1
|
Peng W, Zhang M, Yi X. Systemic Inflammatory Mediator Levels in Non-Proliferative Diabetic Retinopathy Patients with Diabetic Macular Edema. Curr Eye Res 2024; 49:80-87. [PMID: 37804222 DOI: 10.1080/02713683.2023.2268306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
PURPOSE To study the systemic inflammatory mediator levels in non-proliferative diabetic retinopathy (NPDR) patients with diabetic macular edema (DME) and explore the correlation between systemic inflammatory mediators and DME. METHODS In this prospective study, we included 25 patients without diabetes (control group) and 75 patients with type 2 diabetes mellitus (diabetic group). According to fundus examination, the diabetic group patients were divided into: diabetic patients without diabetic retinopathy (DR) (Non-DR group), NPDR patients without DME (Non-DME group), and NPDR patients with DME (DME group). Serum levels of a broad panel of inflammatory mediators were analysed by multiplex protein quantitative detection technology based on a flow cytometry detection system. RESULTS The interferon-γ (IFN-γ) levels were significantly higher in DME group and Non-DME group as compared to control group (p = 0.023 and p = 0.033) and Non-DR group (p = 0.009 and p = 0.015). Significantly higher values were obtained in DME group and Non-DME group as compared to control group for the interleukin-8 (IL-8) (p = 0.003 and p = 0.003). The IL-23 levels were significantly elevated in DME group and Non-DR group than in Non-DME group (p = 0.013 and p = 0.004). The diabetic group had significantly higher serum levels of IL-8 and IL-33 (p = 0.001 and p = 0.011), and lower serum levels of tumor necrosis factor-α (TNF-α) (p = 0.027) in comparison with control group. CONCLUSIONS The changed levels of serum inflammatory mediators suggest that the systemic inflammatory mediators are involved in the pathogenesis of NPDR patients with DME. Such effects can guide clinical monitoring, diagnostic and therapeutic approaches for DME patients at an early stage.
Collapse
Affiliation(s)
- Wenyi Peng
- Department of Ophthalmology, The First Affiliated Hospital of Xinjiang Medical University, Urumchi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumchi, China
| | - Mingmei Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Xinjiang Medical University, Urumchi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumchi, China
| | - Xianglong Yi
- Department of Ophthalmology, The First Affiliated Hospital of Xinjiang Medical University, Urumchi, China
| |
Collapse
|
2
|
Sun Q, Li Z, Wang Z, Wang Q, Qin F, Pan H, Lin W, Mu X, Wang Y, Jiang Y, Ji J, Lu Z. Immunosuppression by opioids: Mechanisms of action on innate and adaptive immunity. Biochem Pharmacol 2023; 209:115417. [PMID: 36682388 DOI: 10.1016/j.bcp.2023.115417] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Opioids are excellent analgesics for the clinical treatment of various types of acute and chronic pain, particularly cancer-related pain. Nevertheless, it is well known that opioids have some nasty side effects, including immunosuppression, which is commonly overlooked. As a result, the incidence of opportunistic bacterial and viral infections increases in patients with long-term opioid use. Nowadays, there are no effective medications to alleviate opioid-induced immunosuppression. Understanding the underlying molecular mechanism of opioids in immunosuppression can enable researchers to devise effective therapeutic interventions. This review comprehensively summarized the exogenous opioids-induced immunosuppressive effects and their underlying mechanisms, the regulatory roles of endogenous opioids on the immune system, the potential link between opioid immunosuppressive effect and the function of the central nervous system (CNS), and the future perspectives in this field.
