammatory phenotype following ICH. Therefore, NLRP3 inflammasome may act as leveraged regulatory fulcrums for microglia and astrocytes polarization to modulate WMI and WM repair after ICH. This review summarized the possible mechanisms by which neuroinflammation mediated by NLRP3 inflammasome exacerbates secondary WMI after ICH and discussed the potential therapeutic targets.
Collapse
Affiliation(s)
- Linglong Xiao
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Mengqi Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Yifeng Shi
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Yangyang Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Yuan Gao
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Wei Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Yang Wu
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Hao Deng
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Wei Pan
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Wei Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Haitao Sun
- Department of Laboratory Medicine, Clinical Biobank Center, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
23
|
Moruno-Manchon J, Noh B, McCullough L. Sex-biased autophagy as a potential mechanism mediating sex differences in ischemic stroke outcome. Neural Regen Res 2023; 18:31-37. [PMID: 35799505 PMCID: PMC9241419 DOI: 10.4103/1673-5374.340406] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Stroke is the second leading cause of death and a major cause of disability worldwide, and biological sex is an important determining factor in stroke incidence and pathology. From childhood through adulthood, men have a higher incidence of stroke compared with women. Abundant research has confirmed the beneficial effects of estrogen in experimental ischemic stroke but genetic factors such as the X-chromosome complement can also play an important role in determining sex differences in stroke. Autophagy is a self-degrading cellular process orchestrated by multiple core proteins, which leads to the engulfment of cytoplasmic material and degradation of cargo after autophagy vesicles fuse with lysosomes or endosomes. The levels and the activity of components of these signaling pathways and of autophagy-related proteins can be altered during ischemic insults. Ischemic stroke activates autophagy, however, whether inhibiting autophagy after stroke is beneficial in the brain is still under a debate. Autophagy is a potential mechanism that may contribute to differences in stroke progression between the sexes. Furthermore, the effects of manipulating autophagy may also differ between the sexes. Mechanisms that regulate autophagy in a sex-dependent manner in ischemic stroke remain unexplored. In this review, we summarize clinical and pre-clinical evidence for sex differences in stroke. We briefly introduce the autophagy process and summarize the effects of gonadal hormones in autophagy in the brain and discuss X-linked genes that could potentially regulate brain autophagy. Finally, we review pre-clinical studies that address the mechanisms that could mediate sex differences in brain autophagy after stroke.
Collapse
|
24
|
Xiao L. A Review: Meridianins and Meridianins Derivatives. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248714. [PMID: 36557848 PMCID: PMC9781522 DOI: 10.3390/molecules27248714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Meridianins are a family of indole alkaloids derived from Antarctic tunicates with extensive pharmacological activities. A series of meridianin derivatives had been synthesized by drug researchers. This article reviews the extraction and purification methods, biological activities and pharmacological applications, pharmacokinetic characters and chemical synthesis of meridianins and their derivatives. And prospects on discovering new bioactivities of meridianins and optimizing their structure for the improvement of the ADMET properties are provided.
Collapse
Affiliation(s)
- Linxia Xiao
- School of Pharmacology, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| |
Collapse
|
25
|
Yin J, Gong G, Wan W, Liu X. Pyroptosis in spinal cord injury. Front Cell Neurosci 2022; 16:949939. [PMID: 36467606 PMCID: PMC9715394 DOI: 10.3389/fncel.2022.949939] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/03/2022] [Indexed: 10/21/2023] Open
Abstract
Spinal cord injury (SCI) often brings devastating consequences to patients and their families. Pathophysiologically, the primary insult causes irreversible damage to neurons and glial cells and initiates the secondary damage cascade, further leading to inflammation, ischemia, and cells death. In SCI, the release of various inflammatory mediators aggravates nerve injury. Pyroptosis is a new pro-inflammatory pattern of regulated cell death (RCD), mainly mediated by caspase-1 or caspase-11/4/5. Gasdermins family are pore-forming proteins known as the executor of pyroptosis and the gasdermin D (GSDMD) is best characterized. Pyroptosis occurs in multiple central nervous system (CNS) cell types, especially plays a vital role in the development of SCI. We review here the evidence for pyroptosis in SCI, and focus on the pyroptosis of different cells and the crosstalk between them. In addition, we discuss the interaction between pyroptosis and other forms of RCD in SCI. We also summarize the therapeutic strategies for pyroptosis inhibition, so as to provide novel ideas for improving outcomes following SCI.
Collapse
Affiliation(s)
- Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, China
- Department of Orthopedics, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenhui Wan
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinhui Liu
- Department of Orthopedics, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Wang Q, Ju F, Li J, Liu T, Zuo Y, Abbott GW, Hu Z. Empagliflozin protects against renal ischemia/reperfusion injury in mice. Sci Rep 2022; 12:19323. [PMID: 36369319 PMCID: PMC9652474 DOI: 10.1038/s41598-022-24103-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
Renal ischemia/reperfusion (I/R) can induce acute kidney injury. Empagliflozin is a newly developed inhibitor of sodium-glucose cotransporter-2 (SGLT2) approved as an antidiabetic medication for patients with type 2 diabetes mellitus. Despite the established cardioprotective functions of empagliflozin, its protective role in renal I/R is unclear. Here, the present study evaluated the renoprotective effects of empagliflozin in a mouse model of renal I/R injury. Male C57/BL6 mice were allocated to sham-operated, I/R, and empagliflozin groups. Kidney pedicles on both sides were clamped for 45 min and were reperfused for 24 h. Empagliflozin (1 mg/kg) was administered to the mice for 2 days preischemia. The GSK-3β inhibitor SB216763 was administered intravenously at the beginning of reperfusion (0.1 mg/kg). Renal function and histological scores were evaluated. The kidneys were taken for immunohistochemical analysis, western blotting and apoptosis measurements. We found that empagliflozin decreased serum levels of creatinine and urea, reduced the average kidney weight-to-tibia length ratio, attenuated tubular damage, reduced renal proinflammatory cytokine expression and inhibited apoptosis in injured kidneys. Furthermore, empagliflozin increased renal glycogen synthase kinase 3β (GSK-3β) phosphorylation post I/R. Pharmacological inhibition of GSK-3β activity mimicked the renal protective effects offered by empagliflozin. In summary, these results support a protective role of empagliflozin against renal I/R injury.
