1
|
Liu Y, Lu J. Mechanism and clinical application of thymosin in the treatment of lung cancer. Front Immunol 2023; 14:1237978. [PMID: 37701432 PMCID: PMC10493777 DOI: 10.3389/fimmu.2023.1237978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. The burden of cancer on public health is becoming more widely acknowledged. Lung cancer has one of the highest incidence and mortality rates of all cancers. The prevalence of early screening, the emergence of targeted therapy, and the development of immunotherapy have all significantly improved the overall prognosis of lung cancer patients. The current state of affairs, however, is not encouraging, and there are issues like poor treatment outcomes for some patients and extremely poor prognoses for those with advanced lung cancer. Because of their potent immunomodulatory capabilities, thymosin drugs are frequently used in the treatment of tumors. The effectiveness of thymosin drugs in the treatment of lung cancer has been demonstrated in numerous studies, which amply demonstrates the potential and future of thymosin drugs for the treatment of lung cancer. The clinical research on thymosin peptide drugs in lung cancer and the basic research on the mechanism of thymosin drugs in anti-lung cancer are both systematically summarized and analyzed in this paper, along with future research directions.
Collapse
Affiliation(s)
| | - Jibin Lu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Savino W, Lepletier A. Thymus-derived hormonal and cellular control of cancer. Front Endocrinol (Lausanne) 2023; 14:1168186. [PMID: 37529610 PMCID: PMC10389273 DOI: 10.3389/fendo.2023.1168186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
The thymus gland is a central lymphoid organ in which developing T cell precursors, known as thymocytes, undergo differentiation into distinct type of mature T cells, ultimately migrating to the periphery where they exert specialized effector functions and orchestrate the immune responses against tumor cells, pathogens and self-antigens. The mechanisms supporting intrathymic T cell differentiation are pleiotropically regulated by thymic peptide hormones and cytokines produced by stromal cells in the thymic microenvironment and developing thymocytes. Interestingly, in the same way as T cells, thymic hormones (herein exemplified by thymosin, thymulin and thymopoietin), can circulate to impact immune cells and other cellular components in the periphery. Evidence on how thymic function influences tumor cell biology and response of patients with cancer to therapies remains unsatisfactory, although there has been some improvement in the knowledge provided by recent studies. Herein, we summarize research progression in the field of thymus-mediated immunoendocrine control of cancer, providing insights into how manipulation of the thymic microenvironment can influence treatment outcomes, including clinical responses and adverse effects of therapies. We review data obtained from clinical and preclinical cancer research to evidence the complexity of immunoendocrine interactions underpinning anti-tumor immunity.
Collapse
Affiliation(s)
- Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ailin Lepletier
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
3
|
Li L, Zhao C, Kong F, Li YC, Wang C, Chen S, Tan HY, Liu Y, Wang D. Calf Thymus Polypeptide Restrains the Growth of Colorectal Tumor via Regulating the Intestinal Microbiota-Mediated Immune Function. Front Pharmacol 2022; 13:898906. [PMID: 35662701 PMCID: PMC9160181 DOI: 10.3389/fphar.2022.898906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Calf thymus polypeptide (CTP), with a molecular mass of <10 kDa, is prepared from the thymus of less than 30-day-old newborn cattle. In the present study, the inhibitory function of CTP in colorectal cancer (CRC) was investigated in B6/JGpt-Apcem1Cin(MinC)/Gpt (ApcMin/+) mice. CTP hampered tumor development and enhanced the ratio of CD3e−NK1.1+ cells by 113.0% and CD3e+CD28+ cells by 84.7% in the peripheral blood of ApcMin/+ mice. CTP improved the richness, diversity, and evenness of the intestinal microbiota of ApcMin/+ mice, particularly by regulating the abundance of immune-related microorganisms. CTP effectively regulated the expression of immune-related cytokines, such as interleukin (IL)-2 (15.19% increment), IL-12 (17.47% increment), and transforming growth factor (TGF)-β (11.19% reduction). Additionally, it enhanced the levels of CD4 and CD8, as well as the ratio of helper T lymphocytes (Th)1/Th2 in the spleen and tumors of ApcMin/+ mice. In CTP-treated mice, reduced levels of programmed death-1 (PD-1), programmed cell death-ligand 1 (PD-L1), cytotoxic T lymphocyte-associated antigen 4 (CTLA4), activated nuclear factor of activated T cells 1 (NFAT1), and nuclear factor κB (NF-κB) p65 signaling were noted. Collectively, the anti-CRC effect of CTP is related to the modulation of intestinal microbiota-mediated immune function, which provides a reference for CTP as a therapeutic drug or a combination drug used in CRC treatment in a clinical setting.
