1
|
Barna M, Dunovska K, Cepova J, Werle J, Prusa R, Bjørklud G, Melichercik P, Kizek R, Klapkova E. Short-term impact of vitamin K2 supplementation on biochemical parameters and lipoprotein fractions. Electrophoresis 2024. [PMID: 39091191 DOI: 10.1002/elps.202400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/29/2024] [Accepted: 07/14/2024] [Indexed: 08/04/2024]
Abstract
This study explored the short-term effects of vitamin K2 (VK2) supplementation on biochemical parameters (vitamin D, vitamin E, vitamin A, alkaline phosphatase, calcium, phosphorus (P), magnesium, metallothionein, triglycerides, cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and lipoprotein fractions (albumin, HDL, very low-density lipoprotein (VLDL), LDL, and chylomicrons). A short-term experiment (24 h, six probands) was performed to track changes in VK2 levels after a single-dose intake (360 µg/day). Liquid chromatography-tandem mass spectrometry was used to monitor vitamin K levels (menaquinone-4 (MK-4), menaquinone-7 (MK-7), and vitamin K1 [VK1]) with a limit of detection of 1.9 pg/mL for VK1 and 3.8 pg/mL for the two forms of VK2. Results showed that MK-7 levels significantly increased within 2-6 h post-administration and then gradually declined. MK-4 levels were initially low, showing a slight increase, whereas VK1 levels rose initially and then decreased. Biochemical analyses indicated no significant changes in sodium, chloride, potassium, calcium, magnesium, albumin, or total protein levels. A transient increase in P was observed, peaking at 12 h before returning to baseline. Agarose gel electrophoresis of lipoprotein fractions revealed distinct chylomicron bands and variations in VLDL and HDL mobility, influenced by dietary lipids and VK2 supplementation. These findings suggest effective absorption and metabolism of MK-7 with potential implications for bone metabolism and cardiovascular health.
Collapse
Affiliation(s)
- Milos Barna
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
- First Department of Orthopaedics, First Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Katerina Dunovska
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Jana Cepova
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Julia Werle
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Richard Prusa
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Geir Bjørklud
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - Pavel Melichercik
- First Department of Orthopaedics, First Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Rene Kizek
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Eva Klapkova
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| |
Collapse
|
2
|
Yang R, Roshani D, Gao B, Li P, Shang N. Metallothionein: A Comprehensive Review of Its Classification, Structure, Biological Functions, and Applications. Antioxidants (Basel) 2024; 13:825. [PMID: 39061894 PMCID: PMC11273490 DOI: 10.3390/antiox13070825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Metallothionein is a cysteine-rich protein with a high metal content that is widely found in nature. In addition to heavy metal detoxification, metallothionein is well known as a potent antioxidant. The high sulfhydryl content of metallothionein confers excellent antioxidant activity, enabling it to effectively scavenge free radicals and mitigate oxidative stress damage. In addition, metallothionein can play a neuroprotective role by alleviating oxidative damage in nerve cells, have an anticancer effect by enhancing the ability of normal cells to resist unfavorable conditions through its antioxidant function, and reduce inflammation by scavenging reactive oxygen species. Due to its diverse biological functions, metallothionein has a broad potential for application in alleviating environmental heavy metal pollution, predicting and diagnosing diseases, and developing skin care products and health foods. This review summarizes the recent advances in the classification, structure, biological functions, and applications of metallothionein, focusing on its powerful antioxidant effects and related functions.