Collapse
Affiliation(s)
- Qifeng Wang
- grid.13291.380000 0001 0807 1581Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Feng Ju
- grid.13291.380000 0001 0807 1581Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Jiaxue Li
- grid.13291.380000 0001 0807 1581Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Ting Liu
- grid.13291.380000 0001 0807 1581Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yunxia Zuo
- grid.13291.380000 0001 0807 1581Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Geoffrey W. Abbott
- grid.266093.80000 0001 0668 7243Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA USA
| | - Zhaoyang Hu
- grid.13291.380000 0001 0807 1581Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| |
Collapse
|
27
|
Ghafouri-Fard S, Shoorei H, Poornajaf Y, Hussen BM, Hajiesmaeili Y, Abak A, Taheri M, Eghbali A. NLRP3: Role in ischemia/reperfusion injuries. Front Immunol 2022; 13:926895. [PMID: 36238294 PMCID: PMC9552576 DOI: 10.3389/fimmu.2022.926895] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/01/2022] [Indexed: 12/05/2022] Open
Abstract
NLR family pyrin domain containing 3 (NLRP3) is expressed in immune cells, especially in dendritic cells and macrophages and acts as a constituent of the inflammasome. This protein acts as a pattern recognition receptor identifying pathogen-associated molecular patterns. In addition to recognition of pathogen-associated molecular patterns, it recognizes damage-associated molecular patterns. Triggering of NLRP3 inflammasome by molecules ATP released from injured cells results in the activation of the inflammatory cytokines IL-1β and IL-18. Abnormal activation of NLRP3 inflammasome has been demonstrated to stimulate inflammatory or metabolic diseases. Thus, NLRP3 is regarded as a proper target for decreasing activity of NLRP3 inflammasome. Recent studies have also shown abnormal activity of NLRP3 in ischemia/reperfusion (I/R) injuries. In the current review, we have focused on the role of this protein in I/R injuries in the gastrointestinal, neurovascular and cardiovascular systems.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Yadollah Poornajaf
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | | | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri, ; Ahmad Eghbali,
| | - Ahmad Eghbali
- Anesthesiology Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Ahmad Eghbali,
| |
Collapse
|
28
|
Sun M, Wang R, Xia R, Xia Z, Wu Z, Wang T. Amelioration of myocardial ischemia/reperfusion injury in diabetes: A narrative review of the mechanisms and clinical applications of dexmedetomidine. Front Pharmacol 2022; 13:949754. [PMID: 36120296 PMCID: PMC9470922 DOI: 10.3389/fphar.2022.949754] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanisms contributing to the pathogenesis of myocardial ischemia-reperfusion (I/R) injury are complex and multifactorial. Many strategies have been developed to ameliorate myocardial I/R injuries based on these mechanisms. However, the cardioprotective effects of these strategies appear to diminish in diabetic states. Diabetes weakens myocardial responses to therapies by disrupting intracellular signaling pathways which may be responsible for enhancing cellular resistance to damage. Intriguingly, it was found that Dexmedetomidine (DEX), a potent and selective α2-adrenergic agonist, appears to have the property to reverse diabetes-related inhibition of most intervention-mediated myocardial protection and exert a protective effect. Several mechanisms were revealed to be involved in DEX’s protection in diabetic rodent myocardial I/R models, including PI3K/Akt and associated GSK-3β pathway stimulation, endoplasmic reticulum stress (ERS) alleviation, and apoptosis inhibition. In addition, DEX could attenuate diabetic myocardial I/R injury by up-regulating autophagy, reducing ROS production, and inhibiting the inflammatory response through HMGB1 pathways. The regulation of autonomic nervous function also appeared to be involved in the protective mechanisms of DEX. In the present review, the evidence and underlying mechanisms of DEX in ameliorating myocardial I/R injury in diabetes are summarized, and the potential of DEX for the treatment/prevention of myocardial I/R injury in diabetic patients is discussed.
Collapse
Affiliation(s)
- Meng Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengyuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhilin Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhilin Wu, ; Tingting Wang,
| | - Tingting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhilin Wu, ; Tingting Wang,
| |
Collapse
|
29
|
Wang L, Wang F, Wang Y, Liu Y, Liu D. GSK-3 β RNAi Lentivirus Affects Neuronal Damage and Nuclear Factor E2-Related Factor 2 (Nrf2) Expression in Cerebral Infarction Rats. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We investigated the effect of GSK-3β RNAi lentivirus on neuronal damage and Nrf2 level in rats with cerebral infarction. 40 rats were assigned into sham group, CI group, Vector group and GSK-3β RNAi group followed by analysis of cell damage and oxidative stress,
neurological scores, cerebral infarction volume, and brain water content as well as brain morphology by H&E staining and Nrf2 protein level by Western blot. Compared with sham group, GSK-3β mRNA in neurons of CI group and Vector group was significantly elevated (P <
0.05) with reduced level in GSK-3β RNAi group (P < 0.05); 3 hours after surgery, there was no change in neuroethology scores of rats in CI group, Vector group and GSK-3β RNAi group (P > 0.05). While 1 and 3 days later, the scores of rats were significantly
improved (P < 0.05) and brain water content was reduced in GSK-3β RNAi group (P < 0.05) without difference between CI group and Vector group (P > 0.05). Compared with sham group, infarct size in CI group and Vector group was increased (P <
0.05) and reduced in GSK-3β RNAi group (P < 0.05) without difference between CI group and Vector group (P > 0.05). Meanwhile, CI group and Vector group showed significantly downregulated Nrf2, Srx1 and Trx1 proteins (P < 0.05), which were increased
in GSK-3β RNAi group (P < 0.05). In conclusion, GSK-3β RNAi lentivirus can promote the expression of Nrf2 and exert an inhibitory effect on neurons of rats with cerebral infarction, therefore protecting brain tissue.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurology, The First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, 161000, China
| | - Feng Wang
- Department of Neurology, The First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, 161000, China
| | - Yue Wang
- Department of Neurology, The First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, 161000, China
| | - Yuxiang Liu
- Department of Neurology, The First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, 161000, China
| | - Deshui Liu
- Qiqihar Medical University, Research Institute of Medicine & Pharmacy, Qiqihar, Heilongjiang, 161000, China
| |
Collapse
|
30
|
Suresh P, Jasmin S, Yen Y, Hsu HJ, Varinthra P, Pairojana T, Chen CC, Liu IY. Attenuation of HECT-E3 ligase expression rescued memory deficits in 3xTg-AD mice. Front Aging Neurosci 2022; 14:916904. [PMID: 35966798 PMCID: PMC9372289 DOI: 10.3389/fnagi.2022.916904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/11/2022] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common progressive neurodegenerative disorders that cause deterioration of cognitive functions. Recent studies suggested that the accumulation of inflammatory molecules and impaired protein degradation mechanisms might both play a critical role in the progression of AD. Autophagy is a major protein degradation pathway that can be controlled by several HECT-E3 ligases, which then regulates the expression of inflammatory molecules. E3 ubiquitin ligases are known to be upregulated in several neurodegenerative diseases. Here, we studied the expressional change of HECT-E3 ligase using M01 on autophagy and inflammasome pathways in the context of AD pathogenesis. Our results demonstrated that the M01 treatment reversed the working memory deficits in 3xTg-AD mice when examined with the T-maze and reversal learning with the Morris water maze. Additionally, the electrophysiology recordings indicated that M01 treatment enhanced the long-term potentiation in the hippocampus of 3xTg-AD mice. Together with the improved memory performance, the expression levels of the NLRP3 inflammasome protein were decreased. On the other hand, autophagy-related molecules were increased in the hippocampus of 3xTg-AD mice. Furthermore, the protein docking analysis indicated that the binding affinity of M01 to the WWP1 and NEDD4 E3 ligases was the highest among the HECT family members. The western blot analysis also confirmed the decreased expression level of NEDD4 protein in the M01-treated 3xTg-AD mice. Overall, our results demonstrate that the modulation of HECT-E3 ligase expression level can be used as a strategy to treat early memory deficits in AD by decreasing NLRP3 inflammasome molecules and increasing the autophagy pathway.
