1
|
Ming Z, Zhang Y, Song L, Chen M, Lin L, He Y, Liu W, Zhu Y, Zhang Y, Zhang G. Rare Earth Nanoprobes for Targeted Delineation of Triple Negative Breast Cancer and Enhancement of Radioimmunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309992. [PMID: 38774946 PMCID: PMC11304243 DOI: 10.1002/advs.202309992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/20/2024] [Indexed: 08/09/2024]
Abstract
Radiotherapy demonstrates a synergistic effect with immunotherapy by inducing a transformation of "immune cold" tumors into "immune hot" tumors in triple negative breast cancer (TNBC). Nevertheless, the effectiveness of immunotherapy is constrained by low expression of tumor-exposed antigens, inadequate inflammation, and insufficient tumor infiltrating lymphocyte (TILs). To address this predicament, novel lutecium-based rare earth nanoparticles (RENPs) are synthesized with the aim of amplifying radiation effect and tumor immune response. The nanoprobe is characterized by neodymium-based down-conversion fluorescence, demonstrating robust photostability, biocompatibility, and targetability. The conjugation of RENPs with a CXCR4 targeted drug enables precise delineation of breast tumors using a near-infrared imaging system and improves radiation efficacy via lutetium-based radio-sensitizer in vivo. Furthermore, the study shows a notable enhancement of immune response through the induction of immunogenic cell death and recruitment of TILs, resulting in the inhibition of tumor progression both in vitro and in vivo models following the administration of nanoparticles. Hence, the novel multifunctional nanoprobes incorporating various lanthanide elements offer the potential for imaging-guided tumor delineation, radio-sensitization, and immune activation post-radiation, thus presenting an efficient radio-immunotherapeutic approach for TNBC.
Collapse
Affiliation(s)
- Zi‐He Ming
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University School of MedicineXiamen UniversityXiamenFujian361104China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiamenFujian361102China
| | - Yong‐Qu Zhang
- Department of Breast CenterCancer Hospital of Shantou University Medical CollegeShantouGuangdong515041China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
| | - Liang Song
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350000China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth MaterialsHaixi InstituteChinese Academy of SciencesXiamenFujian361021China
| | - Min Chen
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
| | - Lin‐Ling Lin
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University School of MedicineXiamen UniversityXiamenFujian361104China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiamenFujian361102China
| | - Yue‐Yang He
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University School of MedicineXiamen UniversityXiamenFujian361104China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiamenFujian361102China
| | - Wan‐Ling Liu
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University School of MedicineXiamen UniversityXiamenFujian361104China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiamenFujian361102China
| | - Yuan‐Yuan Zhu
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University School of MedicineXiamen UniversityXiamenFujian361104China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiamenFujian361102China
| | - Yun Zhang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350000China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth MaterialsHaixi InstituteChinese Academy of SciencesXiamenFujian361021China
| | - Guo‐Jun Zhang
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University School of MedicineXiamen UniversityXiamenFujian361104China
- The Breast CenterYunnan Cancer HospitalThe Third Affiliated Hospital of Kunming Medical UniversityBeijing University Cancer HospitalKunmingYunnan650118China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiamenFujian361102China
| |
Collapse
|
2
|
Liang R, Lu H, Zhu H, Liang G, Zhang J, Gao J, Tian T. Radiation-primed TGF-β trapping by engineered extracellular vesicles for targeted glioblastoma therapy. J Control Release 2024; 370:821-834. [PMID: 38740092 DOI: 10.1016/j.jconrel.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The poor outcome of glioblastoma multiforme (GBM) treated with immunotherapy is attributed to the profound immunosuppressive tumor microenvironment (TME) and the lack of effective delivery across the blood-brain barrier. Radiation therapy (RT) induces an immunogenic antitumor response that is counteracted by evasive mechanisms, among which transforming growth factor-β (TGF-β) activation is the most prominent factor. We report an extracellular vesicle (EV)-based nanotherapeutic that traps TGF-β by expressing the extracellular domain of the TGF-β type II receptor and targets GBM by decorating the EV surface with RGD peptide. We show that short-burst radiation dramatically enhanced the targeting efficiency of RGD peptide-conjugated EVs to GBM, while the displayed TGF-β trap reversed radiation-stimulated TGF-β activation in the TME, offering a synergistic effect in the murine GBM model. The combined therapy significantly increased CD8+ cytotoxic T cells infiltration and M1/M2 macrophage ratio, resulting in the regression of tumor growth and prolongation of overall survival. These results provide an EV-based therapeutic strategy for immune remodeling of the GBM TME and eradication of therapy-resistant tumors, further supporting its clinical translation.
Collapse
Affiliation(s)
- Ruyu Liang
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Hongyu Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China; Department of Neurosurgery, Funing People's Hospital, Funing 224400, Jiangsu, China
| | - Haifeng Zhu
- Department of Neurosurgery, Funing People's Hospital, Funing 224400, Jiangsu, China
| | - Gaofeng Liang
- School of Basic Medicineand Forensic Medicine, Henan University of Science & Technology, Luoyang 471023, Henan, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Jun Gao
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, China.
| | - Tian Tian
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| |
Collapse
|
3
|
Hu Y, Cheng L, Du S, Wang K, Liu S. Antioxidant curcumin induces oxidative stress to kill tumor cells (Review). Oncol Lett 2024; 27:67. [PMID: 38192657 PMCID: PMC10773205 DOI: 10.3892/ol.2023.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024] Open
Abstract
Curcumin is a plant polyphenol in turmeric root and a potent antioxidant. It binds to antioxidant response elements for gene regulation by nuclear factor erythroid 2-related factor 2, thereby suppressing reactive oxygen species (ROS) and exerting anti-inflammatory, anti-infective and other pharmacological effects. Of note, curcumin induces oxidative stress in tumors. It binds to several enzymes in tumors, such as carbonyl reductases, glutathione S-transferase P1 and nicotinamide adenine dinucleotide phosphate to induce mitochondrial damage, increase ROS production and ultimately induce tumor cell death. However, the instability and poor pharmacokinetic profile of curcumin in vivo limit its clinical application. Therefore, the effects of curcumin in vivo may be enhanced through its combination with drugs, derivative development and nanocarriers. In the present review, the mechanisms of curcumin that induce tumor cell death through oxidative stress are discussed. In addition, the methods used to enhance the antitumor activity of curcumin are described. Finally, the existing knowledge on the functions of curcumin in tumors, particularly in terms of oxidative stress, are summarized to facilitate future curcumin research.
Collapse
Affiliation(s)
- Ye Hu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Lei Cheng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Shuguang Du
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Kesi Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Shuangping Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| |
Collapse
|
4
|
Azmoonfar R, Moslehi M, Shahbazi-Gahrouei D. Radioprotective Effect of Selenium Nanoparticles: A Mini Review. IET Nanobiotechnol 2024; 2024:5538107. [PMID: 38863968 PMCID: PMC11095073 DOI: 10.1049/2024/5538107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 06/13/2024] Open
Abstract
Materials and Methods This study followed the PRISMA reporting guidelines to present the results. A comprehensive search was performed on electronic databases such as PubMed, Scopus, Web of Sciences, and Science Direct. Initially, 413 articles were retrieved. After removing duplicates and applying specific inclusion and exclusion criteria, 10 articles were finally included in this systematic review. Results The reviewed studies showed that selenium nanoparticles had anti-inflammatory and antioxidant properties. They effectively protected the kidneys, liver, and testicles from damage. Furthermore, there was evidence of efficient radioprotection for the organs examined without significant side effects. Conclusions This systematic review emphasizes the potential advantages of using selenium nanoparticles to prevent the negative effects of ionizing radiation. Importantly, these protective effects were achieved without causing noticeable side effects. These findings suggest the potential role of selenium nanoparticles as radioprotective agents, offering possible therapeutic applications to reduce the risks related to ionizing radiation exposure in medical imaging and radiotherapy procedures.