Collapse
Affiliation(s)
- Ruoqiu Yang
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, No, 17 Qinghua East Road, Haidian District, Beijing 100083, China; (R.Y.); (B.G.)
| | - Dumila Roshani
- College of Engineering, China Agricultural University, No, 17 Qinghua East Road, Haidian District, Beijing 100083, China;
| | - Boya Gao
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, No, 17 Qinghua East Road, Haidian District, Beijing 100083, China; (R.Y.); (B.G.)
| | - Pinglan Li
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, No, 17 Qinghua East Road, Haidian District, Beijing 100083, China; (R.Y.); (B.G.)
| | - Nan Shang
- College of Engineering, China Agricultural University, No, 17 Qinghua East Road, Haidian District, Beijing 100083, China;
| |
Collapse
|
3
|
Li J, Guan M, Qi L, Zhang F, Jia C, Meng Q, Han J. Metalloproteins as risk factors for osteoarthritis: improving and understanding causal estimates using Mendelian randomization. Clin Rheumatol 2024; 43:2079-2091. [PMID: 38720162 PMCID: PMC11111566 DOI: 10.1007/s10067-024-06968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/09/2023] [Accepted: 04/14/2024] [Indexed: 05/24/2024]
Abstract
Osteoarthritis (OA) is one of the most prevalent musculoskeletal disorders and a primary cause of pain and disability among the elderly population. Research on the relationship between metalloproteins (MPs) and OA is limited, and causality remains unclear. Our objective is to utilize Mendelian randomization (MR) to explore the possible causal relationship between MPs and OA. The data on MPs were derived from a Genome-Wide Association Study (GWAS) analysis involving 3301 samples. The GWAS data for OA were obtained from an analysis involving 462,933 European individuals. In this study, a variety of two-sample Mendelian randomization methods (two-sample MR) to evaluate the causal effect of MPs on OA, including inverse variance weighted method (IVW), MR-Egger method, weighted median method (WM), simple mode, weight mode, and Wald ratio. The primary MR analysis using the IVW method reveals a significant negative correlation between Metallothionein-1F (MT-1F), zinc finger protein 134 (ZNF134), calcium/calmodulin-dependent protein kinase type 1D (CAMK1D), and EF-hand calcium-binding domain-containing protein 14 (EFCAB14) with the occurrence of osteoarthritis (OA) (p value < 0.05). However, no causal relationship was observed in the opposite direction between these MPs and OA. Notably, even in combined models accounting for confounding factors, the negative association between these four MPs and OA remained significant. Sensitivity analysis demonstrated no evidence of horizontal pleiotropy or heterogeneity, and leave-one-out analysis confirmed the robustness of the results. In this study, we have established a conspicuous association between four distinct MPs and OA. This discovery augments our understanding of potential avenues for the diagnosis and treatment of this condition. Key Points • The MR method was employed to assess the relationship between MPs and OA. • A total of four types of MPs have demonstrated inhibitory effects on the occurrence of OA.
Collapse
Affiliation(s)
- Jiaze Li
- Department of Orthopedics, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian City Third People's Hospital, Dalian, 116091, Liaoning Province, China
| | - Mingyang Guan
- Department of Orthopedics, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian City Third People's Hospital, Dalian, 116091, Liaoning Province, China
| | - Lin Qi
- Department of Orthopedics, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian City Third People's Hospital, Dalian, 116091, Liaoning Province, China
| | - Fengping Zhang
- Department of Orthopedics, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian City Third People's Hospital, Dalian, 116091, Liaoning Province, China
| | - Chenxu Jia
- Department of Orthopedics, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian City Third People's Hospital, Dalian, 116091, Liaoning Province, China
| | - Qingtao Meng
- Department of Orthopedics, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian City Third People's Hospital, Dalian, 116091, Liaoning Province, China.