Collapse
Affiliation(s)
- Qinmei Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhonghao Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zijing Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qisheng Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fenfen Qin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haotian Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weixin Lin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xinru Mu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuxuan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yongwei Jiang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhigang Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Li C, Chen Q, Liu Y, Sun Z, Shen Z, Li S, Cha D, Sun C. Methionine enkephalin promotes white fat browning through cAMP/PKA pathway. Life Sci 2022; 312:121189. [PMID: 36396109 DOI: 10.1016/j.lfs.2022.121189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
AIMS Obesity and its related metabolic disorders, including insulin resistance and fatty liver, have become a serious global public health problem. Previous studies have shown Methionine Enkephalin (MetEnk) has the potential on adipocyte browning, however, its effects on the potential mechanisms of its regulation in browning as well as its improvement in energy metabolic homeostasis remain to be deciphered. MAIN METHODS C57BL/6J male mice were fed with high-fat diet (HFD) to induce obesity model, and MetEnk was injected subcutaneously to detect changes in the metabolic status of mice, adipocytes and HepG2 cells were also treated with MetEnk, and transcriptomic, metabolomic were used to detect the changes of lipid metabolism, mitochondrial function, inflammation and other related factors. KEY FINDINGS We found that MetEnk effectively protected against obesity weight gain in HFD-induced C57BL/6J mice, significantly improved glucose tolerance and insulin sensitivity, reduced the expression levels of interleukin 6 (IL-6), promoted white fat browning, moreover, using a combination of transcriptomic, metabolomic and inhibitors, it was found that MetEnk improved mitochondrial function, promoted thermogenesis and lipolysis by activating cAMP/PKA pathway in adipocytes, further analysis found that MetEnk also promoted lipolysis and alleviated inflammation through AMP-activated protein kinase (AMPK) pathway in mice liver and HepG2 cells. SIGNIFICANCE Our study provides profound evidence for the role of MetEnk in improving lipid metabolism disorders. This study provides a mechanical foundation for investigating the potential of MetEnk to improve obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
- Chaowei Li
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Qi Chen
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Yanrong Liu
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Zhuwen Sun
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Zhentong Shen
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Shuhan Li
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Dingrui Cha
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Chao Sun
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Qu N, Wang R, Meng Y, Liu N, Zhai J, Shan F. Methionine enkephalin inhibited cervical carcinoma via apoptosis promotion and reduction of myeloid derived suppressor cell infiltrated in tumor. Int Immunopharmacol 2022; 110:108933. [PMID: 35738090 DOI: 10.1016/j.intimp.2022.108933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023]
Abstract
Immunotherapy for cervical carcinoma is becoming increasingly important recently. In these studies methionine enkephalin (menk) is shown to inhibit cervical tumor cell proliferation in vitro in association with an increase in the expression of apoptosis markers and mediators, including an increase in fas, caspase 8, and caspase 3 expression and intrinsic expression of the signaling pathway mediator bax. In vivo, tumor growth was restrained in mice xenotransplant model with typical pathological features of apoptosis. Furthermore, myeloid derived suppressor cells (MDSCs) had a significant decrease in circulation and in tumor site. In brief, these findings showed menk could inhibit tumor growth in vitro and in vivo, providing direction of further research and clinical application prospect.
Collapse
Affiliation(s)
- Na Qu
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 77, Puhe Road, Shenyang 110122, Liaoning Province, China; Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China
| | - Ruizhe Wang
- Department of Gynecology, No. 1 Teaching Hospital, China Medical University, No. 155, North Nanjing Street, Shenyang 110001, Liaoning Province, China
| | - Yiming Meng
- Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China
| | - Ning Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang 110004, Liaoning Province, China
| | - Jingbo Zhai
- Medical College, Inner Mongolia Minzu University, Tongliao 028000, China; Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao 028000, China
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 77, Puhe Road, Shenyang 110122, Liaoning Province, China.
| |
Collapse
|
5
|
Research progress of opioid growth factor in immune-related diseases and cancer diseases. Int Immunopharmacol 2021; 99:107713. [PMID: 34426103 DOI: 10.1016/j.intimp.2021.107713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
Methionine enkephalin (MENK) has an important role in both neuroendocrine and immune systems. MENK was known as an opioid growth factor (OGF) for its growth regulatory characteristics. OGF interacts with the OGF receptor (OGFr) to inhibit DNA synthesis by upregulating p16 and/or p21, which delays the cell cycle transition from G0/G1 to S phase, and inhibits cell proliferation. In addition, OGF combines with OGFr in immune cells to exert its immunomodulatory activity and regulate immune function. OGF has been studied as an immunomodulator in a variety of autoimmune diseases, including multiple sclerosis, inflammatory bowel disease, diabetes and viral infections, and has been proven to relieve symptoms of certain diseases in animal and in vitro experiments. Also, OGF and OGFr have various anti-tumor molecular mechanisms. OGF can be used as the primary therapy alone or combined with other drugs to treat tumors. This article summarizes the research progress of OGF in immune-related diseases and cancer diseases.