Collapse
Affiliation(s)
- Pavithra Suresh
- Institute of Medical Sciences, Tzu Chi University, Hualien City, Taiwan
| | - Sureka Jasmin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien City, Taiwan
| | - Yun Yen
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei City, Taiwan
- Cancer Center, Taipei Municipal WanFang Hospital, Taipei City, Taiwan
- Center for Cancer Translational Research, Tzu Chi University, Hualien City, Taiwan
| | - Hao-Jen Hsu
- Department of Life Sciences, Tzu Chi University, Hualien City, Taiwan
| | | | - Tanita Pairojana
- Institute of Medical Sciences, Tzu Chi University, Hualien City, Taiwan
| | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Ingrid Y. Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien City, Taiwan
- *Correspondence: Ingrid Y. Liu
| |
Collapse
|
31
|
Yingze Y, Zhihong J, Tong J, Yina L, Zhi Z, Xu Z, Xiaoxing X, Lijuan G. NOX2-mediated reactive oxygen species are double-edged swords in focal cerebral ischemia in mice. J Neuroinflammation 2022; 19:184. [PMID: 35836200 PMCID: PMC9281066 DOI: 10.1186/s12974-022-02551-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) often promote acute brain injury after stroke, but their roles in the recovery phase have not been well studied. We tested the hypothesis that ROS activity mediated by NADPH oxidase 2 (NOX2) contributes to acute brain injury but promotes functional recovery during the delayed phase, which is linked with neuroinflammation, autophagy, angiogenesis, and the PI3K/Akt signaling pathway. METHODS We used the NOX2 inhibitor apocynin to study the role of NOX2 in brain injury and functional recovery in a middle cerebral artery occlusion (MCAO) stroke mouse model. Infarct size, neurological deficits and behavior were evaluated on days 3, 7, 10 and 14 after reperfusion. In addition, dynamic NOX2-induced ROS levels were measured by dihydroethidium (DHE) staining. Autophagy, inflammasomes, and angiogenesis were measured by immunofluorescence staining and western blotting. RNA sequencing was performed, and bioinformatics technology was used to analyze differentially expressed genes (DEGs), as well as the enrichment of biological functions and signaling pathways in ischemia penumbra at 7 days after reperfusion. Then, Akt pathway-related proteins were further evaluated by western blotting. RESULTS Our results showed that apocynin injection attenuated infarct size and mortality 3 days after stroke but promoted mortality and blocked functional recovery from 5 to 14 days after stroke. DHE staining showed that ROS levels were increased at 3 days after reperfusion and then gradually declined in WT mice, and these levels were significantly reduced by the NOX2 inhibitor apocynin. RNA-Seq analysis indicated that apocynin activated the immune response under hypoxic conditions. The immunofluorescence and western blot results demonstrated that apocynin inhibited the NLRP3 inflammasome and promoted angiogenesis at 3 days but promoted the NLRP3 inflammasome and inhibited angiogenesis at 7 and 14 days after stroke, which was mediated by regulating autophagy activation. Furthermore, RNA-Seq and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that apocynin injection resulted in PI3K-Akt signaling pathway enrichment after 7 days of MCAO. We then used an animal model to show that apocynin decreased the protein levels of phosphorylated PI3K and Akt and NF-κB p65, confirming that the PI3K-Akt-NF-κB pathway is involved in apocynin-mediated activation of inflammation and inhibition of angiogenesis. CONCLUSIONS NOX2-induced ROS production is a double-edged sword that exacerbates brain injury in the acute phase but promotes functional recovery. This effect appears to be achieved by inhibiting NLRP3 inflammasome activation and promoting angiogenesis via autophagy activation.
Collapse
Affiliation(s)
- Ye Yingze
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jian Zhihong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jin Tong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Yina
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zeng Zhi
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhang Xu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiong Xiaoxing
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China. .,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Gu Lijuan
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
32
|
Chu X, Zhang L, Zhou Y, Fang Q. Cucurbitacin B alleviates cerebral ischemia/reperfusion injury by inhibiting NLRP3 inflammasome-mediated inflammation and reducing oxidative stress. Biosci Biotechnol Biochem 2022; 86:zbac065. [PMID: 35689827 DOI: 10.1093/bbb/zbac065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022]
Abstract
Cucurbitacin B (CuB) has been demonstrated to possess anti-inflammatory and antioxidative properties. However, the effect of CuB on cerebral ischemia/reperfusion (I/R) injury was unclear. In this work, we found that CuB significantly elevated cell viability, decreased lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) production, and proinflammatory factor levels in oxygen-glucose deprivation/reoxygenation-exposed PC12 cells, reduced cerebral infarction volume and neuronal apoptosis, inhibited oxidative stress and inflammation, and improved neurological function in mice with middle cerebral artery occlusion-induced cerebral I/R injury. Meanwhile, CuB decreased levels of NLRP3, cleaved caspase-1, and cleaved interleukin-1β, which were upregulated by I/R injury. Moreover, upregulation of NLRP3 dramatically reversed the effects of CuB on NLRP3 inflammasome activation, cell viability, and levels of proinflammatory factors in vitro. In conclusion, this study demonstrated that CuB attenuated cerebral I/R injury by inhibiting NLRP3 inflammasome-mediated inflammation and reducing oxidative stress.
Collapse
Affiliation(s)
- Xiuli Chu
- Department of Neurology, First Affiliated Hospital, Soochow University, 899 Pinghai street, Suzhou, China
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lin Zhang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yajun Zhou
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qi Fang
- Department of Neurology, First Affiliated Hospital, Soochow University, 899 Pinghai street, Suzhou, China
| |
Collapse
|
33
|
Neuroprotective Effect of E3 Ubiquitin Ligase RNF8 Against Ischemic Stroke via HDAC2 Stability Reduction and Reelin-Dependent GSK3β Inhibition. Mol Neurobiol 2022; 59:4776-4790. [PMID: 35622272 PMCID: PMC9135995 DOI: 10.1007/s12035-022-02880-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 05/12/2022] [Indexed: 11/09/2022]
Abstract
Loss of E3 ubiquitin ligase RING finger protein 8 (RNF8) may lead to neuronal DNA damage and apoptosis. In order to expand on our knowledge on the mechanistic basis underlying neuronal death in ischemic stroke, the present study sought to investigate the potential role of E3 ubiquitin ligase RNF8 on ischemic stroke and explore the underlying downstream mechanism. Middle cerebral artery occlusion (MCAO) in mice and oxygen–glucose deprivation/reoxygenation (OGD/R) in neurons were induced to simulate an ischemic stroke environment. It was found that downregulation of RNF8 and Reelin occurred in MCAO mice and OGD/R-exposed neurons. Silencing of RNF8 enhanced the MCAO-induced neuronal apoptosis and oxidative stress. Mechanistically, RNF8 enhanced the ubiquitination and degradation of HDAC2, thus attenuating OGD/R-induced neuronal apoptosis and oxidative stress. Moreover, HDAC2 inhibited Reelin expression through deacetylation of H3K27me3 in its promoter, causing reduced glycogen synthase kinase-3beta (GSK3β)-Ser9 phosphorylation and the resultant elevated GSK3β activity. By this mechanism, RNF8 alleviated ischemic stroke. Coherently, this study suggests that RNF8 plays a neuroprotective effect against ischemic stroke by downregulating HDAC2 expression and inducing Reelin-induced GSK3β inhibition.