Collapse
Affiliation(s)
- Rasool Azmoonfar
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Masoud Moslehi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Daryoush Shahbazi-Gahrouei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| |
Collapse
|
5
|
Gupta J, Jalil AT, Riyad Muedii ZAH, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. The Radiosensitizing Potentials of Silymarin/Silibinin in Cancer: A Systematic Review. Curr Med Chem 2024; 31:6992-7014. [PMID: 37921180 DOI: 10.2174/0109298673248404231006052436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Although radiotherapy is one of the main cancer treatment modalities, exposing healthy organs/tissues to ionizing radiation during treatment and tumor resistance to ionizing radiation are the chief challenges of radiotherapy that can lead to different adverse effects. It was shown that the combined treatment of radiotherapy and natural bioactive compounds (such as silymarin/silibinin) can alleviate the ionizing radiation-induced adverse side effects and induce synergies between these therapeutic modalities. In the present review, the potential radiosensitization effects of silymarin/silibinin during cancer radiation exposure/radiotherapy were studied. METHODS According to the PRISMA guideline, a systematic search was performed for the identification of relevant studies in different electronic databases of Google Scholar, PubMed, Web of Science, and Scopus up to October 2022. We screened 843 articles in accordance with a predefined set of inclusion and exclusion criteria. Seven studies were finally included in this systematic review. RESULTS Compared to the control group, the cell survival/proliferation of cancer cells treated with ionizing radiation was considerably less, and silymarin/silibinin administration synergistically increased ionizing radiation-induced cytotoxicity. Furthermore, there was a decrease in the tumor volume, weight, and growth of ionizing radiation-treated mice as compared to the untreated groups, and these diminutions were predominant in those treated with radiotherapy plus silymarin/ silibinin. Furthermore, the irradiation led to a set of biochemical and histopathological changes in tumoral cells/tissues, and the ionizing radiation-induced alterations were synergized following silymarin/silibinin administration (in most cases). CONCLUSION In most cases, silymarin/silibinin administration could sensitize the cancer cells to ionizing radiation through an increase of free radical formation, induction of DNA damage, increase of apoptosis, inhibition of angiogenesis and metastasis, etc. However, suggesting the use of silymarin/silibinin during radiotherapeutic treatment of cancer patients requires further clinical studies.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, U.P., India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Psychometry and Ethology Laboratory, Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellin, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
6
|
Meng X, Ma F, Yu D. The diverse effects of cisplatin on tumor microenvironment: Insights and challenges for the delivery of cisplatin by nanoparticles. ENVIRONMENTAL RESEARCH 2024; 240:117362. [PMID: 37827371 DOI: 10.1016/j.envres.2023.117362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Cisplatin is a well-known platinum-based chemotherapy medication that is widely utilized for some malignancies. Despite the direct cytotoxic consequences of cisplatin on tumor cells, studies in the recent decade have revealed that cisplatin can also affect different cells and their secretions in the tumor microenvironment (TME). Cisplatin has complex impacts on the TME, which may contribute to its anti-tumor activity or drug resistance mechanisms. These regulatory effects of cisplatin play a paramount function in tumor growth, invasion, and metastasis. This paper aims to review the diverse impacts of cisplatin and nanoparticles loaded with cisplatin on cancer cells and also non-cancerous cells in TME. The impacts of cisplatin on immune cells, tumor stroma, cancer cells, and also hypoxia will be discussed in the current review. Furthermore, we emphasize the challenges and prospects of using cisplatin in combination with other adjuvants and therapeutic modalities that target TME. We also discuss the potential synergistic effects of cisplatin with immune checkpoint inhibitors (ICIs) and other agents with anticancer potentials such as polyphenols and photosensitizers. Furthermore, the potential of nanoparticles for targeting TME and better delivery of cisplatin into tumors will be discussed.
Collapse
Affiliation(s)
- Xinxin Meng
- Zhuji Sixth People's Hospital of Zhejiang Province, Zhuji, Zhejiang, 311801, China
| | - Fengyun Ma
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China.
| | - Dingli Yu
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China
| |
Collapse
|
7
|
Klunko NS, Achmad H, Abdullah TM, Mohammed S, Saha I, Salim KS, Obaid RF, Romero-Parra RM, Al-Hasnawi SS, Al-Janabi WH, Farhood B. The Anti-hypoxia Potentials of Trans-sodium Crocetinate in Hypoxiarelated Diseases: A Review. Curr Radiopharm 2024; 17:30-37. [PMID: 37877507 DOI: 10.2174/0118744710268127231020083505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023]
Abstract
Crocetin is a kind of apocarotenoid carboxylic acid extracted from saffron (Crocus sativus L.), which is effective in upregulating tissue oxygenation. However, crocetin is difficult to solubilize. It was shown that the trans isomer of crocetin is effective in improving oxygen diffusivity, while its cis isomer appears not to be. Hence, the isolated trans isomer of crocetin or trans-sodium crocetinate (TSC) can be used instead of crocetin. It is shown that TSC can upregulate hypoxic tissue oxygenation and be effective in treating some hypoxia-related diseases. Moreover, experimental and clinical studies have reported no adverse effects following TSC treatment, even at high doses. The current study will discuss the potential role of TSC in hemorrhagic shock, ischemia, brain tumor radiotherapy, and others.
Collapse
Affiliation(s)
- Natalia S Klunko
- Department of Training of Scientific and Scientific-Pedagogical Personnel, Russian New University, Moscow, Russia
| | - Harun Achmad
- Department of Pediatric Dentistry, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | | | - Sami Mohammed
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Indranil Saha
- Department of Physics, GLA University, Mathura, Pin- 281406, U.P., India
| | | | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | | | | | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
8
|
Aslam MA, Ahmad H, Malik HS, Uinarni H, Karim YS, Akhmedov YM, Abdelbasset WK, Awadh SA, Abid MK, Mustafa YF, Farhood B, Sahebkar A. Radiotherapy-associated Sensorineural Hearing Loss in Pediatric Oncology Patients. Curr Med Chem 2024; 31:5351-5369. [PMID: 37190814 DOI: 10.2174/0929867330666230515112245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
During the radiotherapeutic treatment of pediatric oncology patients, they would be at a latent risk of developing ionizing radiation-induced ototoxicity when the cochlea or auditory nerve is located within the radiation field. Sensorineural hearing loss (SNHL) is an irreversible late complication of radiotherapy, and its incidence depends on various factors such as the patient's hearing sensitivity, total radiation dose to the cochlea, radiotherapy fractionation regimen, age and chemoradiation. Importantly, this complication exhibits serious challenges to adult survivors of childhood cancer, as it has been linked to impairments in academic achievement, psychosocial development, independent living skills, and employment in the survivor population. Therefore, early detection and proper management can alleviate academic, speech, language, social, and psychological morbidity arising from hearing deficits. In the present review, we have addressed issues such as underlying mechanisms of radiation-induced SNHL, audiometric findings of pediatric cancer patients treated with radiotherapy, and management and protection measures against radiation-induced ototoxicity.
Collapse
Affiliation(s)
- Muhammad Ammar Aslam
- Department of Emergency Medicine, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Hassaan Ahmad
- Department of Medicine, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Hamza Sultan Malik
- Department of Medicine, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Herlina Uinarni
- Department of Anatomy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
- Radiologist at Pantai Indah Kapuk Hospital, Jakarta, Indonesia
| | | | - Yusuf Makhmudovich Akhmedov
- Department of Pediatric Surgery, Samarkand State Medical Institute, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, 100047, Uzbekistan
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Sura A Awadh
- Department of Anesthesia, Al-Mustaqbal University, Babylon, Iraq
| | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhosein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Jagasia S, Tasci E, Zhuge Y, Camphausen K, Krauze AV. Identifying patients suitable for targeted adjuvant therapy: advances in the field of developing biomarkers for tumor recurrence following irradiation. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2023; 8:33-42. [PMID: 37982134 PMCID: PMC10655913 DOI: 10.1080/23808993.2023.2276927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/25/2023] [Indexed: 11/21/2023]
Abstract
Introduction Radiation therapy (RT) is commonly used to treat cancer in conjunction with chemotherapy, immunotherapy, and targeted therapies. Despite the effectiveness of RT, tumor recurrence due to treatment resistance still lead to treatment failure. RT-specific biomarkers are currently lacking and remain challenging to investigate with existing data since, for many common malignancies, standard of care (SOC) paradigms involve the administration of RT in conjunction with other agents. Areas Covered Established clinically relevant biomarkers are used in surveillance, as prognostic indicators, and sometimes for treatment planning; however, the inability to intercept early recurrence or predict upfront resistance to treatment remains a significant challenge that limits the selection of patients for adjuvant therapy. We discuss attempts at intercepting early failure. We examine biomarkers that have made it into the clinic where they are used for treatment monitoring and management alteration, and novel biomarkers that lead the field with targeted adjuvant therapy seeking to harness these. Expert Opinion Given the growth of data correlating interventions with omic analysis toward identifying biomarkers of radiation resistance, more robust markers of recurrence that link to biology will increasingly be leveraged toward targeted adjuvant therapy to make a successful transition to the clinic in the coming years.
