1
|
Liu Q, Zhou H, Wang Y, Gui J, Yang D, Sun J, Ge D, Wu S, Liu Q, Zhu L, Mi Y. H3K27 acetylation activated-PDLIM7 promotes castration-resistant prostate cancer progression by inducing O-Glycosylation of YAP1 protein. Transl Oncol 2024; 40:101830. [PMID: 38056280 PMCID: PMC10714362 DOI: 10.1016/j.tranon.2023.101830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/17/2023] [Accepted: 11/11/2023] [Indexed: 12/08/2023] Open
Abstract
Castration-resistant prostate cancer (CRPC) is a fatal disease that evolves from prostate cancer due to drug resistance after long-term androgen deprivation therapy. In this study, we aimed to find novel molecular targets for treating CRPC. Through peptidome, we screened out polypeptides dysregulated in the serum of CRPC patients. According to RT-qPCR analysis and cell viability detection, we chose PDZ and LIM Domain 7 (PDLIM7) as the research object. As demonstrated by loss-of-function assays, silencing of PDLIM7 could suppress CRPC cell proliferation, migration, and angiogenesis. Moreover, PDLIM7 knockdown enhanced the sensitivity of CRPC cells to docetaxel treatment. Subsequently, we found that CBP/p300 increases the H3K27ac level in the PDLIM7 promoter to activate PDLIM7. Mechanism experiments such as IP and western blot revealed that PDLIM7 interacted with YAP1 to induce O-Glycosylation of YAP1 and thus stabilize YAP1 protein. Rescue assays demonstrated that PDLIM7 promoted the malignant processes of CRPC cells through YAP1. Finally, an animal study validated that PDLIM7 aggravated tumor growth. In conclusion, our findings highlighted the oncogenic role of PDLIM7 upregulated by CBP/p300-induced H3K27ac enhancement in CRPC by stabilizing YAP1.
Collapse
Affiliation(s)
- Qing Liu
- Affiliated Hospital of Jiangnan University, No. 1000 Hefeng Road, Wuxi, Jiangsu 214122, China; Wuxi Medical College, Jiangnan University, Wuxi 214122, China; Department of Health and Wellness, Huadong Sanatorium, Wuxi, China
| | - Hangsheng Zhou
- Department of Urology, Affiliated Hospital of Jiangnan University, No. 1000 Hefeng Road, Wuxi, Jiangsu 214122, China; Wuxi Medical College, Jiangnan University, Wuxi 214122, China
| | - Yanjuan Wang
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, No. 1000 Hefeng Road, Wuxi, Jiangsu 214122, China
| | - Jiandong Gui
- Department of Urology, Affiliated Hospital of Jiangnan University, No. 1000 Hefeng Road, Wuxi, Jiangsu 214122, China; Wuxi Medical College, Jiangnan University, Wuxi 214122, China
| | - Dongjie Yang
- Department of Pathology, Affiliated Hospital of Jiangnan University, No. 1000 Hefeng Road, Wuxi, Jiangsu 214122, China
| | - Jian Sun
- Department of Urology, Affiliated Hospital of Jiangnan University, No. 1000 Hefeng Road, Wuxi, Jiangsu 214122, China; Wuxi Medical College, Jiangnan University, Wuxi 214122, China
| | - Dongsheng Ge
- Department of Urology, Affiliated Hospital of Jiangnan University, No. 1000 Hefeng Road, Wuxi, Jiangsu 214122, China; Wuxi Medical College, Jiangnan University, Wuxi 214122, China
| | - Sheng Wu
- Department of Urology, Affiliated Hospital of Jiangnan University, No. 1000 Hefeng Road, Wuxi, Jiangsu 214122, China; Wuxi Medical College, Jiangnan University, Wuxi 214122, China
| | - Qin Liu
- Department of Health and Wellness, Huadong Sanatorium, Wuxi, China
| | - Lijie Zhu
- Department of Urology, Affiliated Hospital of Jiangnan University, No. 1000 Hefeng Road, Wuxi, Jiangsu 214122, China; Wuxi Medical College, Jiangnan University, Wuxi 214122, China
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, No. 1000 Hefeng Road, Wuxi, Jiangsu 214122, China; Wuxi Medical College, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Yousefi P, Tabibzadeh A, Jawaziri AK, Mehrjoo M, Akhavan M, Allahqoli L, Salehiniya H. Autophagy-related genes polymorphism in hepatitis B virus-associated hepatocellular carcinoma: A systematic review. Immun Inflamm Dis 2024; 12:e1182. [PMID: 38353395 PMCID: PMC10865419 DOI: 10.1002/iid3.1182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/19/2024] [Accepted: 01/27/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Chronic hepatitis B (CHB) virus is the most common risk factor for developing liver malignancy. Autophagy is an essential element in