Collapse
Affiliation(s)
- Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,School of Life Sciences, Jilin University, Changchun, China
| | - Chenfei Zhao
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Fange Kong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Yi-Cong Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Chunxia Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Shanshan Chen
- School of Life Sciences, Jilin University, Changchun, China
| | - Hor-Yue Tan
- Centre for Chinese Herbal Medicine Drug Development, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Di Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
4
|
The intrapleural administration with thymic peptides in malignant pleural effusion: A clustered systematic review and meta-analysis. Int Immunopharmacol 2022; 107:108688. [DOI: 10.1016/j.intimp.2022.108688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/27/2022] [Accepted: 03/06/2022] [Indexed: 11/24/2022]
|
5
|
Zhou Y, Ke P, Bao X, Wu H, Xia Y, Zhang Z, Zhong H, Dai Q, Wu L, Wang T, Lin M, Li Y, Jiang X, Yang Q, Lu Y, Zhong X, Han M, Gao J. Peptide nano-blanket impedes fibroblasts activation and subsequent formation of pre-metastatic niche. Nat Commun 2022; 13:2906. [PMID: 35614076 PMCID: PMC9132894 DOI: 10.1038/s41467-022-30634-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 05/10/2022] [Indexed: 11/09/2022] Open
Abstract
There is evidence to suggest that the primary tumor induces the formation of a pre-metastatic niche in distal organs by stimulating the production of pro-metastatic factors. Given the fundamental role of the pre-metastatic niche in the development of metastases, interruption of its formation would be a promising strategy to take early action against tumor metastasis. Here we report an enzyme-activated assembled peptide FR17 that can serve as a “flame-retarding blanket” in the pre-metastatic niche specifically to extinguish the “fire” of tumor-supportive microenvironment adaption. We show that the in-situ assembled peptide nano-blanket inhibits fibroblasts activation, suppressing the remodeling of the metastasis-supportive host stromal tissue, and reversing vascular destabilization and angiogenesis. Furthermore, we demonstrate that the nano-blanket prevents the recruitment of myeloid cells to the pre-metastatic niche, regulating the immune-suppressive microenvironment. We show that FR17 administration effectively inhibits the formation of the pulmonary pre-metastatic niche and postoperative metastasis, offering a therapeutic strategy against pre-metastatic niche formation. Primary tumors “spread the spark” by establishing a pre-metastatic niche. Here the authors develop an in-situ assembled peptide FR17 to serve as a “flame-retarding blanket” to extinguish the “fire” of the pre-metastatic microenvironment.
Collapse
Affiliation(s)
- Yi Zhou
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Peng Ke
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.,Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, Fujian, PR China
| | - Xiaoyan Bao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Honghui Wu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Yiyi Xia
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Zhentao Zhang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Haiqing Zhong
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Qi Dai
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.,Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Linjie Wu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Tiantian Wang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Mengting Lin
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Yaosheng Li
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Xinchi Jiang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Qiyao Yang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.,Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Yiying Lu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Xincheng Zhong
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Min Han
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China. .,Cancer Center of Zhejiang University, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China. .,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.
| | - Jianqing Gao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China. .,Cancer Center of Zhejiang University, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China. .,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.
| |
Collapse
|
6
|
Guo CL, Mei JD, Jia YL, Gan FY, Tang YD, Liu CW, Zeng Z, Yang ZY, Deng SY, Sun X, Liu LX. Impact of thymosin α1 as an immunomodulatory therapy on long-term survival of non-small cell lung cancer patients after R0 resection: a propensity score-matched analysis. Chin Med J (Engl) 2021; 134:2700-2709. [PMID: 34732663 PMCID: PMC8631386 DOI: 10.1097/cm9.0000000000001819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND There is limited information about thymosin α1 (Tα1) as adjuvant immunomodulatory therapy, either used alone or combined with other treatments, in patients with non-small cell lung cancer (NSCLC). This study aimed to evaluate the effect of adjuvant Tα1 treatment on long-term survival in margin-free (R0)-resected stage IA-IIIA NSCLC patients. METHODS A total of 5746 patients with pathologic stage IA-IIIA NSCLC who underwent R0 resection were included. The patients were divided into the Tα1 group and the control group according to whether they received Tα1 or not. A propensity score matching (PSM) analysis was performed to reduce bias, resulting in 1027 pairs of patients. RESULTS After PSM, the baseline clinicopathological characteristics were similar between the two groups. The 5-year disease-free survival (DFS) and overall survival (OS) rates were significantly higher in the Tα1 group compared with the control group. The multivariable analysis showed that Tα1 treatment was independently associated with an improved prognosis. A longer duration of Tα1 treatment was associated with improved OS and DFS. The subgroup analyses showed that Tα1 therapy could improve the DFS and/or OS in all subgroups of age, sex, Charlson Comorbidity Index (CCI), smoking status, and pathological tumor-node-metastasis (TNM) stage, especially for patients with non-squamous cell NSCLC and without targeted therapy. CONCLUSION Tα1 as adjuvant immunomodulatory therapy can significantly improve DFS and OS in patients with NSCLC after R0 resection, except for patients with squamous cell carcinoma and those receiving targeted therapy. The duration of Tα1 treatment is recommended to be >24 months.