Collapse
Affiliation(s)
- S Jagasia
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA
| | - E Tasci
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA
| | - Ying Zhuge
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA
| | - K Camphausen
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA
| | - A V Krauze
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Zhong M, Lu Y, Li S, Li X, Liu Z, He X, Zhang Y. Synthesis, cytotoxicity, antioxidant activity and molecular modeling of new NSAIDs-EBS derivatives. Eur J Med Chem 2023; 259:115662. [PMID: 37482018 DOI: 10.1016/j.ejmech.2023.115662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
Two series of NSAIDs-EBS derivatives (5a-j and 9a-i) based on the hybridization of nonsteroidal anti-inflammatory drugs (NSAIDs) skeleton and Ebselen moiety were synthesized. Their cytotoxicity was evaluated against five types of human cancer cell lines, BGC-823 (human gastric cancer cell line), SW480 (human colon adenocarcinoma cells), MCF-7 (human breast adenocarcinoma cells), HeLa (human cervical cancer cells), A549 (human lung carcinoma cells). Moreover, the most active compound 5j showed IC50 values below 3 μM in all cancer cell lines and with remarkable anticancer activity against MCF-7 (1.5 μM) and HeLa (1.7 μM). The redox properties of the NSAIDs-EBS derivatives prepared herein were conducted by 2, 2-didiphenyl-1-picrylhydrazyl (DPPH), bleomycin dependent DNA damage and glutathione peroxidase (GPx)-like assays. Finally, TrxR1 inhibition activity assay and molecular docking study revealed NSAIDs-EBS derivatives could serve as potential TrxR1 inhibitor.
Collapse
Affiliation(s)
- Min Zhong
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China; Key Laboratory of Optoelectronic Chemical Materials and Devices, Jianghan University, Wuhan, 430056, China
| | - Ying Lu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Jianghan University, Wuhan, 430056, China
| | - Shaolei Li
- Shenzhen Fushan Biological Technology Co., Ltd, Kexing Science Park A1 1005, Nanshan Zone, Shenzhen, 518057, China
| | - Xiaolong Li
- Shenzhen Fushan Biological Technology Co., Ltd, Kexing Science Park A1 1005, Nanshan Zone, Shenzhen, 518057, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xianran He
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China.
| | - Yongmin Zhang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
11
|
Levis M, Gastino A, De Giorgi G, Mantovani C, Bironzo P, Mangherini L, Ricci AA, Ricardi U, Cassoni P, Bertero L. Modern Stereotactic Radiotherapy for Brain Metastases from Lung Cancer: Current Trends and Future Perspectives Based on Integrated Translational Approaches. Cancers (Basel) 2023; 15:4622. [PMID: 37760591 PMCID: PMC10526239 DOI: 10.3390/cancers15184622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Brain metastases (BMs) represent the most frequent metastatic event in the course of lung cancer patients, occurring in approximately 50% of patients with non-small-cell lung cancer (NSCLC) and in up to 70% in patients with small-cell lung cancer (SCLC). Thus far, many advances have been made in the diagnostic and therapeutic procedures, allowing improvements in the prognosis of these patients. The modern approach relies on the integration of several factors, such as accurate histological and molecular profiling, comprehensive assessment of clinical parameters and precise definition of the extent of intracranial and extracranial disease involvement. The combination of these factors is pivotal to guide the multidisciplinary discussion and to offer the most appropriate treatment to these patients based on a personalized approach. Focal radiotherapy (RT), in all its modalities (radiosurgery (SRS), fractionated stereotactic radiotherapy (SRT), adjuvant stereotactic radiotherapy (aSRT)), is the cornerstone of BM management, either alone or in combination with surgery and systemic therapies. We review the modern therapeutic strategies available to treat lung cancer patients with brain involvement. This includes an accurate review of the different technical solutions which can be exploited to provide a "state-of-art" focal RT and also a detailed description of the systemic agents available as effective alternatives to SRS/SRT when a targetable molecular driver is present. In addition to the validated treatment options, we also discuss the future perspective for focal RT, based on emerging clinical reports (e.g., SRS for patients with many BMs from NSCLC or SRS for BMs from SCLC), together with a presentation of innovative and promising findings in translational research and the combination of novel targeted agents with SRS/SRT.
Collapse
Affiliation(s)
- Mario Levis
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Alessio Gastino
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Greta De Giorgi
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Cristina Mantovani
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Paolo Bironzo
- Oncology Unit, Department of Oncology, San Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy;
| | - Luca Mangherini
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Alessia Andrea Ricci
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Umberto Ricardi
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| |
Collapse
|
12
|
Arechaga-Ocampo E. Epigenetics as a determinant of radiation response in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:145-190. [PMID: 38359968 DOI: 10.1016/bs.ircmb.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Radiation therapy is a cornerstone of modern cancer treatment. Treatment is based on depositing focal radiation to the tumor to inhibit cell growth, proliferation and metastasis, and to promote the death of cancer cells. In addition, radiation also affects non-tumor cells in the tumor microenvironmental (TME). Radiation resistance of the tumor cells is the most common cause of treatment failure, allowing survival of cancer cell and subsequent tumor growing. Molecular radioresistance comprises genetic and epigenetic characteristics inherent in cancer cells, or characteristics acquired after exposure to radiation. Furthermore, cancer stem cells (CSCs) and non-tumor cells into the TME as stromal and immune cells have a role in promoting and maintaining radioresistant tumor phenotypes. Different regulatory molecules and pathways distinctive of radiation resistance include DNA repair, survival signaling and cell death pathways. Epigenetic mechanisms are one of the most relevant events that occur after radiotherapy to regulate the expression and function of key genes and proteins in the differential radiation-response. This article reviews recent data on the main molecular mechanisms and signaling pathways related to the biological response to radiotherapy in cancer; highlighting the epigenetic control exerted by DNA methylation, histone marks, chromatin remodeling and m6A RNA methylation on gene expression and activation of signaling pathways related to radiation therapy response.
Collapse
Affiliation(s)
- Elena Arechaga-Ocampo
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autonoma Metropolitana, Mexico City, Mexico.
| |
Collapse
|
13
|
AbdulHussein AH, Al-Taee MM, Radih ZA, Aljuboory DS, Mohammed ZQ, Hashesh TS, Riadi Y, Hadrawi SK, Najafi M. Mechanisms of cancer cell death induction by triptolide. Biofactors 2023; 49:718-735. [PMID: 36876465 DOI: 10.1002/biof.1944] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/21/2023] [Indexed: 03/07/2023]
Abstract
Drug resistance is a hot topic issue in cancer research and therapy. Although cancer therapy including radiotherapy and anti-cancer drugs can kill malignant cells within the tumor, cancer cells can develop a wide range of mechanisms to resist the toxic effects of anti-cancer agents. Cancer cells may provide some mechanisms to resist oxidative stress and escape from apoptosis and attack by the immune system. Furthermore, cancer cells may resist senescence, pyroptosis, ferroptosis, necroptosis, and autophagic cell death by modulating several critical genes. The development of these mechanisms leads to resistance to anti-cancer drugs and also radiotherapy. Resistance to therapy can increase mortality and reduce survival following cancer therapy. Thus, overcoming mechanisms of resistance to cell death in malignant cells can facilitate tumor elimination and increase the efficiency of anti-cancer therapy. Natural-derived molecules are intriguing agents that may be suggested to be used as an adjuvant in combination with other anticancer drugs or radiotherapy to sensitize cancer cells to therapy with at least side effects. This paper aims to review the potential of triptolide for inducing various types of cell death in cancer cells. We review the induction or resistance to different cell death mechanisms such as apoptosis, autophagic cell death, senescence, pyroptosis, ferroptosis, and necrosis following the administration of triptolide. We also review the safety and future perspectives for triptolide and its derivatives in experimental and human studies. The anticancer potential of triptolide and its derivatives may make them effective adjuvants for enhancing tumor suppression in combination with anticancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Salema K Hadrawi
- Refrigeration and Air-Conditioning Technical Engineering Department, College of Technical Engineering, The Islamic University, Najaf, Iraq
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
14
|
Liu C, Kuang S, Wu L, Cheng Q, Gong X, Wu J, Zhang L. Radiotherapy and radio-sensitization in H3 K27M -mutated diffuse midline gliomas. CNS Neurosci Ther 2023. [PMID: 37157237 DOI: 10.1111/cns.14225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND H3K27M mutated diffuse midline gliomas (DMGs) are extremely aggressive and the leading cause of cancer-related deaths in pediatric brain tumors with 5-year survival <1%. Radiotherapy is the only established adjuvant treatment of H3K27M DMGs; however, the radio-resistance is commonly observed. METHODS We summarized current understandings of the molecular responses of H3K27M DMGs to radiotherapy and provide crucial insights into current advances in radiosensitivity enhancement. RESULTS Ionizing radiation (IR) can mainly inhibit tumor cell growth by inducing DNA damage regulated by the cell cycle checkpoints and DNA damage repair (DDR) system. In H3K27M DMGs, the aberrant genetic and epigenetic changes, stemness genotype, and epithelial-mesenchymal transition (EMT) disrupt the cell cycle checkpoints and DDR system by altering the associated regulatory signaling pathways, which leads to the development of radio-resistance. CONCLUSIONS The advances in mechanisms of radio-resistance in H3K27M DMGs promote the potential targets to enhance the sensitivity to radiotherapy.