human cell maintenance. Several studies have demonstrated that autophagy plays a vital role in liver cancer at different stages. In this systematic review, we intend to investigate the role of polymorphism and mutations of autophagy-related genes (ATGs) in the pathogenesis and carcinogenesis of the hepatitis B virus (HBV). MATERIALS AND METHODS The search was conducted in online databases (Web of Science, PubMed, and Scopus) using Viruses, Infections, Polymorphism, Autophagy, and ATG. The study was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. RESULTS The primary search results led to 422 studies. By screening and eligibility evaluation, only four studies were relevant. The most important polymorphisms in hepatocellular carcinoma were rs2241880 in ATG16L1, rs77859116, rs510432, and rs548234 in ATG5. Furthermore, some polymorphisms are associated with an increased risk of HBV infection including, rs2241880 in ATG16L1 and rs6568431 in ATG5. CONCLUSION The current study highlights the importance of rs2241880 in ATG16L1 and rs77859116, rs510432, and rs548234 in ATG5 for HBV-induced HCC. Additionally, some mutations in ATG16L1 and ATG5 were important in risk of HBV infection. The study highlights the gap of knowledge in the field of ATG polymorphisms in HBV infection and HBV-induced HCC.
Collapse
Affiliation(s)
- Parastoo Yousefi
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
| | - Alireza Tabibzadeh
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
| | | | - Mohsen Mehrjoo
- Department of Biochemistry and Genetics, School of MedicineLorestan University of Medical SciencesKhorramabadIran
| | - Mandana Akhavan
- Department of Microbiology, Faculty of Medical SciencesIslamic Azad University, Arak BranchArakIran
| | - Leila Allahqoli
- Department of MidwiferyMinistry of Health and Medical EducationTehranIran
| | - Hamid Salehiniya
- Department of Epidemiology and Biostatistics, School of Health, Social Determinants of Health Research CenterBirjand University of Medical SciencesBirjandIran
| |
Collapse
|
3
|
Immune-Related lncRNAs with WGCNA Identified the Function of SNHG10 in HBV-Related Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:9332844. [PMID: 35847362 PMCID: PMC9279027 DOI: 10.1155/2022/9332844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
Abstract
Objective. The hepatitis B virus (HBV) infection led to hepatitis, which was one of common reasons for hepatocellular carcinoma (HCC). The immune microenvironment alteration played a crucial role in this process. The study aimed to identify immune-related long noncoding RNAs (lncRNAs) in HBV-related HCC and explore potential mechanisms. Methods. In total, 1,072 immune‐related genes (IRGs) were enriched in different co-expression modules with weighted gene co-expression network analysis (WGCNA) combining the corresponding clinical features in HBV-related HCC. The immune-related lncRNAs were selected from the crucial co-expression model based on the correlation analysis with IRGs. The immune-related lncRNAs were furtherly used to construct prognostic signature by the Cox proportional hazards regression and Lasso regression. Furthermore, the proliferation and migration ability of lncRNA SNHG10 were verified in vitro. Results. A total of nine co-expression modules were identified by WGCNA of which the “red” co-expression module was most correlated with various clinical characteristics. Additionally, the IRGs in this module were significantly enriched in multiple immune-related pathways. The twelve immune-related lncRNAs prognostic signature (HAND2-AS1, LINC00844, SNHG10, MALAT1, LINC00460, LBX2-AS1, MIR31HG, SEMA6A-AS1, LINC1278, LINC00514, CTBP-AS2, and LINC00205) was constructed. The risk score was an independent risk factor in HBV-related HCC and verified by principal components analysis (PCA), nomogram, and PCR between different cell lines. Moreover, the proportion of immune cells were significantly different between high-risk score group and low-risk score group. The malignant behavior of Hep3B was significantly different between si-lncRNA SNHG10 and control group. Conclusions. The immune-related lncRNAs prognostic signature provided some potential biomarkers and molecular mechanisms in HBV-related HCC.