Collapse
|
34
|
Ma Z, Liu CF, Zhang L, Xiang N, Zhang Y, Chu L. The Construction and Analysis of Immune Infiltration and Competing Endogenous RNA Network in Acute Ischemic Stroke. Front Aging Neurosci 2022; 14:806200. [PMID: 35656537 PMCID: PMC9152092 DOI: 10.3389/fnagi.2022.806200] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Acute ischemic stroke (AIS) is a common neurological disease that seriously endangers both the physical and mental health of human. After AIS, activated immune cells are recruited to the stroke site, where inflammatory mediators are released locally, and severe immune inflammatory reactions occur within a short time, which affects the progress and prognosis of IS. Circular RNA (circRNA) is a type of non-coding RNA (ncRNA) with a closed-loop structure and high stability. Studies have found that circRNA can affect the course of IS. However, there is no report on ceRNA’s pathogenesis in AIS that is mediated by circRNA. In this study, the CIBERSORT algorithm was used to analyze the distribution of immune cells in patients with AIS. mRNA dataset was downloaded from the GEO database, and the weighted gene co-expression network analysis (WGCNA) method was used to construct weighted gene co-expression to determine 668 target genes, using GO, KEGG enrichment analysis, construction of protein-protein interaction (PPI) network analysis, and molecular complex detection (MCODE) plug-in analysis. The results showed that the biological function of the target gene was in line with the activation and immune regulation of neutrophils; signal pathways were mostly enriched in immune inflammation-related pathways. A Venn diagram was used to obtain 52 intersection genes between target genes and disease genes. By analyzing the correlation between the intersection genes and immune cells, we found that the top 5 hub genes were TOM1, STAT3, RAB3D, MDM2, and FOS, which were all significantly positively correlated with neutrophils and significantly negatively correlated with eosinophils. A total of 52 intersection genes and the related circRNA and miRNA were used as input for Cytoscape software to construct a circRNA-mediated ceRNA competition endogenous network, where a total of 18 circRNAs were found. Further analysis of the correlation between circRNA and immune cells found that 4 circRNAs are positively correlated with neutrophils. Therefore, we speculate that there may be a regulatory relationship between circRNA-mediated ceRNA and the immune mechanism in AIS. This study has important guiding significance for the progress, outcome of AIS, and the development of new medicine.
Collapse
Affiliation(s)
- ZhaoLei Ma
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Neurology, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
- Department of Geriatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chun-Feng Liu
- Department of Neurology, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Li Zhang
- Department of Geriatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ning Xiang
- Department of Geriatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yifan Zhang
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lan Chu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Neurology, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
- *Correspondence: Lan Chu,
| |
Collapse
|
35
|
Zheng F, Wu X, Zhang J, Fu Z. Sevoflurane suppresses NLRP3 inflammasome-mediated pyroptotic cell death to attenuate lipopolysaccharide-induced acute lung injury through inducing GSK-3β phosphorylation and activation. Int Immunopharmacol 2022; 109:108800. [PMID: 35550264 DOI: 10.1016/j.intimp.2022.108800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022]
Abstract
Pyroptosis is a type of programmed cell death, and pyroptosis-associated inflammatory response is closely associated with the pathogenesis of acute lung injury (ALI). Sevoflurane, a common clinical anesthetic, has been reported as therapeutic drug for ALI. However, the detailed mechanisms by which sevoflurane ameliorates ALI have not been fully delineated. In this study, we found that sevoflurane phosphorylated and activated the GSK-3β to suppress LPS-induced pyroptotic cell death, inflammation and ALI. Specifically, in the LPS-induced ALI mice models, sevoflurane attenuated lung damages and fibrosis, and restrained the production of the pro-inflammatory cytokines. Also, LPS increased the expression levels of pyroptosis-related proteins to promote pyroptotic cell death in ALI mice lung tissues, and LPS-induced pyroptotic cell death was reduced by sevoflurane co-treatment. Moreover, the potential underlying mechanisms were uncovered, and we illustrated that sevoflurane promoted GSK-3β activation in LPS-treated ALI mice lung tissues, and re-activation of GSK-3β by the PI3K/Akt pathway inhibitor LY294002 suppressed LPS-induced pyroptotic cell death in vivo. Consistently, in the in vitro macrophages, our data hinted that LPS-induced pyroptotic cell death were also reversed by sevoflurane. Collectively, the above results suggest that sevoflurane re-activated GSK-3β to suppress LPS-induced pyroptotic cell death, inflammation and ALI.
Collapse
Affiliation(s)
- Fushuang Zheng
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang 110004, Liaoning Province, China.
| | - Xiuying Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang 110004, Liaoning Province, China.
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang 110004, Liaoning Province, China.