Collapse
|
6
|
Abot A, Wemelle E, Laurens C, Paquot A, Pomie N, Carper D, Bessac A, Mas Orea X, Fremez C, Fontanie M, Lucas A, Lesage J, Everard A, Meunier E, Dietrich G, Muccioli GG, Moro C, Cani PD, Knauf C. Identification of new enterosynes using prebiotics: roles of bioactive lipids and mu-opioid receptor signalling in humans and mice. Gut 2021; 70:1078-1087. [PMID: 33020209 PMCID: PMC8108281 DOI: 10.1136/gutjnl-2019-320230] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 07/24/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The enteric nervous system (ENS) plays a key role in controlling the gut-brain axis under normal and pathological conditions, such as type 2 diabetes. The discovery of intestinal actors, such as enterosynes, able to modulate the ENS-induced duodenal contraction is considered an innovative approach. Among all the intestinal factors, the understanding of the role of gut microbes in controlling glycaemia is still developed. We studied whether the modulation of gut microbiota by prebiotics could permit the identification of novel enterosynes. DESIGN We measured the effects of prebiotics on the production of bioactive lipids in the intestine and tested the identified lipid on ENS-induced contraction and glucose metabolism. Then, we studied the signalling pathways involved and compared the results obtained in mice to human. RESULTS We found that modulating the gut microbiota with prebiotics modifies the actions of enteric neurons, thereby controlling duodenal contraction and subsequently attenuating hyperglycaemia in diabetic mice. We discovered that the signalling pathway involved in these effects depends on the synthesis of a bioactive lipid 12-hydroxyeicosatetraenoic acid (12-HETE) and the presence of mu-opioid receptors (MOR) on enteric neurons. Using pharmacological approaches, we demonstrated the key role of the MOR receptors and proliferator-activated receptor γ for the effects of 12-HETE. These findings are supported by human data showing a decreased expression of the proenkephalin and MOR messanger RNAs in the duodenum of patients with diabetic. CONCLUSIONS Using a prebiotic approach, we identified enkephalin and 12-HETE as new enterosynes with potential real beneficial and safety impact in diabetic human.
Collapse
Affiliation(s)
- Anne Abot
- IRSD, INSERM, Toulouse, Occitanie, France,Enterosys, CRO, Toulouse, Occitanie, France,European Associated Laboratory (EAL) NeuroMicrobiota, Toulouse, Brussels, France, Belgium
| | - Eve Wemelle
- IRSD, INSERM, Toulouse, Occitanie, France,European Associated Laboratory (EAL) NeuroMicrobiota, Toulouse, Brussels, France, Belgium
| | - Claire Laurens
- CNRS, University of Strasbourg, Strasbourg, France,CNES, Paris, France
| | - Adrien Paquot
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | | | | | - Arnaud Bessac
- IRSD, INSERM, Toulouse, Occitanie, France,IPBS, Toulouse, Midi-Pyrénées, France
| | | | | | | | | | - Jean Lesage
- Lille 2 University of Health and Law, Lille, Hauts-de-France, France
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | | | | | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | | | - Patrice D Cani
- European Associated Laboratory (EAL) NeuroMicrobiota, Toulouse, Brussels, France, Belgium .,Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Claude Knauf
- IRSD, INSERM, Toulouse, Occitanie, France .,European Associated Laboratory (EAL) NeuroMicrobiota, Toulouse, Brussels, France, Belgium
| |
Collapse
|
7
|
Budka J, Kowalski S, Chylinska M, Dzierzbicka K, Inkielewicz-Stepniak I. Opioid Growth Factor and its Derivatives as Potential Non-toxic Multifunctional Anticancer and Analgesic Compounds. Curr Med Chem 2021; 28:673-686. [PMID: 32129162 DOI: 10.2174/0929867327666200304122406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/02/2019] [Accepted: 10/14/2019] [Indexed: 11/22/2022]
Abstract
Despite significant research progress on the pathogenesis, molecular biology, diagnosis, treatment, and prevention of cancer, its morbidity and mortality are still high around the world. The emerging resistance of cancer cells to anticancer drugs remains still a significant problem in oncology today. Furthermore, an important challenge is the inability of anticancer drugs to selectively target tumor cells thus sparing healthy cells. One of the new potential options for efficient and safe therapy can be provided by opioid growth factor (OGF), chemically termed Met-enkephalin. It is an endogenous pentapeptide (Tyr-Gly-Gly-Phe-Met) with antitumor, analgesic, and immune-boosting properties. Clinical trials have demonstrated that OGF therapy alone, as well as in combination with standard chemotherapies, is a safe, non-toxic anticancer agent that reduces tumor size. In this paper, we review the structure-activity relationship of OGF and its analogues. We highlight also OGF derivatives with analgesic, immunomodulatory activity and the ability to penetrate the blood-brain barrier and may be used as safe agents enhancing chemotherapy efficacy and improving quality of life in cancer patients. The reviewed papers indicate that Met-enkephalin and its analogues are interesting candidates for the development of novel, non-toxic, and endowed with an analgesic activity anticancer drugs. More preclinical and clinical studies are needed to explore these opportunities.