Collapse
|
4
|
A Potential Prognostic Marker PRDM1 in Pancreatic Adenocarcinoma. JOURNAL OF ONCOLOGY 2022; 2022:1934381. [PMID: 35607327 PMCID: PMC9123419 DOI: 10.1155/2022/1934381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/24/2022] [Indexed: 11/18/2022]
Abstract
Pancreatic adenocarcinoma (PAAD) is a major threat to people's health. PRDM1 is a transcription factor with multiple functions, and its functions have been validated in a variety of tumors; however, there are few studies reported on PRDM1 in PAAD. Using the GEPIA2 database, this research found that PRDM1 expression in PAAD was significantly higher than that in normal pancreatic tissue. The Kaplan-Meier Plotter database showed that high expression of PRDM1 in PAAD has a poor prognosis, suggesting that PRDM1 may be a potential prognostic marker in PAAD. The cBioPortal database shows that the expression of PRDM1 in PAAD is significantly correlated with its methylation degree. Further analysis on the coexpressed genes of PRDM1 in PAAD was performed by using LinkedOmics database to explore potential mechanisms. Based on gene enrichment analysis, PRDM1 was implicated in many pathways involved in tumor progression. In the construction of a PPI network of PRDM1 and its coexpressed gene protein via the STRING database, we found that PRDM1 may be involved in the pathogenesis and development of PAAD. TIMER database suggested that a high level of PRDM1 has a significant positive correlation with macrophages, neutrophils, and DCs. Potential methylation sites of PRDM1 were found through DNMIVD database, and MethSurv database explored eight sites which were significantly related with the prognosis of PAAD. In conclusion, PRDM1 may work as a prognostic marker or even provide a potential therapeutic strategy in PAAD.
Collapse
|
5
|
Wang L, Li B, Yi X, Xiao X, Zheng Q, Ma L. Circ_0036412 affects the proliferation and cell cycle of hepatocellular carcinoma via hedgehog signaling pathway. J Transl Med 2022; 20:154. [PMID: 35382824 PMCID: PMC8981839 DOI: 10.1186/s12967-022-03305-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/12/2022] [Indexed: 12/27/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC), as the most common type of liver cancer, is characterized by high recurrence and metastasis. Circular RNA (circRNA) circ_0036412 was selected for studying the underlying mechanisms of HCC. Methods Quantitative real time-polymerase chain reaction (qRT-PCR) and western blot analyzed gene and protein expression. Functional experiments evaluated HCC cell proliferation, apoptosis and cell cycle in vitro. In vivo experiments detected HCC carcinogenesis in vivo. Fluorescence in situ hybridization (FISH) assays evaluated the subcellular distribution. Luciferase reporter, Chromatin immunoprecipitation (ChIP), DNA pulldown, RNA-binding protein immunoprecipitation (RIP), and RNA pulldown assays detected the underlying mechanisms. Results Circ_0036412 is overexpressed in HCC cells and features circular structure. PRDM1 activates circ_0036412 transcription to regulate the proliferation and cell cycle of HCC cells in vitro. Circ_0036412 modulates Hedgehog pathway. GLI2 propels HCC growth in vivo. Circ_0036412 up-regulates GLI2 expression by competitively binding to miR-579-3p, thus promoting the proliferation and inhibiting cell cycle arrest of HCC cells. Circ_0036412 stabilizes GLI2 expression by recruiting ELAVL1. Circ_0036412 propels the proliferation and inhibits cell cycle arrest of HCC cells in vitro through Hedgehog pathway. Conclusions Circ_0036412 affects the proliferation and cell cycle of HCC via Hedgehog signaling pathway. It offers an insight into the targeted therapies of HCC. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03305-x.