Collapse
Affiliation(s)
- Cheng-Lin Guo
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu, Sichuan 610041, China
| | - Jian-Dong Mei
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu, Sichuan 610041, China
| | - Yu-Long Jia
- Chinese Evidence-Based Medicine Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fan-Yi Gan
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu, Sichuan 610041, China
| | - Yu-Dong Tang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu, Sichuan 610041, China
| | - Cheng-Wu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu, Sichuan 610041, China
| | - Zhen Zeng
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu, Sichuan 610041, China
| | - Zhen-Yu Yang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu, Sichuan 610041, China
| | - Sen-Yi Deng
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu, Sichuan 610041, China
| | - Xing Sun
- Chinese Evidence-Based Medicine Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lun-Xu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu, Sichuan 610041, China
| |
Collapse
|
7
|
Feng Y, Zhu G, Lang S, Hao P, Li G, Chen F, Zhuo W, Duan Y, Zhang A, Chen Z, Sun J. The Efficacy and Safety of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Combined With Thymosin in Advanced Non-Small Cell Lung Cancer Patients Harboring Active Epidermal Growth Factor Receptor Mutations. Front Oncol 2021; 11:659065. [PMID: 34123814 PMCID: PMC8195272 DOI: 10.3389/fonc.2021.659065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
Objective To explore the efficacy and safety of EGFR-TKI combined with thymosin therapy in advanced non-small cell lung cancer (NSCLC) patients harboring active EGFR mutations. Methods Patients confirmed as advanced NSCLC with active EGFR mutations were recruited from August 2008 to July 2018 retrospectively. Patients treated with EGFR-TKI were classified as the EGFR-TKI group. And those received EGFR-TKI and thymosin therapy were designated as the EGFR-TKI plus thymosin group. The primary endpoint was progression-free survival (PFS). The secondary endpoints included overall survival (OS), tumor response and adverse effects. Results The median PFS was significantly longer in EGFR-TKI plus thymosin group than that in EGFR-TKI group (14.4 months vs. 9.2 months; HR=0.433, 95% CI 0.322 - 0.582, P<0.0001). The median OS was also prolonged in EGFR-TKI plus thymosin group than that in EGFR-TKI group (29.5 months vs. 19.8 months; HR=0.430, 95% CI 0.319 - 0.580, P<0.0001). The objective response rate in EGFR-TKI plus thymosin group and EGFR-TKI group were 60.0% versus 60.8% (P=0.918). The disease control rate was 96.9% in EGFR-TKI plus thymosin group and 97.7% in EGFR-TKI group (P=1.000). There were no significant differences in adverse effects between the two groups. The number of CD3+T cells in peripheral blood decreased significantly after treatment including both CD3+CD4+T and CD3+CD8+T subsets in EGFR-TKI group, but not in EGFR-TKI plus thymosin group. Conclusions Combination of EGFR-TKI and thymosin can significantly prolong the PFS and OS compared with EGFR-TKI monotherapy without more adverse events, which offers a new strategy in clinic.
Collapse
Affiliation(s)
- Yongdong Feng
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Guangkuo Zhu
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Song Lang
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ping Hao
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Guanghui Li
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Fanglin Chen
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Wenlei Zhuo
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuzhong Duan
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Anmei Zhang
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zhengtang Chen
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jianguo Sun
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
8
|
Calf thymus polypeptide improved hematopoiesis via regulating colony-stimulating factors in BALB/c mice with hematopoietic dysfunction. Int J Biol Macromol 2020; 156:204-216. [PMID: 32156537 DOI: 10.1016/j.ijbiomac.2020.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/31/2022]
Abstract
Calf thymus polypeptide (CTP) is prepared from calf thymus. It has a molecular mass of <10 kilodalton (kDa) and contains 17 types of amino acids. This study investigated the hematopoietic function-improvement effect of CTP in CHRF, K562, and bone marrow mononuclear cells; mice with immunosuppression; and with hematopoietic dysfunction. In mice with immunosuppression, CTP enhanced the cytotoxic activity of natural killer cells and the proliferation of lymphocytes and regulated the levels of immunoglobulins. It also enhanced the proliferation and differentiation of CHRF and K562 cells by upregulating the expression of proliferation- and differentiation-related proteins. In mice with hematopoietic dysfunction, CTP restored white blood cell, neutrophil, and hemoglobin proportions in the peripheral blood and enhanced the levels of B lymphocytes and hematopoietic stem cells and progenitor cells in the bone marrow. CTP effectively regulated the levels of hematopoiesis-related cytokines, such as granulocyte colony-stimulating factor (G-CSF), macrophage colony-stimulating factor (M-CSF), interleukin 2, and interferons-γ, and enhanced the expression of hematopoiesis-related proteins in both primary bone marrow cells and mice with hematopoietic dysfunction. These results indicate that CTP has hematopoietic function-improvement effect and this effect may be related to the modulation of colony-stimulating factors (CSFs) and related signaling pathways.
Collapse
|