Collapse
Affiliation(s)
- Justyna Budka
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Szymon Kowalski
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Monika Chylinska
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | | |
Collapse
|
8
|
Long-term treatment of polysaccharides-based hydrogel microparticles as oral insulin delivery in streptozotocin-induced type 2 diabetic mice. Biomed Pharmacother 2020; 133:110941. [PMID: 33232923 DOI: 10.1016/j.biopha.2020.110941] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/28/2022] Open
Abstract
To develop a more effective and safer drug for the treatment of type 2 diabetes mellitus (T2DM), polysaccharides-based hydrogel microparticles as oral insulin delivery was prepared and explored. This study was aimed to evaluate the antidiabetic effects and hypoglycemic mechanism with long-term administration(four weeks) of oral insulin hydrogel microparticles in type 2 diabetic mice on a model of diabetes using a high fat diet combined with streptozotocin. The results revealed that the long-term treatment of oral insulin polysaccharides-based hydrogel microparticles could significantly alleviate the symptoms of polyphagia, polydipsia, polyuria and weight loss in diabetic mice. Also, oral administration of insulin hydrogel microparticles could significantly reduce fasting blood glucose levels, ameliorate insulin resistance and increase insulin sensitivity in the mice with T2DM. The concentration of plasma TG, TC, LDL-C, FFA, BUN, CRE significantly decreased and the levels of HDL-C increased showed that insulin polysaccharides-based hydrogel microparticles were effective in regulating lipid metabolism and prevent diabetic nephropathy complication in diabetic mice. In addition, the supplementation of insulin hydrogel microparticles could significant improve the antioxidant capacity by increasing the level of SOD, CAT and decreasing the level of MDA, GPT, NO, TNF-α, and reverse histological deterioration of kidney and pancreas in diabetic mice. The above outcome concluded that insulin polysaccharides-based hydrogel microparticles may exhibit promising anti-diabetic activity and the potential to be a drug candidate for T2DM.
Collapse
|
9
|
Tian J, Qu N, Jiao X, Wang X, Geng J, Griffin N, Shan F. Methionine enkephalin inhibits influenza A virus infection through upregulating antiviral state in RAW264.7 cells. Int Immunopharmacol 2019; 78:106032. [PMID: 31835089 DOI: 10.1016/j.intimp.2019.106032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 01/27/2023]
Abstract
MENK, as an immune adjuvant, has potential immune-regulatory activity on innate and adaptive immune cells. The aim of this work was to investigate the antiviral effect of MENK on influenza virus-infected murine macrophage cells (RAW264.7) and its underlying mechanisms. The results showed that MENK markedly inhibited influenza A virus (H1N1) replication in pre- and post-MENK treatment, especially in pre-MENK treatment. The mechanisms exploration revealed that MENK (10 mg/mL) significantly inhibited the nucleoprotein (NP) of influenza virus and up-regulated levels of IL-6, TNF-α and IFN-β compared with those in H1N1 control group. Further experiments confirmed that antiviral effects of MENK was associated with promotion of opioid receptor (MOR) as well as activation of NF-κB p65 inducing cellular antiviral status. The data suggest that MENK should be potential candidate for prophylactic or therapeutic treatment against H1N1 influenza virus.
Collapse
Affiliation(s)
- Jing Tian
- Department of Immunology, School of Basic Medical Science, Jinzhou Medical University, Jinzhou 121001, China; Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Na Qu
- Department of Gynecology, Cancer Hospital, China Medical University, Shenyang 110042, China
| | - Xue Jiao
- Department of Translational Medicine, No.4 Teaching Hospital, China Medical University, Shenyang 110032, China
| | - Xiaonan Wang
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Jin Geng
- Department of Ophthalmology, No.1 Teaching Hospital, China Medical University, Shenyang 110001, China
| | - Noreen Griffin
- Immune Therapeutics, Inc., 37 North Orange Avenue, Suite 607, Orlando, FL 32801, USA
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China.
| |
Collapse
|