Collapse
Affiliation(s)
- Liyan Wang
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Xiufeng District, Guilin, 541001, Guangxi, China
| | - Bin Li
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Xiufeng District, Guilin, 541001, Guangxi, China.
| | - Xiaoyuan Yi
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Xiufeng District, Guilin, 541001, Guangxi, China
| | - Xuhua Xiao
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Xiufeng District, Guilin, 541001, Guangxi, China
| | - Qinghua Zheng
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Xiufeng District, Guilin, 541001, Guangxi, China
| | - Lei Ma
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Xiufeng District, Guilin, 541001, Guangxi, China
| |
Collapse
|
6
|
Zhang N, Liu Y, Yang H, Liang M, Wang X, Wang M, Kong J, Yuan X, Zhou F. Clinical Significance of Fusobacterium nucleatum Infection and Regulatory T Cell Enrichment in Esophageal Squamous Cell Carcinoma. Pathol Oncol Res 2021; 27:1609846. [PMID: 34305476 PMCID: PMC8300010 DOI: 10.3389/pore.2021.1609846] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022]
Abstract
A variety of pathogenic microorganisms promote tumor occurrence and development through long-term colonization in the body. Fusobacterium nucleatum (F. nucleatum) is abundant in precancerous esophageal lesions and is closely related to the malignant progression of esophageal squamous cell carcinoma (ESCC). The invasion of exogenous microorganisms can reshape the immune microenvironment, make the immune system incapacitated, and assist tumor cells in immune escape. A variety of pathogenic microorganisms induce the recruitment of regulatory T cell (Tregs) to allow tumor cells to escape immune surveillance and provide favorable conditions for their own long-term colonization. Tregs are one of the major obstacles to tumor immunotherapy and have a significant positive correlation with the occurrence and development of many kinds of tumors. Because F. nucleatum can instantly enter cells and colonize for a long time, we speculated that F. nucleatum infection could facilitate the immune escape of tumor cells through enrichment of Tregs and promote the malignant progression of ESCC. In this study, we found a significant concordance between F. nucleatum infection and Tregs infiltration. Therefore, we propose the view that chronic infection of F. nucleatum may provide favorable conditions for long-term colonization of itself by recruiting Tregs and suppressing the immune response. At the same time, the massive enrichment of Treg may also weaken the immune response and assist in the long-term colonization of F. nucleatum. We analyzed the correlation between F. nucleatum infection with the clinicopathological characteristics and survival prognosis of the patients. F. nucleatum infection was found to be closely related to sex, smoking, drinking, degree of differentiation, depth of invasion, lymph node metastasis, and clinical stage. The degree of differentiation, depth of infiltration, lymph node metastasis, clinical stage, and F. nucleatum infection are independent risk factors affecting ESCC prognosis. Additionally, the survival rate and median survival time were significantly shortened in the F. nucleatum infection positive group. Therefore, we propose that long-term smoking and alcohol consumption cause poor oral and esophageal environments, thereby significantly increasing the risk of F. nucleatum infection. In turn, F. nucleatum infection and colonization may weaken the antitumor immune response through Treg enrichment and further assist in self-colonization, promoting the malignant progression of ESCC.