| | - Jian Han
- Department of Orthopedics, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian City Third People's Hospital, Dalian, 116091, Liaoning Province, China
| |
Collapse
|
4
|
Sosnik A, Zlotver I, Peled E. Galactomannan- graft-poly(methyl methacrylate) nanoparticles induce an anti-inflammatory phenotype in human macrophages. J Mater Chem B 2023; 11:8471-8483. [PMID: 37587844 DOI: 10.1039/d3tb01397a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Macrophages are immune cells that can be activated into either pro-inflammatory M1 or anti-inflammatory M2 phenotypes. Attempts to modulate macrophage phenotype using drugs have been limited by targeting issues and systemic toxicity. This study investigates the effect of drug-free self-assembled hydrolyzed galactomannan-poly(methyl methacrylate) (hGM-g-PMMA) nanoparticles on the activation of the human monocyte-derived macrophage THP-1 cell line. Nanoparticles are cell compatible and are taken up by macrophages. RNA-sequencing analysis of cells exposed to NPs reveal the upregulation of seven metallothionein genes. Additionally, the secretion of pro-inflammatory and anti-inflammatory cytokines upon exposure of unpolarized macrophages and M1-like cells obtained by activation with lipopolysaccharide + interferon-γ to the NPs is reduced and increased, respectively. Finally, nanoparticle-treated macrophages promote fibroblast migration in vitro. Overall, results demonstrate that hGM-g-PMMA nanoparticles induce the release of anti-inflammatory cytokines by THP-1 macrophages, which could pave the way for their application in the therapy of different inflammatory conditions, especially by local delivery.
Collapse
Affiliation(s)
- Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City, 3200003 Haifa, Israel.
| | - Ivan Zlotver
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City, 3200003 Haifa, Israel.
| | - Ella Peled
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City, 3200003 Haifa, Israel.
| |
Collapse
|
5
|
Yılmaz S, Kılıç N, Kaya Ş, Taşcı G. A Potential Biomarker for Predicting Schizophrenia: Metallothionein-1. Biomedicines 2023; 11:590. [PMID: 36831126 PMCID: PMC9952915 DOI: 10.3390/biomedicines11020590] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
It has been thought that oxidative damage may occur in the pathophysiology of schizophrenia; metallothioneins (MT) have strong antioxidant functions. In this study, we aimed to measure MT-1 levels in schizophrenia patients. A total of 52 patients diagnosed with schizophrenia and 38 healthy controls were included in the study. Serum MT-1 concentrations were measured using the Human Metallothionein-1 ELISA Kit. In addition, Cu and Zn levels were measured. PANSS (Positive and Negative Syndrome Scale) was used to determine the disease severity of patients with schizophrenia. The MT-1 levels of the schizophrenia group were lower than the MT-1 levels of the control group. When the correlation analyses were examined, a positive correlation was found between MT-1 and illness duration and Cu/Zn. A negative correlation was found between MT-1 levels and PANSS total scores and PANSS positive scores. In the regression analysis, it was seen that the decrease in MT-1 levels poses a risk for schizophrenia. It was observed that a decrease of 1 ng/mL in MT-1 levels increased the risk of schizophrenia 1.115 times. The low concentration of MT-1 is likely to cause a deficiency in antioxidant defense in patients with schizophrenia. MT-1 may be a useful biomarker for predicting schizophrenia.
Collapse
Affiliation(s)
- Seda Yılmaz
- Department of Psychiatry, Elazığ Fethi Sekin City Hospital, 23100 Elazığ, Turkey
| | - Nülüfer Kılıç
- Department of Psychiatry, Elazığ Fethi Sekin City Hospital, 23100 Elazığ, Turkey
| | - Şüheda Kaya
- Department of Psychiatry, Elazig Mental Health and Diseases Hospital, 23100 Elazığ, Turkey
| | - Gülay Taşcı
- Department of Psychiatry, Elazığ Fethi Sekin City Hospital, 23100 Elazığ, Turkey
| |
Collapse
|
6
|