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
36
|
Liu C, Sun S, Xie J, Li H, Li T, Wu Q, Zhang Y, Bai X, Wang J, Wang X, Li Z, Wang W. GLP-1R Agonist Exendin-4 Protects Against Hemorrhagic Transformation Induced by rtPA After Ischemic Stroke via the Wnt/β-Catenin Signaling Pathway. Mol Neurobiol 2022; 59:3649-3664. [PMID: 35359227 PMCID: PMC9148281 DOI: 10.1007/s12035-022-02811-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/22/2022] [Indexed: 11/21/2022]
Abstract
Tissue plasminogen activator (tPA) is recommended by the FDA to dissolve intravascular clots after acute ischemic stroke (AIS). However, it may contribute to hemorrhagic transformation (HT). The Wnt/β-catenin signaling pathway plays an important role in regulating the blood–brain barrier (BBB) formation in the central nervous system. We explored whether glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 (EX-4) reduces the risk of HT after rtPA treatment via the Wnt/β-catenin pathway by using a rat transient middle cerebral artery occlusion (MCAO) model in vivo and an oxygen–glucose deprivation plus reoxygenation (OGD/R) model in vitro. Our results showed that EX-4 attenuated neurological deficits, brain edema, infarct volume, BBB disruption, and rtPA-induced HT in ischemic stroke. EX-4 suppressed the production of ROS and the activation of MMP-9 to protect the integrity of the BBB by activating the Wnt/β-catenin signaling pathway. PRI-724, a selective inhibitor of β-catenin, was able to reverse the therapeutic effect of EX-4 in vivo and in vitro. Therefore, our results indicate that the GLP-1R agonist may be a potential therapeutic agent to decrease the risk of rtPA-induced HT after ischemic stroke via the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Shanshan Sun
- Department of Ultrasound Imaging Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jie Xie
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hui Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Tianyu Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Qiqi Wu
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yongsheng Zhang
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xiangjun Bai
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jian Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhanfei Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Wei Wang
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
37
|
Platonin protects against cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 inflammasomes via BNIP3/LC3 signaling mediated autophagy. Brain Res Bull 2022; 180:12-23. [DOI: 10.1016/j.brainresbull.2021.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/04/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022]
|
38
|
Talebi M, Mohammadi Vadoud SA, Haratian A, Talebi M, Farkhondeh T, Pourbagher-Shahri AM, Samarghandian S. The interplay between oxidative stress and autophagy: focus on the development of neurological diseases. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2022; 18:3. [PMID: 35093121 PMCID: PMC8799983 DOI: 10.1186/s12993-022-00187-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
Abstract
Regarding the epidemiological studies, neurological dysfunctions caused by cerebral ischemia or neurodegenerative diseases (NDDs) have been considered a pointed matter. Mount-up shreds of evidence support that both autophagy and reactive oxygen species (ROS) are involved in the commencement and progression of neurological diseases. Remarkably, oxidative stress prompted by an increase of ROS threatens cerebral integrity and improves the severity of other pathogenic agents such as mitochondrial damage in neuronal disturbances. Autophagy is anticipated as a cellular defending mode to combat cytotoxic substances and damage. The recent document proposes that the interrelation of autophagy and ROS creates a crucial function in controlling neuronal homeostasis. This review aims to overview the cross-talk among autophagy and oxidative stress and its molecular mechanisms in various neurological diseases to prepare new perceptions into a new treatment for neurological disorders. Furthermore, natural/synthetic agents entailed in modulation/regulation of this ambitious cross-talk are described.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Ali Mohammadi Vadoud
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Haratian
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, USA
- Viatris Pharmaceuticals Inc, 3300 Research Plaza, San Antonio, TX, 78235, USA
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
39
|
GSK-3β inhibition elicits a neuroprotection by restoring lysosomal dysfunction in neurons via facilitation of TFEB nuclear translocation after ischemic stroke. Brain Res 2021; 1778:147768. [PMID: 34968440 DOI: 10.1016/j.brainres.2021.147768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/03/2021] [Accepted: 12/22/2021] [Indexed: 12/16/2022]
Abstract
Lysosomal dysfunction is an essential pathogenesis of autophagic neuronal injury after ischemic stroke. As a result of cerebral ischemia, transcription factor EB (TFEB) is greatly phosphorylated by prominently activated glycogen synthase kinase-3β (GSK-3β). This increased TFEB phosphorylation decreases its nuclear translocation and subsequently leads to reduced lysosomal biosynthesis, which ultimately results in lysosomal dysfunction. The present study is to investigate whether the lysosomal dysfunction in neurons can be restored to alleviate post-stroke damage by GSK-3β inhibition. The GSK-3β activity was inhibited by pre-treatment with CHIR-99021 (CHIR) for 3 days before middle cerebral artery occlusion (MCAO) surgery in rats. Besides, the lysosomal capacity was altered by pre-administration with Bafilomycin A1 (Baf-A1) and EN6, respectively. Twenty-four hours after MCAO/reperfusion, the penumbral tissues were obtained to detect the GSK-3β, cytoplasmic and nuclear TFEB, and proteins in autophagic/lysosomal pathway by western blot and immunofluorescence, respectively. Meanwhile, the infarct volume, neurological deficits and neuron survival were assessed to evaluate the neurological outcomes elicited by GSK-3β inhibition. The results demonstrated that the neurological injury could be significantly mitigated by GSK-3β inhibition in MCAO+CHIR group, compared with that in MCAO group. Moreover, CHIR-facilitated TFEB nuclear translocation in neurons was coupled with reinforced lysosomal activities and attenuated autophagic substrates. However, GSK-3β inhibition-induced neuroprotection was greatly counteracted by Baf-A1-weakened lysosomal capacity. Conversely, EN6-reinforced lysosomal activities further ameliorated the autophagic/lysosomal signaling, and synergistically alleviated the neurological damage upon GSK-3β inhibition after MCAO/reperfusion. Our data suggests that GSK-3β inhibition-augmented neuroprotection against ischemic stroke is elicited by restoring the lysosomal dysfunction in neurons.
Collapse
|
40
|
The Influence of Mitochondrial-DNA-Driven Inflammation Pathways on Macrophage Polarization: A New Perspective for Targeted Immunometabolic Therapy in Cerebral Ischemia-Reperfusion Injury. Int J Mol Sci 2021; 23:ijms23010135. [PMID: 35008558 PMCID: PMC8745401 DOI: 10.3390/ijms23010135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022] Open
Abstract
Cerebral ischemia-reperfusion injury is related to inflammation driven by free mitochondrial DNA. At the same time, the pro-inflammatory activation of macrophages, that is, polarization in the M1 direction, aggravates the cycle of inflammatory damage. They promote each other and eventually transform macrophages/microglia into neurotoxic macrophages by improving macrophage glycolysis, transforming arginine metabolism, and controlling fatty acid synthesis. Therefore, we propose targeting the mtDNA-driven inflammatory response while controlling the metabolic state of macrophages in brain tissue to reduce the possibility of cerebral ischemia-reperfusion injury.
Collapse
|
41
|
Luo J, Chen J, Yang C, Tan J, Zhao J, Jiang N, Zhao Y. 6-Gingerol protects against cerebral ischemia/reperfusion injury by inhibiting NLRP3 inflammasome and apoptosis via TRPV1 / FAF1 complex dissociation-mediated autophagy. Int Immunopharmacol 2021; 100:108146. [PMID: 34537481 DOI: 10.1016/j.intimp.2021.108146] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/22/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Our previous studies demonstrated that autophagy alleviates cerebral I/R injury by inhibiting NLRP3 inflammasome-mediated inflammation. 6-Gingerol, a phenolic compound extracted from ginger, was reported to possess potent antiapoptotic and anti-inflammatory activities and is associated with autophagy. However, the effects of 6-Gingerol in cerebral I/R injury have not been elucidated, and whether they involve autophagy-induced NLRP3 inflammasome inhibition remains unclear. METHODS Adult male Sprague-Dawley (SD) rats were subjected to middle cerebral artery occlusion (MCAO) for 1 h, followed by reperfusion for 24 h. 6-Gingerol and 3-methyladenine (3-MA) were injected intraperitoneally, and si-TRPV1 was injected via the lateral ventricle. Cerebral infarct volume, brain edema, neurological deficits, HE and Nissl were used to evaluate the morphological and functional changes of brain tissue, respectively. TRPV1, FAF1, autophagy related (LC3II/I, P62, Beclin1), inflammation related (NLRP3, cleaved-caspase-1, caspase-1, cleaved-IL-1β, IL-1β, cleaved-IL-18, IL-18) and apoptosis related (Bcl-2, Bax, cleaved-caspase-3) proteins were assessed by Western blot, immunofluorescence staining and coimmunoprecipitation, respectively. Enzyme linked immunosorbent assay (ELISA) was used to evaluate the changes in the expression levels of interleukin-1 (IL-1β) and interleukin-18(IL-18), respectively. The degree of neuronal apoptosis was evaluated by TUNEL staining. Neuronal ultrastructure was examined by transmission electron microscopy. RESULT 6-Gingerol treatment significantly reduced cerebral infarct volume, improved brain edema and neurological scores, and reversed brain histomorphological damage after I/R injury. In addition, 6-Gingerol significantly reduced NLRP3 inflammasome-derived inflammation and neuronal apoptosis and upregulated autophagy. The autophagy inhibitor 3-MA rescued the effects of 6-Gingerol on the NLRP3 inflammasome and apoptosis. Moreover, the findings illustrated that 6-Gingerol inhibited autophagy-induced NLRP3 inflammasome activation and apoptosis through the dissociation of TRPV1 from FAF1. CONCLUSION In brief, 6-Gingerol exerts antiapoptotic and anti-inflammatory effects via TRPV1/FAF1 complex dissociation-mediated autophagy during cerebral I/R injury. Therefore, 6-Gingerol may be an effective drug for the treatment of I/R injury.