Collapse
Affiliation(s)
- Ning Zhang
- Anyang Tumor Hospital, The Fourth Affiliated Hospital of Henan University of Science and Technology, Anyang, China
| | - Yiwen Liu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Hong Yang
- School of PE, Henan University of Science and Technology, Luoyang, China
| | - Mengxia Liang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiaopeng Wang
- Anyang Tumor Hospital, The Fourth Affiliated Hospital of Henan University of Science and Technology, Anyang, China
| | - Min Wang
- Anyang Tumor Hospital, The Fourth Affiliated Hospital of Henan University of Science and Technology, Anyang, China
| | - Jinyu Kong
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiang Yuan
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Fuyou Zhou
- Anyang Tumor Hospital, The Fourth Affiliated Hospital of Henan University of Science and Technology, Anyang, China
| |
Collapse
|
7
|
Mayer P, Kraft A, Witzel HR, Marnet N, Hörner N, Roth W, Heinrich S, Hackert T, Bergmann F, Kauczor HU, Klauss M, Gaida MM. Restricted Water Diffusion in Diffusion-Weighted Magnetic Resonance Imaging in Pancreatic Cancer is Associated with Tumor Hypoxia. Cancers (Basel) 2020; 13:cancers13010089. [PMID: 33396818 PMCID: PMC7801953 DOI: 10.3390/cancers13010089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Pancreatic cancer is characterized by a dense network of connective tissue surrounding clusters of cancer cells, the so-called stroma. This ubiquitous connective tissue impairs the delivery of oxygen to cancer cells. This results in hypoxia, which renders the cancer more aggressive and more resistant to treatment. In the present study, we investigated whether the extent of hypoxia in pancreatic cancer can be predicted by magnetic resonance imaging (MRI), a widely used medical imaging technique. More specifically, we used an MRI sequence which can quantitate the random motion (i.e., diffusion) of water molecules within the cancer tissue, namely diffusion-weighted (DW) MRI. We found that the random motion of water molecules is lower in cancer lesions with high hypoxia compared to those with low hypoxia. The findings from our study imply that DW-MRI can be used to identify pancreatic cancer lesions with high hypoxia which are at high risk for treatment failure. Abstract Hypoxia is a hallmark of pancreatic cancer (PDAC) due to its compact and extensive fibrotic tumor stroma. Hypoxia contributes to high lethality of this disease, by inducing a more malignant phenotype and resistance to radiation and chemotherapy. Thus, non-invasive methods to quantify hypoxia could be helpful for treatment decisions, for monitoring, especially in non-resectable tumors, or to optimize personalized therapy. In the present study, we investigated whether tumor hypoxia in PDAC is reflected by diffusion-weighted magnetic resonance imaging (DW-MRI), a functional imaging technique, frequently used in clinical practice for identification and characterization of pancreatic lesions. DW-MRI assesses the tissue microarchitecture by measuring the diffusion of water molecules, which is more restricted in highly compact tissues. As reliable surrogate markers for hypoxia, we determined Blimp-1 (B-lymphocyte induced maturation protein), a transcription factor, as well as vascular endothelial growth factor (VEGF), which are up-regulated in response to hypoxia. In 42 PDAC patients, we observed a close association between restricted water diffusion in DW-MRI and tumor hypoxia in matched samples, as expressed by high levels of Blimp-1 and VEGF in tissue samples of the respective patients. In summary, our data show that DW-MRI is well suited for the evaluation of tumor hypoxia in PDAC and could potentially be used for the identification of lesions with a high hypoxic fraction, which are at high risk for failure of radiochemotherapy.
Collapse
Affiliation(s)
- Philipp Mayer
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (H.-U.K.); (M.K.)