Ma Y, Yin Z, Dai H, Wu D, Cong J, Huang X, Chen X, Zou L, Ye Z, Huang Z. Increased Metallothionein-1 Associated with Gout Activity and Tophi. Immunol Invest 2023; 52:319-331. [PMID: 36719801 DOI: 10.1080/08820139.2023.2173078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND AIMS Gout is a chronic self-limiting inflammatory arthritis. An increase in metallothionein-1 (MT-1) has been reported in rheumatoid arthritis and osteoarthritis, and it attenuates inflammation and the pathology of diseases. This study aims to detect MT-1 levels in patients with gout and to explore its correlation with disease activity, clinical indexes, and inflammatory cytokines. METHODS The expression of MT-1 messenger RNAs (mRNAs) and protein levels in patients with gout were measured using real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Correlations between MT-1 and clinical indexes or inflammatory mediators were analyzed using Spearman's correlation test. RESULTS Compared with healthy controls (HCs, n = 43), patients with active gout (n = 27) showed higher levels of MT-1 mRNA in peripheral blood mononuclear cells and protein in serum, particularly those with tophi. No significant difference in serum MT-1 levels was observed among patients with inactive gout, HCs, and patients with hyperuricemia without gout. Furthermore, no significant difference was observed between patients with gout with kidney damage and HCs. In addition, serum interleukin (IL)-1β, IL-6, and IL-8 levels were significantly increased in patients with active gout, particularly in those with tophi. The serum MT-1 level was positively correlated with C-reactive protein, as well as with IL-1β, IL-6, and IL-18. CONCLUSION The higher levels of MT-1 were found in patients with gout, which were correlated with disease activity and gout related pro-inflammatory cytokines. Indicating MT-1 may serve as a new marker for predicting disease activity.Abbreviations: IL-1β: Interleukin 1β; MT-1: Metallothionein-1; CRP: C-Reactive Protein; ROS: Reactive Oxygen Species; IL-10: Interleukin 10; TGF-β: Transforming Growth Factor Beta.
Collapse
Affiliation(s)
- Yanmei Ma
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China.,Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, China.,Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China.,Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Hanying Dai
- Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Dandan Wu
- Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Junxiao Cong
- Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, China.,Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Xinmin Huang
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China.,Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Xinpeng Chen
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China.,Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Linghua Zou
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China.,Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China.,Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhong Huang
- Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, China.,Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| |
Collapse
|
7
|
Ma Y, Du J, Yin Z, Dai H, Wei Y, Xia Y, Li L, Ye Z, Huang Z. Metallothionein-1 is Positively Correlated with Inflammation and Ankylosing Spondylitis Activity. J Inflamm Res 2022; 15:5935-5944. [PMID: 36274830 PMCID: PMC9585266 DOI: 10.2147/jir.s382827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction Ankylosing spondylitis (AS) is a common form of chronic inflammatory rheumatic disease. Metallothionein-1 (MT-1) has been known to play an immunosuppressive role in various noninfectious inflammatory diseases, especially osteoarthritis and rheumatoid arthritis, thus inhibiting inflammation and pathogenesis in various diseases. However, whether MT-1 is related to AS is unclear. Here, we examined the levels of MT-1 in patients with AS and its correlation with the disease activity, complication, clinical indexes, and inflammatory cytokines and attempted to explain the effect of MT-1 on inflammation in AS. Methods The messenger RNA (mRNA) and protein expression of MT-1 in patients with AS were detected through real-time polymerase chain reaction and enzyme-linked immunosorbent assay. The associations between serum MT-1 protein level and clinical indexes or proinflammatory cytokines in AS were analyzed using the Spearman correlation test. Results The mRNAs and serum protein levels of MT-1 were significantly higher in patients with AS, especially in patients with active AS and patients with osteoporosis (OP) than in healthy controls (HCs), and no difference was observed between patients with inactive AS and HCs. Serum MT-1 levels positively correlated with disease activity, proinflammatory cytokines, and clinical indexes Ankylosing Spondylitis Disease Activity Score with C-Reactive Protein, C-reactive protein level, and erythrocyte sedimentation rate in patients with AS. Conclusion MT-1 expression was upregulated in patients with active AS but not in those with inactive AS and positively correlated with clinical indexes, especially in OP, as well as with proinflammatory cytokines tumor necrosis factor–alpha, interleukin (IL)-1β, and IL-6 in patients with AS.