Collapse
Affiliation(s)
- Chao Liu
- Departments of Oncology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuwen Kuang
- Departments of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Quan Cheng
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Gong
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Wu
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Longbo Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Departments of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
15
|
The PIK3CA-E545K-SIRT4 signaling axis reduces radiosensitivity by promoting glutamine metabolism in cervical cancer. Cancer Lett 2023; 556:216064. [PMID: 36646410 DOI: 10.1016/j.canlet.2023.216064] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The mutation of glutamic acid 545 to lysine (E545K) in PIK3CA, as the most common missense mutation of this gene in various cancer types, is frequently observed in cervical cancer and has been shown to reduce cervical cancer radiosensitivity. However, the underlying mechanisms remain unclear. Here, we implicate the alterations of glutamine metabolism in PIK3CA-E545K-mediated radioresistance of cervical cancer. Specifically, PIK3CA mutation negatively regulated the expression of SIRT4 via the epigenetic regulator EP300 independently of the canonical mTORC1 pathway. PIK3CA-E545K-induced SIRT4 downregulation promoted cell proliferation, migration, and radiation-induced DNA repair and apoptosis, while SIRT4 overexpression reversed the radioresistance phenotype mediated by PIK3CA mutation. Mechanistically, SIRT4 modulated glutamine metabolism and thus cellular apoptosis by negatively regulating a glutamate pyruvate transaminase GPT1. Moreover, the PI3K inhibitor BYL719, but not mTOR inhibitors, exerted remarkable synergistic effects with radiotherapy by inhibiting glutamine metabolism in vitro and in vivo. Collectively, this study reveals the role of PIK3CA-E545K-SIRT4 axis in regulating glutamine metabolism and the radioresistance in cervical cancer, which provides a necessary preliminary basis for clinical research of PI3K inhibitors as radiosensitizing agents.
Collapse
|
16
|
Wu XY, Xu WW, Huan XK, Wu GN, Li G, Zhou YH, Najafi M. Mechanisms of cancer cell killing by metformin: a review on different cell death pathways. Mol Cell Biochem 2023; 478:197-214. [PMID: 35771397 DOI: 10.1007/s11010-022-04502-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/08/2022] [Indexed: 01/17/2023]
Abstract
Cancer resistance to anti-tumour agents has been one of the serious challenges in different types of cancer treatment. Usually, an increase in the cell death markers can predict a higher rate of survival among patients diagnosed with cancer. By increasing the regulation of survival genes, cancer cells can display a higher resistance to therapy through the suppression of anti-tumour immunity and inhibition of cell death signalling pathways. Administration of certain adjuvants may be useful in order to increase the therapeutic efficiency of anti-cancer therapy through the stimulation of different cell death pathways. Several studies have demonstrated that metformin, an antidiabetic drug with anti-cancer properties, amplifies cell death mechanisms, especially apoptosis in a broad-spectrum of cancer cells. Stimulation of the immune system by metformin has been shown to play a key role in the induction of cell death. It seems that the induction or suppression of different cell death mechanisms has a pivotal role in either sensitization or resistance of cancer cells to therapy. This review explains the cellular and molecular mechanisms of cell death following anticancer therapy. Then, we discuss the modulatory roles of metformin on different cancer cell death pathways including apoptosis, mitotic catastrophe, senescence, autophagy, ferroptosis and pyroptosis.
Collapse
Affiliation(s)
- Xiao-Yu Wu
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Wen-Wen Xu
- Department of Gynaecology, The Affiliated Hospital of Nanjing University of Chinese Medi-Cine, Nanjing, 210029, Jiangsu, China
| | - Xiang-Kun Huan
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Guan-Nan Wu
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Gang Li
- Department of General Surgery, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Yu-Hong Zhou
- Digestive Endoscopy Center, The Affiliated Hospital of Nanjing University of Chinese Medi-Cine, Nanjing, 210029, Jiangsu, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
17
|
Yang H, Hu Y, Kong D, Chen P, Yang L. Intralesional Bacillus Calmette-Guérin injections and hypo-fractionated radiation synergistically induce systemic antitumor immune responses. Int Immunopharmacol 2023; 114:109542. [PMID: 36521291 DOI: 10.1016/j.intimp.2022.109542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
Radiotherapy, an important treatment for multiple malignancies, produces systemic anti-tumor effects in combination with immunotherapies, especially immune checkpoint inhibitors (ICBs). However, for some patients who do not respond to ICB treatment or show ICB-induced autoimmune symptoms, new alternatives need to be explored. Innovative immunomodulatory strategies, including the administration of immunostimulants, could be used to improve the immunogenicity induced by radiotherapy. In this study, we explored the synergistic effect of Bacillus Calmette-Guérin (BCG) combined with hypo-fractionated radiotherapy (H-RT) in inducing anti-tumor immune responses. We observed the systemic and abscopal effects of this combination in mice with 4 T1 breast cancer. H-RT combined with BCG could remodel the immune microenvironment and alleviate leukocyte-like responses by increasing the infiltration of CD8 + T cells, promoting the maturation of dendritic cells (DCs), decreasing the infiltration of immunosuppressive cells, and downregulating the expression of immunosuppressive cytokines. Therefore, this combination could enhance the systemic anti-tumor response, leading to the regression of untreated synchronous tumors and a decrease in the systemic metastatic burden. These results highlight the potential of BCG in assisting antitumor therapy and the therapeutic potential of this combination treatment.
Collapse
Affiliation(s)
- Hanshan Yang
- Medical Center of Hematology, the Second Affiliated Hospital, Army Medical University, Chongqing 400000, China; Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yuru Hu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Deyi Kong
- Department of Encephalopathy, Jiang 'an Hospital of Traditional Chinese Medicine, Yibin 644000, China
| | - Ping Chen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Linglin Yang
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
18
|
Fan X, Wang K, Lu Q, Lu Y, Sun J. Cell-Based Drug Delivery Systems Participate in the Cancer Immunity Cycle for Improved Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205166. [PMID: 36437050 DOI: 10.1002/smll.202205166] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Immunotherapy aims to activate the cancer patient's immune system for cancer therapy. The whole process of the immune system against cancer referred to as the "cancer immunity cycle", gives insight into how drugs can be designed to affect every step of the anticancer immune response. Cancer immunotherapy such as immune checkpoint inhibitor (ICI) therapy, cancer vaccines, as well as small molecule modulators has been applied to fight various cancers. However, the effect of immunotherapy in clinical applications is still unsatisfactory due to the limited response rate and immune-related adverse events. Mounting evidence suggests that cell-based drug delivery systems (DDSs) with low immunogenicity, superior targeting, and prolonged circulation have great potential to improve the efficacy of cancer immunotherapy. Therefore, with the rapid development of cell-based DDSs, understanding their important roles in various stages of the cancer immunity cycle guides the better design of cell-based cancer immunotherapy. Herein, an overview of how cell-based DDSs participate in cancer immunotherapy at various stages is presented and an outlook on possible challenges of clinical translation and application in future development.
Collapse
Affiliation(s)
- Xiaoyuan Fan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Qi Lu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Yutong Lu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| |
Collapse
|
19
|
Preclinical Study of Plasmodium Immunotherapy Combined with Radiotherapy for Solid Tumors. Cells 2022; 11:cells11223600. [PMID: 36429033 PMCID: PMC9688403 DOI: 10.3390/cells11223600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint blockade therapy (ICB) is ineffective against cold tumors and, although it is effective against some hot tumors, drug resistance can occur. We have developed a Plasmodium immunotherapy (PI) that can overcome these shortcomings. However, the specific killing effect of PI on tumor cells is relatively weak. Radiotherapy (RT) is known to have strong specific lethality to tumor cells. Therefore, we hypothesized that PI combined with RT could produce synergistic antitumor effects. We tested our hypothesis using orthotopic and subcutaneous models of mouse glioma (GL261, a cold tumor) and a subcutaneous model of mouse non-small cell lung cancer (NSCLC, LLC, a hot tumor). Our results showed that, compared with each monotherapy, the combination therapy more significantly inhibited tumor growth and extended the life span of tumor-bearing mice. More importantly, the combination therapy could cure approximately 70 percent of glioma. By analyzing the immune profile of the tumor tissues, we found that the combination therapy was more effective in upregulating the perforin-expressing effector CD8+ T cells and downregulating the myeloid-derived suppressor cells (MDSCs), and was thus more effective in the treatment of cancer. The clinical transformation of PI combined with RT in the treatment of solid tumors, especially glioma, is worthy of expectation.