- Correspondence: ; Tel.: +49-6221-5637-345
| | - Anne Kraft
- Institute of Pathology, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany; (A.K.); (H.R.W.); (N.M.); (N.H.); (W.R.); (M.M.G.)
| | - Hagen R. Witzel
- Institute of Pathology, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany; (A.K.); (H.R.W.); (N.M.); (N.H.); (W.R.); (M.M.G.)
| | - Nicole Marnet
- Institute of Pathology, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany; (A.K.); (H.R.W.); (N.M.); (N.H.); (W.R.); (M.M.G.)
| | - Nina Hörner
- Institute of Pathology, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany; (A.K.); (H.R.W.); (N.M.); (N.H.); (W.R.); (M.M.G.)
| | - Wilfried Roth
- Institute of Pathology, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany; (A.K.); (H.R.W.); (N.M.); (N.H.); (W.R.); (M.M.G.)
| | - Stefan Heinrich
- Department of Surgery, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany;
| | - Thilo Hackert
- Department of General, Visceral, and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Frank Bergmann
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- Clinical Pathology, Klinikum Darmstadt GmbH, 64283 Darmstadt, Germany
| | - Hans-Ulrich Kauczor
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (H.-U.K.); (M.K.)
| | - Miriam Klauss
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (H.-U.K.); (M.K.)
| | - Matthias M. Gaida
- Institute of Pathology, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany; (A.K.); (H.R.W.); (N.M.); (N.H.); (W.R.); (M.M.G.)
- Research Center for Immunotherapy, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany
- Joint Unit Immunopathology, Institute of Pathology, University Medical Center, JGU-Mainz and TRON, Translational Oncology at the University Medical Center, JGU-Mainz, 55131 Mainz, Germany
| |
Collapse
|
8
|
Shen L, Chen Q, Yang C, Wu Y, Yuan H, Chen S, Ou S, Jiang Y, Huang T, Ke L, Mo J, Feng Z, Zhou P, Fan W. Role of PRDM1 in Tumor Immunity and Drug Response: A Pan-Cancer Analysis. Front Pharmacol 2020; 11:593195. [PMID: 33384601 PMCID: PMC7770985 DOI: 10.3389/fphar.2020.593195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/16/2020] [Indexed: 11/15/2022] Open
Abstract
Background: PR domain zinc finger protein 1 (PRDM1) is a regulator of both B cell and T cell differentiation and plays a critical role in immunosuppression. Its role in tumor immunity and correlation with drug response remain unknown. Methods: This work comprehensively analyzed the transcriptional expression pattern of the PRDM1 among 33 types of malignancies from The Cancer Genome Atlas and the Genotype-Tissue Expression projects. Besides, correlation of the PRDM1 with cancer prognosis, immune infiltrates, checkpoint markers, cancer stemness and drug response were explored. Results: High expression level of PRDM1 were observed in ACC, COAD, LAML, LGG, LUAD, OV, PAAD, STAD, TGCT. Cox regression model showed high expression of PRDM1 in tumor samples correlates with poor prognosis in LGG, PAAD, UVM while favorable prognosis in KIRC, SKCM and THCA. PRDM1 expression positively correlates with the expression of LAG3, CTLA4, PDCD1 (PD-1), CD274 (PD-L1), PDCD1LG2 (PD-L2), TIGIT in the majority of 33 cancer types. PRDM1 positively correlated with TNFRSF14 in LGG and UVM among cancers with unfavorable prognosis; this correlation were weak or even negative in cancers with favorable prognosis. The top negatively enriched KEGG terms in high PRDM1 subgroup were B cell receptor signaling, T cell receptor signaling, and the top negatively enriched HALLMARK terms included IL-2-STAT5 signaling and allograft rejection. The expression of PRDM1 was found positively correlated with cancer stemness in CHOL, KIRP, TGCT, THYM and UVM. A series of targeted drugs and small-molecule drugs with promising efficacy predicted by PRDM1 level were identified. Conclusion: The clinical significance and biological impact of high transcriptional expression of PRDM1 differs across different cancers. Inhibiting the PRDM1-dependent signaling could be a novel and promising strategy of immunotherapy in cancers including LGG, PAAD and UVM.