Collapse
Affiliation(s)
- Yanmei Ma
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040, People’s Republic of China,Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, 518055, People’s Republic of China,Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518055, People’s Republic of China
| | - Jing Du
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040, People’s Republic of China,Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518055, People’s Republic of China
| | - Hanying Dai
- Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, 518055, People’s Republic of China
| | - Yazhi Wei
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040, People’s Republic of China,Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518055, People’s Republic of China
| | - Yuhao Xia
- Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, 518055, People’s Republic of China,Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Lingyun Li
- Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, 518055, People’s Republic of China
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040, People’s Republic of China,Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518055, People’s Republic of China,Correspondence: Zhizhong Ye, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040, People’s Republic of China, Email
| | - Zhong Huang
- Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, 518055, People’s Republic of China,Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518055, People’s Republic of China,Zhong Huang, Department of Immunology, Biological Therapy Institute of Shenzhen University, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, 518055, People’s Republic of China, Tel +86-755-86671943, Email
| |
Collapse
|
8
|
Zhang H, Jing S, Wang X, Yang C, Liu X, Yang T. Effects of ACE2/GHRL Axis on Proliferation, Apoptosis and Inflammatory Factor Levels of Synovial Cells in Osteoarthritis. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We aimed to assess the effects of ACE2/GHRL on the proliferation and apoptosis of synovial cells in osteoarthritis (OA). 20 healthy mice were randomly assigned into blank group and experimental group (ACE2 was knocked down). In addition, 30 mice were subdivided into 3 group (n
= 10) and treated with saline solution, GHRL (auxin), and GHRL+CHPAA (Auxin inhibitor) followed by analysis of synovial cell proliferation, apoptosis and inflammatory factor level by Western blot analysis, MTT and flow cytometry. Experimental group exhibited decreased cell proliferation, increased
apoptosis upon silencing of ACE2 (p < 0.05) along with elevated expressions of Caspase3 and Bax protein and decreased Bcl-2, inflammatory factors and the GHRL level (p < 0.05). Treatment with GHRL increased cell proliferation cells and decreased apoptosis. Meanwhile, Bcl-2
expression and IL-1β, IL-6 and IL-8 levels in GHRL group were significantly lower than other two groups whilst Caspase-3 and Bax level was significantly higher (p < 0.05). After CHPAA treatment, ACE2 expression in CHPAA group was dramatically declined (p < 0.01).
In conclusion, ACE2/GHRL might alleviate OA progression through regulation of cell proliferation, apoptosis and inflammation of synoviocytes, providing insight into a therapeutic target for treating OA.
Collapse
Affiliation(s)
- Huadong Zhang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Shangfei Jing
- Department of Hand Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010000, China
| | - Xingxing Wang
- Shanxi Provincial People’s Hospital, Special Hospital Ward, Taiyuan, Shanxi, 030000, China
| | - Chenyuan Yang
- People’s Hospital Affiliated to Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010000, China
| | - Xiaoxu Liu
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010000, China
| | - Tieyi Yang
- Department of Traumatology and Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010000, China
| |
Collapse
|
9
|
Dai H, Wang L, Li L, Huang Z, Ye L. Metallothionein 1: A New Spotlight on Inflammatory Diseases. Front Immunol 2021; 12:739918. [PMID: 34804020 PMCID: PMC8602684 DOI: 10.3389/fimmu.2021.739918] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/18/2021] [Indexed: 01/15/2023] Open
Abstract
MT1 has been demonstrated to be an essential stress protein in maintaining physiological balance and regulating immune homeostasis. While the immunological involvement of MT1 in central nervous system disorders and cancer has been extensively investigated, mounting evidence suggests that MT1 has a broader role in inflammatory diseases and can shape innate and adaptive immunity. In this review, we will first summarize the biological features of MT1 and the regulators that influence MT1 expression, emphasizing metal, inflammation, and immunosuppressive factors. We will then focus on the immunoregulatory function of MT1 on diverse immune cells and the signaling pathways regulated by MT1. Finally, we will discuss recent advances in our knowledge of the biological role of MT1 in several inflammatory diseases to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Hanying Dai