Collapse
|
20
|
Lai X, Najafi M. Redox Interactions in Chemo/Radiation Therapy-induced Lung Toxicity; Mechanisms and Therapy Perspectives. Curr Drug Targets 2022; 23:1261-1276. [PMID: 35792117 DOI: 10.2174/1389450123666220705123315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/08/2022] [Accepted: 04/29/2022] [Indexed: 01/25/2023]
Abstract
Lung toxicity is a key limiting factor for cancer therapy, especially lung, breast, and esophageal malignancies. Radiotherapy for chest and breast malignancies can cause lung injury. However, systemic cancer therapy with chemotherapy may also induce lung pneumonitis and fibrosis. Radiotherapy produces reactive oxygen species (ROS) directly via interacting with water molecules within cells. However, radiation and other therapy modalities may induce the endogenous generation of ROS and nitric oxide (NO) by immune cells and some nonimmune cells such as fibroblasts and endothelial cells. There are several ROS generating enzymes within lung tissue. NADPH Oxidase enzymes, cyclooxygenase-2 (COX-2), dual oxidases (DUOX1 and DUOX2), and the cellular respiratory system in the mitochondria are the main sources of ROS production following exposure of the lung to anticancer agents. Furthermore, inducible nitric oxide synthase (iNOS) has a key role in the generation of NO following radiotherapy or chemotherapy. Continuous generation of ROS and NO by endothelial cells, fibroblasts, macrophages, and lymphocytes causes apoptosis, necrosis, and senescence, which lead to the release of inflammatory and pro-fibrosis cytokines. This review discusses the cellular and molecular mechanisms of redox-induced lung injury following cancer therapy and proposes some targets and perspectives to alleviate lung toxicity.
Collapse
Affiliation(s)
- Xixi Lai
- The Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Affiliated with the Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
21
|
Compound Capecitabine Colon-Targeted Microparticle Prepared by Coaxial Electrospray for Treatment of Colon Tumors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175690. [PMID: 36080457 PMCID: PMC9457672 DOI: 10.3390/molecules27175690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022]
Abstract
To improve the antitumor effect of combined capecitabine (CAP) and osimertinib (OSI) therapy and quickly and efficiently reduce tumor volumes for preoperative chemotherapy, we designed a compound CAP colon-targeted microparticle (COPMP) prepared by coaxial electrospray. COPMP is a core–shell microparticle composed of a Eudragit S100 outer layer and a CAP/OSI-loaded PLGA core. In this study, we characterized its size distribution, drug loading (DL), encapsulation efficiency (EE), differential scanning calorimetry (DSC), Fourier transform infrared spectra (FTIR), in vitro release, formula ratio, cellular growth inhibition, and in vivo antitumor efficacy. COPMP is of spherical appearance with a size of 1.87 ± 0.23 μm. The DLs of CAP and OSI are 4.93% and 4.95%, respectively. The DSC showed that the phase state of CAP and OSI changed after encapsulation. The FTIR results indicated good compatibility between the drug and excipients. The release curve showed that CAP and OSI were released in a certain ratio. They were barely released prior to 2 h (pH 1.0), less than 50% was released between 3 and 5 h (pH 6.8), and sustained release of up to 80% occurred between 6 and 48 h (pH 7.4). CAP and OSI demonstrated a synergistic effect on HCT-116 cells. In a colon tumor model, the tumor inhibition rate after oral administration of COPMP reached 94% within one week. All the data suggested that COPMP promotes the sustained release of CAP and OSI in the colon, which provides a preoperative chemotherapy scheme for the treatment of colon cancer.
Collapse
|
22
|
Rostami E, Bakhshandeh M, Ghaffari-Nazari H, Alinezhad M, Alimohammadi M, Alimohammadi R, Mahmoodi Chalbatani G, Hejazi E, Webster TJ, Tavakkol-Afshari J, Jalali SA. Combining ablative radiotherapy and anti CD47 monoclonal antibody improves infiltration of immune cells in tumor microenvironments. PLoS One 2022; 17:e0273547. [PMID: 36018888 PMCID: PMC9417014 DOI: 10.1371/journal.pone.0273547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022] Open
Abstract
Radiotherapy as an anti-tumor treatment can stimulate the immune system. However, irradiated tumor cells express CD47 to escape the anti-tumor immune response. Anti- CD47 Immunotherapy is a possible way to tackle this problem. This study evaluated the effect of single high dose radiotherapy combined with an anti-CD47 monoclonal antibody (αCD47 mAb) in CT26 tumor‐bearing BALB/c mice. We assessed the tumors volume and survival in mice 60 days after tumor implantation. Also, immune cell changes were analyzed by flow cytometry in tumors, lymph nodes, and spleen. Combination therapy enhanced the anti-tumor response in treated mice by increasing CD8+ T cells and M1 macrophages and decreasing M2 macrophages and myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment (TME). Also, our results showed that combination therapy increased survival time in mice compared to other groups. Furthermore, tumor volumes remarkably decreased in mice that received a single high dose RT plus αCD47 mAb. In conclusion, we showed that combining RT and αCD47 mAb improved the immune cell population in TME, regressed tumor growth, and increased survival in tumor-bearing mice.
Collapse
Affiliation(s)
- Elham Rostami
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Bakhshandeh
- Department of Radiology Technology, Allied Medical Faculty, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haniyeh Ghaffari-Nazari
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maedeh Alinezhad
- Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Alimohammadi
- Department of Oncology, Tumor Immunotherapy and Microenvironment Group, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Reza Alimohammadi
- Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghanbar Mahmoodi Chalbatani
- Department of Oncology, Tumor Immunotherapy and Microenvironment Group, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Ehsan Hejazi
- Department of Clinical Nutrition and Dietetics, School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States of America
| | - Jalil Tavakkol-Afshari
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- * E-mail: , (SAJ); (JTA)
| | - Seyed Amir Jalali
- Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- * E-mail: , (SAJ); (JTA)
| |
Collapse
|
23
|
Moslehi M, Moazamiyanfar R, Dakkali MS, Rezaei S, Rastegar-Pouyani N, Jafarzadeh E, Mouludi K, Khodamoradi E, Taeb S, Najafi M. Modulation of the immune system by melatonin; implications for cancer therapy. Int Immunopharmacol 2022; 108:108890. [PMID: 35623297 DOI: 10.1016/j.intimp.2022.108890] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/07/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022]
Abstract
Immune system interactions within the tumour have a key role in the resistance or sensitization of cancer cells to anti-cancer agents. On the other hand, activation of the immune system in normal tissues following chemotherapy or radiotherapy is associated with acute and late effects such as inflammation and fibrosis. Some immune responses can reduce the efficiency of anti-cancer therapy and also promote normal tissue toxicity. Modulation of immune responses can boost the efficiency of anti-tumour therapy and alleviate normal tissue toxicity. Melatonin is a natural body agent that has shown promising results for modulating tumour response to therapy and also alleviating normal tissue toxicity. This review tries to focus on the immunomodulatory actions of melatonin in both tumour and normal tissues. We will explain how anti-cancer drugs may cause toxicity for normal tissues and how tumours can adapt themselves to ionizing radiation and anti-cancer drugs. Then, cellular and molecular mechanisms of immunoregulatory effects of melatonin alone or combined with other anti-cancer agents will be discussed.
Collapse
Affiliation(s)
- Masoud Moslehi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Moazamiyanfar
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Sepideh Rezaei
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Bldg. Rm 112, Houston, TX 77204-5003, USA
| | - Nima Rastegar-Pouyani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Emad Jafarzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kave Mouludi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran; Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
24
|
Roles for macrophage-polarizing interleukins in cancer immunity and immunotherapy. Cell Oncol (Dordr) 2022; 45:333-353. [PMID: 35587857 DOI: 10.1007/s13402-022-00667-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Macrophages are the most abundant and one of the most critical cells of tumor immunity. They provide a bridge between innate and adaptive immunity through releasing cytokines into the tumor microenvironment (TME). A number of interleukin (IL) cytokine family members is involved in shaping the final phenotype of macrophages toward either a classically-activated pro-inflammatory M1 state with anti-tumor activity or an alternatively-activated anti-inflammatory M2 state with pro-tumor activity. Shaping TME macrophages toward the M1 phenotype or recovering this phenotypic state may offer a promising therapeutic approach in patients with cancer. Here, we focus on the impact of macrophage-polarizing ILs on immune cells and IL-mediated cellular cross-interactions within the TME. The key aim of this review is to define therapeutic schedules for addressing ILs in cancer immunotherapy based on their multi-directional impacts in such a milieu. Gathering more knowledge on this area is also important for defining adverse effects related to cytokine therapy and addressing them for reinforcing the efficacy of immunotherapy against cancer.