Collapse
Affiliation(s)
- Jing Luo
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Jialei Chen
- Department of First Clinical College, Chongqing Medical University, Chongqing 400016, China
| | - Changhong Yang
- Department of Bioinformatics, Chongqing Medical University, Chongqing 400016, China
| | - Junyi Tan
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Jing Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| | - Yong Zhao
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
42
|
Appunni S, Gupta D, Rubens M, Ramamoorthy V, Singh HN, Swarup V. Deregulated Protein Kinases: Friend and Foe in Ischemic Stroke. Mol Neurobiol 2021; 58:6471-6489. [PMID: 34549335 DOI: 10.1007/s12035-021-02563-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/10/2021] [Indexed: 12/20/2022]
Abstract
Ischemic stroke is the third leading cause of mortality worldwide, but its medical management is still limited to the use of thrombolytics as a lifesaving option. Multiple molecular deregulations of the protein kinase family occur during the period of ischemia/reperfusion. However, experimental studies have shown that alterations in the expression of essential protein kinases and their pharmacological modulation can modify the neuropathological milieu and hasten neurophysiological recovery. This review highlights the role of key protein kinase members and their implications in the evolution of stroke pathophysiology. Activation of ROCK-, MAPK-, and GSK-3β-mediated pathways following neuronal ischemia/reperfusion injury in experimental conditions aggravate the neuropathology and delays recovery. Targeting ROCK, MAPK, and GSK-3β will potentially enhance myelin regeneration, improve blood-brain barrier (BBB) function, and suppress inflammation, which ameliorates neuronal survival. Conversely, protein kinases such as PKA, Akt, PKCα, PKCε, Trk, and PERK salvage neurons post-ischemia by mechanisms including enhanced toxin metabolism, restoring BBB integrity, neurotrophic effects, and apoptosis suppression. Certain protein kinases such as ERK1/2, JNK, and AMPK have favourable and unfavourable effects in salvaging ischemia-injured neurons. Targeting multiple protein kinase-mediated pathways simultaneously may improve neuronal recovery post-ischemia.
Collapse
Affiliation(s)
- Sandeep Appunni
- Department of Biochemistry, Government Medical College, Kozhikode, Kerala, India
| | - Deepika Gupta
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Himanshu Narayan Singh
- Department of Systems Biology, Columbia University Irving Medical Centre, New York City, NY, USA.
| | - Vishnu Swarup
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
43
|
The Interplay between Autophagy and NLRP3 Inflammasome in Ischemia/Reperfusion Injury. Int J Mol Sci 2021; 22:ijms22168773. [PMID: 34445481 PMCID: PMC8395601 DOI: 10.3390/ijms22168773] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/29/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury is characterized by a limited blood supply to organs, followed by the restoration of blood flow and reoxygenation. In addition to ischemia, blood flow recovery can also lead to very harmful injury, especially inflammatory injury. Autophagy refers to the transport of cellular materials to the lysosomes for degradation, leading to the conversion of cellular components and offering energy and macromolecular precursors. It can maintain the balance of synthesis, decomposition and reuse of the intracellular components, and participate in many physiological processes and diseases. Inflammasomes are a kind of protein complex. Under physiological and pathological conditions, as the cellular innate immune signal receptors, inflammasomes sense pathogens to trigger an inflammatory response. TheNLRP3 inflammasome is the most deeply studied inflammasome and is composed of NLRP3, the adaptor apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and pro-caspase-1. Its activation triggers the cleavage of pro-interleukin (IL)-1β and pro-IL-18 mediated by caspase-1 and promotes a further inflammatory process. Studies have shown that autophagy and the NLRP3 inflammasome play an important role in the process of I/R injury, but the relevant mechanisms have not been fully explained, especially how the interaction between autophagy and the NLRP3 inflammasome participates in I/R injury, which remains to be further studied. Therefore, we reviewed the recent studies about the interplay between autophagy and the NLRP3 inflammasome in I/R injury and analyzed the mechanisms to provide the theoretical references for further research in the future.
Collapse
|
44
|
Zhang JP, Zhang WJ, Yang M, Fang H. Propofol attenuates lung ischemia/reperfusion injury though the involvement of the MALAT1/microRNA-144/GSK3β axis. Mol Med 2021; 27:77. [PMID: 34266379 PMCID: PMC8281462 DOI: 10.1186/s10020-021-00332-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022] Open
Abstract
Background Propofol, an intravenous anesthetic, was proven to protect against lung ischemia/reperfusion (I/R) injury. However, the detailed mechanism of Propofol in lung I/R injury is still elusive. This study was designed to explore the therapeutic effects of Propofol, both in vivo and in vitro, on lung I/R injury and the underlying mechanisms related to metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/microRNA-144 (miR-144)/glycogen synthase kinase-3β (GSK3β). Methods C57BL/6 mice were used to establish a lung I/R injury model while pulmonary microvascular endothelial cells (PMVECs) were constructed as hypoxia/reperfusion (H/R) cellular model, both of which were performed with Propofol treatment. Gain- or loss-of-function approaches were subsequently employed, followed by observation of cell apoptosis in lung tissues and evaluation of proliferative and apoptotic capabilities in H/R cells. Meanwhile, the inflammatory factors, autophagosomes, and autophagy-related proteins were measured. Results Our experimental data revealed that Propofol treatment could decrease the elevated expression of MALAT1 following I/R injury or H/R induction, indicating its protection against lung I/R injury. Additionally, overexpressing MALAT1 or GSK3β promoted the activation of autophagosomes, proinflammatory factor release, and cell apoptosis, suggesting that overexpressing MALAT1 or GSK3β may reverse the protective effects of Propofol against lung I/R injury. MALAT1 was identified to negatively regulate miR-144 to upregulate the GSK3β expression. Conclusion Overall, our study demonstrated that Propofol played a protective role in lung I/R injury by suppressing autophagy and decreasing release of inflammatory factors, with the possible involvement of the MALAT1/miR-144/GSK3β axis. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00332-0.