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Lu Wang
- Respiratory Medicine Department, Shenzhen University General Hospital, Shenzhen, China
| | - Lingyun Li
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhong Huang
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Liang Ye
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
10
|
Lu X, Fan Y, Li M, Chang X, Qian J. HTR2B and SLC5A3 Are Specific Markers in Age-Related Osteoarthritis and Involved in Apoptosis and Inflammation of Osteoarthritis Synovial Cells. Front Mol Biosci 2021; 8:691602. [PMID: 34222340 PMCID: PMC8241908 DOI: 10.3389/fmolb.2021.691602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Objective: Osteoarthritis (OA) is a heterogeneous age-related disease, which is badly difficult to cure due to its complex regulatory networks of pathogenesis. This study explored OA-specific genes in synovial tissues and validated their roles on apoptosis and inflammation of OA synovial cells. Methods: Weighted correlation network analysis (WGCNA) was employed to explore OA-related co-expression modules in the GSE55235 and GSE55457 datasets. Then, this study screened OA-specific genes. After validation of these genes in the GSE12021 and GSE32317 datasets, HTR2B and SLC5A3 were obtained. Their expression was detected in human OA and healthy synovial tissues by RT-qPCR and western blot. OA rat models were constructed by anterior cruciate ligament transection (ACLT) operation. In OA synovial cells, HTR2B and SLC5A3 proteins were examined via western blot. After transfection with sh-HTR2B or sh-SLC5A3, apoptosis and inflammation of OA synovial cells were investigated by flow cytometry and western blot. Results: A total of 17 OA-specific DEGs were identified, which were significantly enriched in inflammation pathways. Among them, HTR2B and SLC5A3 were highly expressed in end-than early-stage OA. Their up-regulation was validated in human OA synovial tissues and ACLT-induced OA synovial cells. Knockdown of HTR2B and SLC5A3 restrained apoptosis and increased TGF-β and IL-4 expression as well as reduced TNF-α and IL-1β expression in OA synovial cells. Conclusion: Collectively, this study identified two OA-specific markers HTR2B and SLC5A3 and their knockdown ameliorated apoptosis and inflammation of OA synovial cells.
Collapse
Affiliation(s)
- Xin Lu
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Fan
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingxia Li
- The Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Chang
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Qian
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Tian Z, Zeng F, Zhao C, Dong S. Angelicin Alleviates Post-Trauma Osteoarthritis Progression by Regulating Macrophage Polarization via STAT3 Signaling Pathway. Front Pharmacol 2021; 12:669213. [PMID: 34177582 PMCID: PMC8223070 DOI: 10.3389/fphar.2021.669213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/14/2021] [Indexed: 01/23/2023] Open
Abstract
Post-trauma osteoarthritis (PTOA) is the most common articular disease characterized by degeneration and destruction of articular cartilage (Bultink and Lems, Curr. Rheumatol Rep., 2013, 15, 328). Inflammatory response of local joint tissue induced by trauma is the most critical factor accelerating osteoarthritis (OA) progression (Sharma et al., 2019; Osteoarthritis. Cartilage, 28, 658–668). M1/M2 macrophages polarization and repolarization participates in local inflammation, which plays a major role in the progression of OA (Zhang et al., 2018; Ann. Rheum. Dis., 77, 1524–1534). The regulating effect of macrophage polarization has been reported as a potential therapy to alleviate OA progression. Synovitis induced by polarized macrophages could profoundly affect the chondrocyte and cartilage matrix (Zhang et al., 2018; Ann. Rheum. Dis., 77, 1524–1534). Generally, anti-inflammatory medications widely used in clinical practice have serious side effects. Therefore, we focus on exploring a new therapeutic strategy with fewer side effects to alleviate the synovitis. Angelicin (ANG) is traditional medicine used in various folk medicine. Previous studies have revealed that angelicin has an inhibitory effect on inflammation (Wei et al., 2016; Inflammation, 39, 1876–1882), tumor