Collapse
|
25
|
Abstract
Cancer resistance to therapy is a big issue in cancer therapy. Tumours may develop some mechanisms to reduce the induction of cell death, thus stimulating tumour growth. Cancer cells may show a low expression and activity of tumour suppressor genes and a low response to anti-tumour immunity. These mutations can increase the resistance of cancer cells to programmed cell death mechanisms such as apoptosis, ferroptosis, pyroptosis, autophagic cell death, and some others. The upregulation of some mediators and transcription factors such as Akt, nuclear factor of κB, signal transducer and activator of transcription 3, Bcl-2, and others can inhibit cell death in cancer cells. Using adjuvants to induce the killing of cancer cells is an interesting strategy in cancer therapy. Nobiletin (NOB) is a herbal-derived agent with fascinating anti-cancer properties. It has been shown to induce the generation of endogenous ROS by cancer cells, leading to damage to critical macromolecules and finally cell death. NOB may induce the activity of p53 and pro-apoptosis mediators, and also inhibit the expression and nuclear translocation of anti-apoptosis mediators. In addition, NOB may induce cancer cell killing by modulating other mechanisms that are involved in programmed cell death mechanisms. This review aims to discuss the cellular and molecular mechanisms of the programmed cell death in cancer by NOB via modulating different types of cell death in cancer.
Collapse
|
26
|
Mortezaee K, Majidpoor J. Checkpoint inhibitor/interleukin-based combination therapy of cancer. Cancer Med 2022; 11:2934-2943. [PMID: 35301813 PMCID: PMC9359865 DOI: 10.1002/cam4.4659] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/12/2022] [Accepted: 02/23/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Immunotherapy using immune checkpoint inhibitors (ICIs) is the current focus in cancer immunotherapy. However, issues are raised in the area, as the recent studies showed that such therapeutic modality suffers from low durability and low or no efficacy for patients with some tumor types including cases with non-inflamed or cold cancers. Therefore, efforts have been made to solve the issue using immune combination therapy, such as the use of immunocytokines. The combination of ICI with interleukins (ILs) and IL-targeting agents is now under consideration in the area of therapy, and the primary results are promising. PURPOSE The focus of this review is to discuss the possibility of using ILs and IL-targeting drugs in combination with ICI in cancer immunotherapy and describing recent advances in the field using PEGylated ILs and fusion proteins. The key focus in this area is to reduce adverse events and to increase the efficacy and durability of such combination therapy.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
27
|
Majidpoor J, Mortezaee K. Interleukin-6 in SARS-CoV-2 induced disease: Interactions and therapeutic applications. Biomed Pharmacother 2022; 145:112419. [PMID: 34781146 PMCID: PMC8585600 DOI: 10.1016/j.biopha.2021.112419] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023] Open
Abstract
Interleukin-6 (IL-6) is a multi-tasking cytokine that represents high activity in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and cancer. High concentration of this pleiotropic cytokine accounts for hyperinflammation and cytokine storm, and is related to multi-organ failure in patients with SARS-CoV-2 induced disease. IL-6 promotes lymphopenia and increases C-reactive protein (CRP) in such cases. However, blockade of IL-6 is not a full-proof of complete response. Hypoxia, hypoxemia, aberrant angiogenesis and chronic inflammation are inter-related events occurring as a response to the SARS-CoV-2 stimulatory effect on high IL-6 activity. Taking both pro- and anti-inflammatory activities will make complex targeting IL-6 in patient with SARS-CoV-2 induced disease. The aim of this review was to discuss about interactions occurring within the body of patients with SARS-CoV-2 induced disease who are representing high IL-6 levels, and to determine whether IL-6 inhibition therapy is effective for such patients or not. We also address the interactions and targeted therapies in cancer patients who also have SARS-CoV-2 induced disease.
Collapse
Affiliation(s)
- Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
28
|
Taeb S, Ashrafizadeh M, Zarrabi A, Rezapoor S, Musa AE, Farhood B, Najafi M. Role of Tumor Microenvironment in Cancer Stem Cells Resistance to Radiotherapy. Curr Cancer Drug Targets 2021; 22:18-30. [PMID: 34951575 DOI: 10.2174/1568009622666211224154952] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/29/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Cancer is a chronic disorder that involves several elements of both the tumor and the host stromal cells. At present, the complex relationship between the various factors presents in the tumor microenvironment (TME) and tumor cells, as well as immune cells located within the TME, is still poorly known. Within the TME, the crosstalk of these factors and immune cells essentially determines how a tumor reacts to the treatment and how the tumor can ultimately be destroyed, remain dormant, or develop and metastasize. Also, in TME, reciprocal crosstalk between cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), hypoxia-inducible factor (HIF) intensifies the proliferation capacity of cancer stem cells (CSCs). CSCs are subpopulation of cells that reside within the tumor bulk and have the capacity to self-renew, differentiate, and repair DNA damage. These characteristics make CSCs develop resistance to a variety of treatments, such as radiotherapy (RT). RT is a frequent and often curative treatment for local cancer which mediates tumor elimination by cytotoxic actions. Also, cytokines and growth factors that are released into TME, have been involved in the activation of tumor radioresistance and the induction of different immune cells, altering local immune responses. In this review, we discuss the pivotal role of TME in resistance of CSCs to RT.
Collapse
Affiliation(s)
- Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 , Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Turkey
| | - Saeed Rezapoor
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Iran
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences., Iraq
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Iran
| |
Collapse
|
29
|
Mortezaee K, Majidpoor J. The impact of hypoxia on immune state in cancer. Life Sci 2021; 286:120057. [PMID: 34662552 DOI: 10.1016/j.lfs.2021.120057] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022]
Abstract
Hypoxia is a known feature of solid tumors and a critical promoter of tumor hallmarks. Hypoxia influences tumor immunity in a way favoring immune evasion and resistance. Extreme hypoxia and aberrant hypoxia-inducible factor-1 (HIF-1) activity in tumor microenvironment (TME) is a drawback for effective immunotherapy. Infiltration and activity of CD8+ T cells is reduced in such condition, whereas regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) show high activities. Highly hypoxic TME also impairs maturation and activity of dendritic cell (DCs) and natural killer (NK) cells. In addition, the hypoxic TME positively is linked positively with metabolic changes in cells of immune system. These alterations are indicative of a need for hypoxia modulation as a complementary targeting strategy to go with immune checkpoint inhibitor (ICI) therapy.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
30
|
Ramos-Inza S, Ruberte AC, Sanmartín C, Sharma AK, Plano D. NSAIDs: Old Acquaintance in the Pipeline for Cancer Treatment and Prevention─Structural Modulation, Mechanisms of Action, and Bright Future. J Med Chem 2021; 64:16380-16421. [PMID: 34784195 DOI: 10.1021/acs.jmedchem.1c01460] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The limitations of current chemotherapeutic drugs are still a major issue in cancer treatment. Thus, targeted multimodal therapeutic approaches need to be strategically developed to successfully control tumor growth and prevent metastatic burden. Inflammation has long been recognized as a hallmark of cancer and plays a key role in the tumorigenesis and progression of the disease. Several epidemiological, clinical, and preclinical studies have shown that traditional nonsteroidal anti-inflammatory drugs (NSAIDs) exhibit anticancer activities. This Perspective reports the most recent outcomes for the treatment and prevention of different types of cancers for several NSAIDs alone or in combination with current chemotherapeutic drugs. Furthermore, an extensive review of the most promising structural modifications is reported, such as phospho, H2S, and NO releasing-, selenium-, metal complex-, and natural product-NSAIDs, among others. We also provide a perspective about the new strategies used to obtain more efficient NSAID- or NSAID derivative- formulations for targeted delivery.