Collapse
Affiliation(s)
- Jian-Ping Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, No. 83, East Zhongshan Road, Guiyang, Guizhou, 550002, People's Republic of China.,Department of Anesthesiology, Guizhou University People's Hospital, No. 83, East Zhongshan Road, Guiyang, Guizhou, 550025, People's Republic of China.,Laboratory of Anesthesiology & Perioperative Medicine, Guizhou University School of Medicine, Guiyang, 550025, People's Republic of China
| | - Wei-Jing Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, No. 83, East Zhongshan Road, Guiyang, Guizhou, 550002, People's Republic of China.,Department of Anesthesiology, Guizhou University People's Hospital, No. 83, East Zhongshan Road, Guiyang, Guizhou, 550025, People's Republic of China.,Laboratory of Anesthesiology & Perioperative Medicine, Guizhou University School of Medicine, Guiyang, 550025, People's Republic of China
| | - Miao Yang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, No. 83, East Zhongshan Road, Guiyang, Guizhou, 550002, People's Republic of China.,Department of Anesthesiology, Guizhou University People's Hospital, No. 83, East Zhongshan Road, Guiyang, Guizhou, 550025, People's Republic of China.,Laboratory of Anesthesiology & Perioperative Medicine, Guizhou University School of Medicine, Guiyang, 550025, People's Republic of China
| | - Hua Fang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, No. 83, East Zhongshan Road, Guiyang, Guizhou, 550002, People's Republic of China. .,Department of Anesthesiology, Guizhou University People's Hospital, No. 83, East Zhongshan Road, Guiyang, Guizhou, 550025, People's Republic of China. .,Laboratory of Anesthesiology & Perioperative Medicine, Guizhou University School of Medicine, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
45
|
Zheng Y, Zhou Z, Han F, Chen Z. Special issue: Neuroinflammatory pathways as treatment targets in brain disorders autophagic regulation of neuroinflammation in ischemic stroke. Neurochem Int 2021; 148:105114. [PMID: 34192589 DOI: 10.1016/j.neuint.2021.105114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/12/2021] [Accepted: 06/22/2021] [Indexed: 01/01/2023]
Abstract
Despite the high lethality and increasing prevalence, effective therapy for ischemic stroke is still limited. As a crucial pathophysiological mechanism underlying ischemic injury, neuroinflammation remains a promising target for novel anti-ischemic strategies. However, the potential adverse effects limit the applications of traditional anti-inflammatory therapies. Recent explorations into the mechanisms of inflammation reveal that autophagy acts as a critical part in inflammation regulation. Autophagy refers to the hierarchically organized process resulting in the lysosomal degradation of intracellular components. Autophagic clearance of intracellular danger signals (DAMPs) suppresses the inflammation activation. Alternatively, autophagy blunts inflammation by removing either inflammasomes or the transcriptional modulators of cytokines. Interestingly, several compounds have been proved to alleviate neuroinflammatory responses and protect against ischemic injury by activating autophagy, highlighting autophagy as a promising target for the regulation of ischemia-induced neuroinflammation. Nonetheless, the molecular mechanism underlying autophagic regulation of neuroinflammation in the central nervous system is less clear and further explorations are still needed.
Collapse
Affiliation(s)
- Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhuchen Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Feng Han
- Key Lab of Cardiovascular and Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
46
|
The Extracts of Angelica sinensis and Cinnamomum cassia from Oriental Medicinal Foods Regulate Inflammatory and Autophagic Pathways against Neural Injury after Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9663208. [PMID: 34257822 PMCID: PMC8257381 DOI: 10.1155/2021/9663208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/29/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
The study indicates inflammation and autophagy are closely related to neural apoptosis in the pathology of ischemic stroke. In the study, we investigate the effects and mechanisms of the extracts of Angelica sinensis and Cinnamomum cassia (AC) from oriental medicinal foods on inflammatory and autophagic pathways in rat permanent middle cerebral artery occlusion model. Three doses of AC extract were, respectively, administered for 7 days. It suggests that AC extract treatment ameliorated scores of motor and sensory functions and ratio of glucose utilization in thalamic lesions in a dose-dependent manner. Expression of Iba1 was decreased and CD206 was increased by immunofluorescence staining, western blotting results showed expressions of TLR4, phosphorylated-IKKβ and IκBα, nuclear P65, NLRP3, ASC, and Caspase-1 were downregulated, and Beclin 1 and LC3 II were upregulated. Low concentrations of TNF-α, IL-1β, and IL-6 were presented by ELISA assay. Additionally, caspase 8 and cleaved caspase-3 expressions and the number of TUNEL positive cells in ipsilateral hemisphere were decreased, while the ratio of Bcl-2/Bax was increased. Simultaneously, in LPS-induced BV2 cells, it showed nuclear P65 translocation and secretion of proinflammatory cytokines were suppressed by AC extract-contained cerebrospinal fluid, and its intervened effects were similar to TLR4 siRNA treatment. Our study demonstrates that AC extract treatment attenuates inflammatory response and elevates autophagy against neural apoptosis, which contributes to the improvement of neurological function poststroke. Therefore, AC extract may be a novel neuroprotective agent by regulation of inflammatory and autophagic pathways for ischemic stroke treatment.
Collapse
|
47
|
Javadinia SS, Abbaszadeh-Goudarzi K, Mahdian D, Hosseini A, Ghalenovi M, Javan R. A review of the protective effects of quercetin-rich natural compounds for treating ischemia-reperfusion injury. Biotech Histochem 2021; 97:237-246. [PMID: 34157912 DOI: 10.1080/10520295.2021.1937701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Ischemia-reperfusion (IR) injury causes dysfunction of tissues and organs, and oxidative stress plays an important role. During IR, reactive oxygen species (ROS) are increased. Antioxidants are used to decrease ROS associated with IR. We review the protective effects of quercetin-rich natural antioxidants against IR. We searched PubMed, ScienceDirect, Scopus and Cochrane databases using the keywords: ischemic reperfusion, quercetin, antioxidant and herbal medicine. The effects of quercetin during IR have been reported for animal models in vitro and in vivo. Quercetin-rich plants including Abelmoschus esculentus, coriander, Hypericum perforatum, onion, Psidium guajava, buckwheat and Rosa laevigata Michx have been used to reduce oxidative stress damage to various organs during IR.