growth (Li et al., 2016; Oncology reports, 36, 3,504–3,512; Wang et al., 2017; Molecular Medicine Reports, 16, 5441–5449), DNA damage (Li et al., 2019; Exp. Ther. Med., 18, 1899–1906), and virus proliferation (Li et al., 2018; Front. Cell. Infect. Microbiol., 8, 178). But its specific effects on influencing the process of OA were rarely reported. In this study, the molecular mechanism of angelicin in vivo and in vitro was clearly investigated. Results showed that angelicin could regulate the M1/M2 ratio and function and alleviate the development of PTOA in the meanwhile. Bone marrow monocytes were isolated and induced by macrophage colony-stimulating factor (M-CSF), lipopolysaccharide (LPS) and interferon (IFN)-γ for M1 polarization and interleukin (IL)-4/IL-13 for M2 polarization. Subsequently, repolarization intervention was performed. The results indicate that angelicin can repolarize M1 toward M2 macrophages by upregulating the expression of CD9. Besides, angelicin can also protect and maintain M2 polarization in the presence of LPS/IFN-γ, and subsequently downregulate the expression of inflammatory mediators such as IL-1β and TNF-α. Mechanistically, angelicin can activate the p-STAT3/STAT3 pathway by conducting CD9/gp130 to repolarize toward M2 macrophages. These results suggest angelicin can alleviate the progression of OA by regulating M1/M2 polarization via the STAT3/p-STAT3 pathway. Therefore, angelicin may have a promising application and potential therapeutic value in OA clinical treatment.
Collapse
Affiliation(s)
- Zhansong Tian
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Fanchun Zeng
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Chunrong Zhao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| |
Collapse
|
12
|
Fayet M, Hagen M. Pain characteristics and biomarkers in treatment approaches for osteoarthritis pain. Pain Manag 2021; 11:59-73. [DOI: 10.2217/pmt-2020-0055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is a progressive disease and OA pain intensity is related to ongoing pathophysiological changes. However, OA pain is complex and multimodal; its characteristics, including severity, localization and the stimuli that elicit it, can change as the disease progresses and differ greatly among patients. Understanding mechanisms underlying specific pain characteristics may help guide clinicians in choosing appropriate treatments, targeting treatments to those patients most likely to benefit. Associations have been demonstrated between biomarkers and some characteristics of OA pain, and to processes linked to the shift in pain characteristics over the course of OA. This article examines how understanding OA pain characteristics and their relation to the disease process could inform treatment choice when applying well-established treatment guidelines.
Collapse
Affiliation(s)
- Marina Fayet
- GSK Consumer Healthcare S.A., Route de l'Etraz 2, 1260, Nyon, Switzerland
| | - Martina Hagen
- GSK Consumer Healthcare S.A., Route de l'Etraz 2, 1260, Nyon, Switzerland
| |
Collapse
|
13
|
Guo S, Wang M, Yu Y, Yang Y, Zeng F, Sun F, Li Q, He M, Li Y, Wen J, Gong W, Zhang Z. The association of erythrocyte sedimentation rate, high-sensitivity C-reactive protein and diabetic kidney disease in patients with type 2 diabetes. BMC Endocr Disord 2020; 20:103. [PMID: 32660469 PMCID: PMC7358197 DOI: 10.1186/s12902-020-00584-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND To evaluate the association between high-sensitivity C-reactive protein (hsCRP) and erythrocyte sedimentation rate (ESR), and diabetic kidney disease (DKD) in patients with type 2 diabetes mellitus (T2DM). METHODS A cross-sectional study was conducted in 1210 patients with T2DM, among whom 265 had DKD. The severity of DKD was assessed by estimated-glomerular filtration rate (eGFR) and urinary albumin creatinine ratio (ACR). The relationship between ESR, hsCRP and DKD was analyzed by multivariate logistic analysis. The relationship between ESR and eGFR, ESR or ACR was analyzed by multivariate linear regression. RESULTS ESR (23.0 [12.0 ~ 41.5] mm/h versus 12.0 [7.0 ~ 22.0] mm/h, P < 0.001) and hsCRP (3.60 [2.20 ~ 7.65] versus 2.90 [1.80 ~ 5.60] mg/L mg/L, P < 0.01) values were significantly higher in patients with DKD than those without. Patients with higher ESR or hsCRP had lower eGFR and higher ACR. After adjusted for gender, age, hemoglobin, plasma proteins, HbA1c, lipid profiles, and the usage of renin-angiotensin system inhibitors, ESR but not hsCRP was independently associated with the rate and severity of DKD in patients with T2DM. CONCLUSION ESR was independently associated with the rate and severity of DKD in patients with T2DM.