Collapse
Affiliation(s)
- Sandra Ramos-Inza
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Ana Carolina Ruberte
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| |
Collapse
|
31
|
Mortezaee K, Majidpoor J. Key promoters of tumor hallmarks. Int J Clin Oncol 2021; 27:45-58. [PMID: 34773527 DOI: 10.1007/s10147-021-02074-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/31/2021] [Indexed: 02/06/2023]
Abstract
Evolution of tumor hallmarks is a result of accommodation of tumor cells with their nearby milieu called tumor microenvironment (TME). Accommodation or adaptive responses is highly important for a cell to survive, without which no cell is allowed to take any further steps in tumorigenesis. Metabolism of cancer cells is largely depended on stroma. Composition and plasticity of cells within the stroma is highly affected from inflammatory setting of TME. Hypoxia which is a common event in many solid cancers, is known as one of the key hallmarks of chronic inflammation and the master regulator of metastasis. Transforming growth factor (TGF)-β is produced in the chronic inflammatory and chronic hypoxic settings, and it is considered as a cardinal factor for induction of all tumor hallmarks. Aging, obesity and smoking are the main predisposing factors of cancer, acting mainly through modulation of TME.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
32
|
Berry MR, Fan TM. Target-Based Radiosensitization Strategies: Concepts and Companion Animal Model Outlook. Front Oncol 2021; 11:768692. [PMID: 34746010 PMCID: PMC8564182 DOI: 10.3389/fonc.2021.768692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
External beam radiotherapy is indicated in approximately 50-60% of human cancer patients. The prescribed dose of ionizing radiation that can be delivered to a tumor is determined by the sensitivity of the normal surrounding tissues. Despite dose intensification provided by highly conformal radiotherapy, durable locoregional tumor control remains a clinical barrier for recalcitrant tumor histologies, and contributes to cancer morbidity and mortality. Development of target-based radiosensitization strategies that selectively sensitizes tumor tissue to ionizing radiation is expected to improve radiotherapy efficacy. While exploration of radiosensitization strategies has vastly expanded with technological advances permitting the precise and conformal delivery of radiation, maximal clinical benefit derived from radiotherapy will require complementary discoveries that exploit molecularly-based vulnerabilities of tumor cells, as well as the assessment of investigational radiotherapy strategies in animal models that faithfully recapitulate radiobiologic responses of human cancers. To address these requirements, the purpose of this review is to underscore current and emerging concepts of molecularly targeted radiosensitizing strategies and highlight the utility of companion animal models for improving the predictive value of radiotherapy investigations.
Collapse
Affiliation(s)
- Matthew R Berry
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
33
|
Fu X, He Y, Li M, Huang Z, Najafi M. Targeting of the tumor microenvironment by curcumin. Biofactors 2021; 47:914-932. [PMID: 34375483 DOI: 10.1002/biof.1776] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment (TME) is made up of several cells and molecules that affect the survival of cancer cells. Indeed, certain (immunosuppressive) cells which promote tumors can promote the growth of tumors by stimulating the proliferation of cancer cells and promoting angiogenesis. During tumor growth, antitumoral immunity includes natural killer cells and CD8+ T cells cannot overcome immunosuppressive responses and cancer cell proliferation. In order to achieve the appropriate therapeutic response, we must kill cancer cells and suppress the release of immunosuppressive molecules. The balance between anti-tumor immunity and immunosuppressive cells, such as regulatory T cells (Tregs), cancer-associated fibroblasts, tumor-associated macrophages, and myeloid-derived suppressor cells plays a key role in the suppression or promotion of cancer cells. Curcumin is a plant-derived agent that has shown interesting properties for cancer therapy. It has shown that not only directly inhibit the growth of cancer cells, but can also modulate the growth and activity of immunosuppressant and tumor-promoting cells. In this review, we explain how curcumin modulates interactions within TME in favor of tumor treatment. The potential modulating effects of curcumin on the responses of cancer cells to treatment modalities such as immunotherapy will also be discussed.
Collapse
Affiliation(s)
- Xiao Fu
- College of Basic Medicine, Shaoyang University, Shaoyang, China
| | - Yingni He
- College of Basic Medicine, Shaoyang University, Shaoyang, China
| | - Mu Li
- College of Basic Medicine, Shaoyang University, Shaoyang, China
| | - Zezhi Huang
- Shaoyang Key Laboratory of Molecular Biology Diagnosis, Shaoyang, China
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
34
|
Wu Z, Zhang C, Najafi M. Targeting of the tumor immune microenvironment by metformin. J Cell Commun Signal 2021; 16:333-348. [PMID: 34611852 DOI: 10.1007/s12079-021-00648-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023] Open
Abstract
Stimulating antitumor immunity is an attractive idea for suppressing tumors. CD4 + and CD8 + T cells as well as natural killer cells (NK) are the primary antitumor immune cells in the tumor microenvironment (TME). In contrast to these cells, regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), and tumor-associated macrophages (TAMs) release several molecules to suppress antitumor immunity and stimulate cancer cell invasion and proliferation. Adjuvant treatment with certain nontoxic agents is interesting to boost antitumor immunity. Metformin, which is known as an antidiabetes drug, can modulate both antitumor and protumor immune cells within TME. It has the ability to induce the proliferation of CD8 + T lymphocytes and NK cells. On the other hand, metformin attenuates polarization toward TAMs, CAFs, and Tregs. Metformin also may stimulate the antitumor activity of immune system cells, while it interrupts the positive cross-talk and interactions between immunosuppressive cells and cancer cells. The purpose of this review is to explain the basic mechanisms for the interactions and communications between immunosuppressive, anti-tumoral, and cancer cells within TME. Next, we discuss the modulating effects of metformin on various cells and secretions in TME.
Collapse
Affiliation(s)
- Zihong Wu
- Department of Oncology, The NO.3 People's Hospital of Hubei Province, Jianghan University, Wuhan, 430033, Hubei, China
| | - Caidie Zhang
- Emergency Department, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430014, Hubei, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
35
|
Wang J, Xu Z, Wang Z, Du G, Lun L. TGF-beta signaling in cancer radiotherapy. Cytokine 2021; 148:155709. [PMID: 34597918 DOI: 10.1016/j.cyto.2021.155709] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022]
Abstract
Transforming growth factor beta (TGF-β) plays key roles in regulating cellular proliferation and maintaining tissue homeostasis. TGF-β exerts tumor-suppressive effects in the early stages of carcinogenesis, but it also plays tumor-promoting roles in established tumors. Additionally, it plays a critical role in cancer radiotherapy. TGF-β expression or activation increases in irradiated tissues, and studies have shown that TGF-β plays dual roles in cancer radiosensitivity and is involved in ionizing radiation-induced fibrosis in different tumor microenvironments (TMEs). Furthermore, TGF-β promotes radioresistance by inducing the epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs) and cancer-associated fibroblasts (CAFs), suppresses the immune system and facilitates cancer resistance. In particular, the links between TGF-β and the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) axis play a critical role in cancer therapeutic resistance. Growing evidence has shown that TGF-β acts as a radiation protection agent, leading to heightened interest in using TGF-β as a therapeutic target. The future of anti-TGF-β signaling therapy for numerous diseases appears bright, and the outlook for the use of TGF-β inhibitors in cancer radiotherapy as TME-targeting agents is promising.
Collapse
Affiliation(s)
- Juan Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266061, Shandong, China
| | - Zhonghang Xu
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Zhe Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266061, Shandong, China
| | - Guoqiang Du
- Department of Otolaryngology Head and Neck Surgery, Qingdao Municipal Hospital (Group), Qingdao 266071, Shandong, China.
| | - Limin Lun
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266061, Shandong, China.
| |
Collapse
|
36
|
Fu X, Li M, Tang C, Huang Z, Najafi M. Targeting of cancer cell death mechanisms by resveratrol: a review. Apoptosis 2021; 26:561-573. [PMID: 34561763 DOI: 10.1007/s10495-021-01689-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 12/11/2022]
Abstract
Cancer cell death is the utmost aim in cancer therapy. Anti-cancer agents can induce apoptosis, mitotic catastrophe, senescence, or autophagy through the production of free radicals and induction of DNA damage. However, cancer cells can acquire some new properties to adapt to anti-cancer agents. An increase in the incidence of apoptosis, mitotic catastrophe, senescence, and necrosis is in favor of overcoming tumor resistance to therapy. Although an increase in the autophagy process may help the survival of cancer cells, some studies indicated that stimulation of autophagy cell death may be useful for cancer therapy. Using some low toxic agents to amplify cancer cell death is interesting for the eradication of clonogenic cancer cells. Resveratrol (a polyphenol agent) may affect various signaling pathways related to cell death. It can induce death signals and also downregulate the expression of anti-apoptotic genes. Resveratrol has also been shown to modulate autophagy and induce mitotic catastrophe and senescence in some cancer cells. This review focuses on the important targets and mechanisms for the modulation of cancer cell death by resveratrol.