Collapse
Affiliation(s)
- Lujun Shen
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qifeng Chen
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Changsheng Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Spine Surgery, Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ying Wu
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hui Yuan
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shuanggang Chen
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shunling Ou
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yiquan Jiang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tao Huang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liangru Ke
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinqing Mo
- Zhong Shan Medical School, Sun Yat-sen University, M, China
| | - Ziqing Feng
- Zhong Shan Medical School, Sun Yat-sen University, M, China
| | - Penghui Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weijun Fan
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Li N, Fan X, Wang X, Zhang X, Zhang K, Han Q, Lv Y, Liu Z. Genetic association of polymorphisms at the intergenic region between PRDM1 and ATG5 with hepatitis B virus infection in Han Chinese patients. J Med Virol 2019; 92:1198-1205. [PMID: 31729038 DOI: 10.1002/jmv.25629] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is related to chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC), and the interplay between the virus and host immune response leads to different outcomes of the infection. PR domain zinc finger protein 1 (PRDM1) and autophagy-related protein 5 (ATG5) are involved in immune response and HBV infection. An intergenic region between PRDM1 and ATG5 (PRDM1-ATG5 region) has been identified, and single-nucleotide polymorphisms (SNPs) in this region were shown to be involved in immune regulation. This study investigated the functionally relevant rs548234, rs6937876, and rs6568431 polymorphisms at the PRDM1-ATG5 region in a Han Chinese population (403 patients with chronic HBV infection [171 chronic hepatitis, 119 cirrhosis, and 113 HCC], 70 infection resolvers, and 196 healthy controls). The frequencies of the rs6568431 allele A in HBV patients (P = .005) and genotype CA in infection resolvers (P = .005) were significantly higher than in healthy controls. In the dominant model, HCC patients had significantly higher frequencies of rs548234 genotypes CC + TC than cirrhosis patients (P = .009). Rs548234 was an independent factor for HCC in comparison with either cirrhosis (P = .005) or all chronic HBV infection without HCC (P = .018). Functional annotation showed evidence of the role of the SNPs in gene regulation. In conclusion, through this study it is revealed for the first time that rs6568431 may be associated with susceptibility to HBV infection and that rs548234 may be associated with HCC risk in chronic HBV infection, supporting the presence of HBV-related disease-causing regulatory polymorphisms in the PRDM1-ATG5 intergenic region.
Collapse
Affiliation(s)
- Na Li
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiude Fan
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoyun Wang
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoge Zhang
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kun Zhang
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qunying Han
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhengwen Liu
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
10
|
PRDM1 rs1010273 polymorphism is associated with overall survival of patients with hepatitis B virus-related hepatocellular carcinoma. Immunol Lett 2019; 213:39-45. [PMID: 31376415 DOI: 10.1016/j.imlet.2019.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
T cell exhaustion is involved in the pathogenesis of chronic hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC). B lymphocyte-induced maturation protein 1 (BLIMP-1), encoded by the PRDM1 gene, plays a crucial role in T cell exhaustion. This study investigated PRDM1 rs1010273 and rs2185379 polymorphisms in 403 patients with chronic HBV infection (171 chronic hepatitis, 119 liver cirrhosis and 113 HCC), 70 spontaneous HBV infection resolvers and 196 healthy controls. The results showed that the rs1010273 and rs2185379 polymorphisms had no significant differences between patients with chronic HBV infection and healthy controls or between patients with different clinical diseases. However, PRDM1 rs1010273 polymorphism was shown to be significantly associated with the overall survival of patients with HBV-related HCC. The 1-, 3-, and 5-year survival rates of HCC patients were 70.5%, 34.6%, and 11.5%, respectively, in genotype GG carriers and 91.4%, 51.4% and 31.4%, respectively, in genotypes AA + GA carriers (p = 0.008). Multivariate analysis showed that PRDM1 rs1010273 polymorphism was an independent factor associated with the overall survival of patients with HCC (odds ratio, 0.529; 95% confidence interval, 0.126-0.862; p = 0.002). These results provide novel evidence for a role of PRDM1 rs1010273 in the pathogenesis of HBV-related HCC. Additional studies are needed to replicate and extend the findings of this study and to elucidate the underlying mechanisms.
Collapse
|