Collapse
Affiliation(s)
- Shizhe Guo
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China
| | - Meng Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China
| | - Yifei Yu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China
| | - Yeping Yang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China
| | - Fangfang Zeng
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China
| | - Fei Sun
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China
| | - Qin Li
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Min He
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China
| | - Yiming Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China
| | - Jie Wen
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China
- Department of Endocrinology, Jing'an District Center Hospital of Shanghai, Fudan University, Shanghai, China
| | - Wei Gong
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China.
| | - Zhaoyun Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China.
| |
Collapse
|
14
|
Wang J, Wang Y, Zhang H, Gao W, Lu M, Liu W, Li Y, Yin Z. Forkhead box C1 promotes the pathology of osteoarthritis by upregulating β-catenin in synovial fibroblasts. FEBS J 2019; 287:3065-3087. [PMID: 31837247 DOI: 10.1111/febs.15178] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/17/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA) is a joint disease characterized by articular cartilage degeneration, and no effective treatment is available. The OA classification has shifted from a cartilage-only disease to a whole-joint disease, and the synovial membrane plays an important role. Therefore, studies are needed to identify additional genes that regulate the pathological changes in the synovial membrane to develop a promising therapeutic strategy for OA. Here, we validated that the expression of forkhead box protein C1 (FoxC1) and β-catenin was upregulated in OA synovial membranes and synovial fibroblasts (SFs). Gain- and loss-of-function studies revealed that FoxC1 overexpression promoted, whilst silencing inhibited OA synovial fibroblast (OASF) proliferation and pro-inflammatory cytokine [interleukin 6 (IL-6), interleukin 8 (IL-8) and tumour necrosis factor-α (TNF-α)] production. FoxC1 overexpression increased β-catenin mRNA, total and nuclear protein expression in OASFs and upregulated a disintegrin and metalloproteinase with thrombospondin motif 5 (ADAMTS-5), fibronectin, matrix metalloproteinase 3 (MMP3) and matrix metalloproteinase 13 (MMP13) mRNA and total protein expression in OASFs. Conversely, FoxC1 knockdown reduced β-catenin mRNA, total and nuclear protein expression in OASFs and reduced ADAMTS-5, fibronectin, MMP3 and MMP13 mRNA and total protein expression in OASFs. β-catenin mediates FoxC1-induced pathological changes (proliferation, catabolic regulation and inflammation) in OASFs. MicroRNA-200a-3p (miR-200a-3p) binds to the 3'-UTR of FoxC1 and mediates FoxC1 expression. Intra-articular FoxC1-specific siRNA transfection hindered OA development in mice. Therefore, our results demonstrate the key role FoxC1 plays in vivo and in vitro in OA synovial pathology, possibly identifying a potential novel therapeutic target for OA.
Collapse
Affiliation(s)
- Jun Wang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, China
| | - Yin Wang
- Department of Plastic Surgery, The Fourth Affiliated Hospital of Anhui Medical University, China
| | - Hui Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, China
| | - Weilu Gao
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, China
| | - Ming Lu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, China
| | - Wendong Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, China
| | - Yetian Li
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, China
| | - Zongsheng Yin
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, China
| |
Collapse
|