Collapse
Affiliation(s)
- Sara Sadat Javadinia
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Kazem Abbaszadeh-Goudarzi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.,Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Davood Mahdian
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.,Department of Pharmacology, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Ghalenovi
- Faculty of Midwifery, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Roghayeh Javan
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
48
|
Pien-Tze-Huang, a Chinese patent formula, attenuates NLRP3 inflammasome-related neuroinflammation by enhancing autophagy via the AMPK/mTOR/ULK1 signaling pathway. Biomed Pharmacother 2021; 141:111814. [PMID: 34146853 DOI: 10.1016/j.biopha.2021.111814] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/29/2021] [Accepted: 06/07/2021] [Indexed: 01/14/2023] Open
Abstract
NLRP3 inflammasome is a key mediator in ischemic stroke-induced neuroinflammation and subsequent brain injury. Our previous study demonstrated the potent activity of Pien-Tze-Huang (PTH), a well-known Chinese patent formula, in reducing mitochondria-mediated neuronal apoptosis in cerebral ischemia/reperfusion impaired rats. This study aims to elucidate the mechanistic action of PTH related to neuroinflammation in LPS-induced BV2 microglial cells and cerebral ischemia/reperfusion impaired rats. BV2 cells were stimulated with LPS for 12 h and treated with PTH with various concentrations. Modulation by PTH of relevant genes (IL-6, IL-1β, IL-18, TNF-α, COX-2 and iNOS mRNA) and proteins (NLRP3 inflammasome, autophagy and AMPK/mTOR/ULK signaling) was analyzed by real-time PCR and western blot, respectively. Similar analyses were conducted in middle cerebral artery occlusion rat model including neurological deficit, infarct volume, microglial activation, and key genes and proteins in modulating autophagy and NLRP3. Our results showed that PTH significantly inhibited the production of key proinflammatory mediators and protein expressions of NLRP3 and caspase-1 p20 in LPS induced BV2 cells. It also enhanced the autophagy response by modulating the key autophagy proteins via AMPK/mTOR/ULK related pathway. The reduced inflammatory responses and NLRP3 expressions by PTH were partially blocked by the autophagy inhibitor (3-MA) and AMPK blocker (compound C). In rats, PTH significantly reduced infarct size, suppressed microglial activation, and improved neuron deficit. It also promoted autophagy and reduced NLRP3 activity. Our study demonstrated that PTH inhibited NLRP3 inflammasome-mediated neuroinflammation, which was associated with enhanced autophagy via AMPK/mTOR/ULK1 pathway in vitro and in vivo.
Collapse
|
49
|
Liu H, Zhao Z, Wu T, Zhang Q, Lu F, Gu J, Jiang T, Xue J. Inhibition of autophagy-dependent pyroptosis attenuates cerebral ischaemia/reperfusion injury. J Cell Mol Med 2021; 25:5060-5069. [PMID: 33938129 PMCID: PMC8178262 DOI: 10.1111/jcmm.16483] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/03/2021] [Accepted: 02/20/2021] [Indexed: 12/17/2022] Open
Abstract
Autophagy is closely associated with cerebral ischaemia/reperfusion injury, but the underlying mechanisms are unknown. We investigated whether Spautin-1 ameliorates cerebral ischaemia/reperfusion injury by inhibiting autophagy and whether its derived pyroptosis is involved in this process. We explored the mechanism of Spautin-1 in cerebral ischaemia/reperfusion. To answer these questions, healthy male Sprague-Dawley rats were exposed to middle cerebral artery occlusion for 60 minutes followed by reperfusion for 24 hours. We found that cerebral ischaemia/reperfusion increased the expression levels of autophagy and pyroptosis-related proteins. Treatment with Spautin-1 reduced the infarct size and water content and restored some neurological functions. In vitro experiments were performed using oxygen-glucose deprivation/reoxygenation to model PC12 cells. The results showed that PC12 cells showed a significant decrease in cell viability and a significant increase in ROS and autophagy levels. Spautin-1 treatment reduced autophagy and ROS accumulation and attenuated NLRP3 inflammasome-dependent pyroptosis. However, these beneficial effects were greatly blocked by USP13 overexpression, which significantly counteracted the inhibition of autophagy and NLRP3 inflammasome-dependent ferroptosis by Spautin-1. Together, these results suggest that Spautin-1 may ameliorate cerebral ischaemia-reperfusion injury via the autophagy/pyroptosis pathway. Thus, inhibition of autophagy may be considered as a promising therapeutic approach for cerebral ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- Hui Liu
- Department of Neurology and Institute of NeurologyThe Affiliated Changshu Hospital of Xuzhou Medical SchoolSuzhouJiangsuChina
| | - Zongbo Zhao
- Department of Neurology and Institute of NeurologyThe Affiliated Changshu Hospital of Xuzhou Medical SchoolSuzhouJiangsuChina
| | - Tao Wu
- Department of Neurology and Institute of NeurologyThe Affiliated Changshu Hospital of Xuzhou Medical SchoolSuzhouJiangsuChina
| | - Qiu Zhang
- Department of Neurology and Institute of NeurologyThe Affiliated Changshu Hospital of Xuzhou Medical SchoolSuzhouJiangsuChina
| | - Fenying Lu
- Department of GastroenterologyThe Affiliated Changshu Hospital of Xuzhou Medical SchoolSuzhouJiangsuChina
| | - Jie Gu
- Department of Key LaboratoryThe Affiliated Changshu Hospital of Xuzhou Medical SchoolSuzhouJiangsuChina
| | - Tingwang Jiang
- Department of Key LaboratoryThe Affiliated Changshu Hospital of Xuzhou Medical SchoolSuzhouJiangsuChina
- Jiangsu Key Laboratory of Brain Disease BioinformationXuzhou Medical UniversityXuzhouJiangsuChina
| | - Jianzhong Xue
- Department of Neurology and Institute of NeurologyThe Affiliated Changshu Hospital of Xuzhou Medical SchoolSuzhouJiangsuChina
| |
Collapse
|
50
|
Xu Q, Zhao B, Ye Y, Li Y, Zhang Y, Xiong X, Gu L. Relevant mediators involved in and therapies targeting the inflammatory response induced by activation of the NLRP3 inflammasome in ischemic stroke. J Neuroinflammation 2021; 18:123. [PMID: 34059091 PMCID: PMC8166383 DOI: 10.1186/s12974-021-02137-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome is a member of the NLR family of inherent immune cell sensors. The NLRP3 inflammasome can detect tissue damage and pathogen invasion through innate immune cell sensor components commonly known as pattern recognition receptors (PRRs). PRRs promote activation of nuclear factor kappa B (NF-κB) pathways and the mitogen-activated protein kinase (MAPK) pathway, thus increasing the transcription of genes encoding proteins related to the NLRP3 inflammasome. The NLRP3 inflammasome is a complex with multiple components, including an NAIP, CIITA, HET-E, and TP1 (NACHT) domain; apoptosis-associated speck-like protein containing a CARD (ASC); and a leucine-rich repeat (LRR) domain. After ischemic stroke, the NLRP3 inflammasome can produce numerous proinflammatory cytokines, mediating nerve cell dysfunction and brain edema and ultimately leading to nerve cell death once activated. Ischemic stroke is a disease with high rates of mortality and disability worldwide and is being observed in increasingly younger populations. To date, there are no clearly effective therapeutic strategies for the clinical treatment of ischemic stroke. Understanding the NLRP3 inflammasome may provide novel ideas and approaches because targeting of upstream and downstream molecules in the NLRP3 pathway shows promise for ischemic stroke therapy. In this manuscript, we summarize the existing evidence regarding the composition and activation of the NLRP3 inflammasome, the molecules involved in inflammatory pathways, and corresponding drugs or molecules that exert effects after cerebral ischemia. This evidence may provide possible targets or new strategies for ischemic stroke therapy.
Collapse
Affiliation(s)
- Qingxue Xu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yonggang Zhang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|