Collapse
Affiliation(s)
- Xiao Fu
- College of Basic Medicine, Shaoyang University, Shaoyang, 422000, China
| | - Mu Li
- College of Basic Medicine, Shaoyang University, Shaoyang, 422000, China
| | - Cuilian Tang
- Department of Obstetrics and Gynecology of the Second Affiliated Hospital, Shaoyang University, Shaoyang, 422000, China
| | - Zezhi Huang
- Shaoyang Key Laboratory of Molecular Biology Diagnosis, Shaoyang, 422000, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
37
|
Fu X, Tang J, Wen P, Huang Z, Najafi M. Redox interactions-induced cardiac toxicity in cancer therapy. Arch Biochem Biophys 2021; 708:108952. [PMID: 34097901 DOI: 10.1016/j.abb.2021.108952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
Cancer patients undergoing radiotherapy, chemotherapy, or targeted cancer therapy are exposed to the risk of several side effects because of the heavy production of ROS by ionizing radiation or some chemotherapy drugs. Damages to DNA, mitochondria, membrane and other organelles within normal tissue cells such as cardiomyocytes and endothelial cells lead to the release of some toxins which are associated with triggering inflammatory cells to release several types of cytokines, chemokines, ROS, and RNS. The release of some molecules following radiotherapy or chemotherapy stimulates reduction/oxidation (redox) reactions. Redox reactions cause remarkable changes in the level of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Excessive production of ROS and RNS or suppression of antioxidant defense enzymes leads to damage to critical macromolecules, which may continue for long times. Increased levels of some cytokines and oxidative injury are hallmarks of heart injury following cancer therapy. Redox reactions may be involved in several heart disorders such as fibrosis, cardiomyopathy, and endothelium injury. In the current review, we explain the cellular and molecular mechanisms of redox interactions following radiotherapy, chemotherapy, and targeted cancer therapy. Afterward, we explain the evidence of the involvement of redox reactions in heart diseases.
Collapse
Affiliation(s)
- Xiao Fu
- College of Basic Medicine, Shaoyang University, Shaoyang, 422000, China
| | - Juan Tang
- College of Basic Medicine, Shaoyang University, Shaoyang, 422000, China
| | - Ping Wen
- College of Basic Medicine, Shaoyang University, Shaoyang, 422000, China
| | - Zezhi Huang
- Shaoyang Key Laboratory of Molecular Biology Diagnosis, Shaoyang, 422000, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
38
|
Mu Q, Najafi M. Modulation of the tumor microenvironment (TME) by melatonin. Eur J Pharmacol 2021; 907:174365. [PMID: 34302814 DOI: 10.1016/j.ejphar.2021.174365] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022]
Abstract
The tumor microenvironment (TME) includes a number of non-cancerous cells that affect cancer cell survival. Although CD8+ T lymphocytes and natural killer (NK) cells suppress tumor growth through induction of cell death in cancer cells, there are various immunosuppressive cells such as regulatory T cells (Tregs), tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), etc., which drive cancer cell proliferation. These cells may also support tumor growth and metastasis by stimulating angiogenesis, epithelial-mesenchymal transition (EMT), and resistance to apoptosis. Interactions between cancer cells and other cells, as well as molecules released into EMT, play a key role in tumor growth and suppression of antitumoral immunity. Melatonin is a natural hormone that may be found in certain foods and is also available as a drug. Melatonin has been demonstrated to modulate cell activity and the release of cytokines and growth factors in TME. The purpose of this review is to explain the cellular and molecular mechanisms of cancer cell resistance as a result of interactions with TME. Next, we explain how melatonin affects cells and interactions within the TME.
Collapse
Affiliation(s)
- Qi Mu
- College of Nursing, Inner Mongolia University for Nationalities, Tongliao, 028000, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
39
|
Yu C, Yang B, Najafi M. Targeting of cancer cell death mechanisms by curcumin: Implications to cancer therapy. Basic Clin Pharmacol Toxicol 2021; 129:397-415. [PMID: 34473898 DOI: 10.1111/bcpt.13648] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022]
Abstract
Cancer is known as a second major cause of death globally. Nowadays, several modalities have been developed for the treatment of cancer. Radiotherapy and chemotherapy are the most common modalities in most countries. However, newer modalities such as immunotherapy and targeted therapy drugs can kill cancer cells with minimal side effects. All anticancer agents work based on the killing of cancer cells. Numerous studies are ongoing to kill cancer cells more effectively without increasing side effects to normal tissues. The combination modalities with low toxic agents are interesting for this aim. Curcumin is one of the most common herbal agents that has shown several anticancer properties. It can regulate immune system responses against cancer. Furthermore, curcumin has been shown to potentiate cell death signalling pathways and attenuate survival signalling pathways in cancer cells. The knowledge of how curcumin induces cell death in cancers can improve therapeutic efficiency. In this review, the regulatory effects of curcumin on different cell death mechanisms and their signalling pathways will be discussed. Furthermore, we explain how curcumin may potentiate the anticancer effects of other drugs or radiotherapy through modulation of apoptosis, mitotic catastrophe, senescence, autophagy and ferroptosis.
Collapse
Affiliation(s)
- Chong Yu
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin, China
| | - Bo Yang
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin, China
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
40
|
Najafi M, Majidpoor J, Toolee H, Mortezaee K. The current knowledge concerning solid cancer and therapy. J Biochem Mol Toxicol 2021; 35:e22900. [PMID: 34462987 DOI: 10.1002/jbt.22900] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/29/2021] [Accepted: 08/20/2021] [Indexed: 12/25/2022]
Abstract
Solid cancers comprise a large number of new cases and deaths from cancer each year globally. There are a number of strategies for addressing tumors raised from solid organs including surgery, chemotherapy, radiotherapy, targeted therapy, immunotherapy, combinational therapy, and stem cell and extracellular vesicle (EV) therapy. Surgery, radiotherapy, and chemotherapy are the dominant cures, but are not always effective, in which even in a localized tumor there is a possibility of tumor relapse after surgical resection. Over half of the cancer patients will receive radiotherapy as a part of their therapeutic schedule. Radiotherapy can cause an abscopal response for boosting the activity of the immune system outside the local field of radiation, but it may also cause an unwanted bystander effect, predisposing nonradiated cells into carcinogenesis. In the context of immunotherapy, immune checkpoint inhibition is known as the standard-of-care, but the major concern is in regard with cold cancers that show low responses to such therapy. Stem-cell therapy can be used to send prodrugs toward the tumor area; this strategy, however, has its own predicaments, such as unwanted attraction toward the other sites including healthy tissues and its instability. A substitute to such therapy and quite a novel strategy is to use EVs, by virtue of their stability and potential to cross biological barriers and long-term storage of contents. Combination therapy is the current focus. Despite advances in the field, there are still unmet concerns in the area of effective cancer therapy, raising challenges and opportunities for future investigations.
Collapse
Affiliation(s)
- Masoud Najafi
- Medical Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Heidar Toolee
- Department of Anatomy, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Keywan Mortezaee
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
41
|
Mu Q, Najafi M. Resveratrol for targeting the tumor microenvironment and its interactions with cancer cells. Int Immunopharmacol 2021; 98:107895. [PMID: 34171623 DOI: 10.1016/j.intimp.2021.107895] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 12/17/2022]
Abstract
Tumor resistance to therapy modalities is one of the major challenges to the eradication of cancer cells and complete treatment. Tumor includes a wide range of cancer and non-cancer cells that play key roles in the proliferation of cancer cells and suppression of anti-tumor immunity. For overcoming tumor resistance to therapy, it is important to have in-depth knowledge relating to intercellular communications within the tumor microenvironment (TME). TME includes various types of immune cells such as CD4 + T lymphocytes, cytotoxic T lymphocytes (CTLs), natural killer (NK) cells, macrophages, and T regulatory cells (Tregs). Furthermore, some non-immune cells like cancer stem cells (CSCs), mesenchymal stem cells (MSCs), and cancer-associated fibroblasts (CAFs) are involved in the promotion of tumor growth. The interactions between these cells with cancer cells play a key role in tumor growth or inhibition. Resveratrol as a natural agent has shown the ability to modulate the immune system to potentiate anti-tumor immunity and also help to attenuate cancer cells and CSCs resistance. Thus, this review explains how resveratrol can modulate interactions within TME.
Collapse
Affiliation(s)
- Qi Mu
- College of Nursing, Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
42
|
Sheikholeslami S, Aryafar T, Abedi-Firouzjah R, Banaei A, Dorri-Giv M, Zamani H, Ataei G, Majdaeen M, Farhood B. The role of melatonin on radiation-induced pneumonitis and lung fibrosis: A systematic review. Life Sci 2021; 281:119721. [PMID: 34146555 DOI: 10.1016/j.lfs.2021.119721] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/19/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Pneumonitis and lung fibrosis, as the most common compliances of lung irradiation, can affect the quality of life. The use of radio-protective agents can ameliorate these injuries. This study aimed to review the potential protective role of melatonin in the treatment of radiation-induced Pneumonitis and lung fibrosis. METHODS The current systematic study was conducted based on PRISMA guidelines to identify relevant literature on " the effect of melatonin on radiation-induced pneumonitis and lung fibrosis" in the electronic databases of Web of Science, Embase, PubMed, and Scopus up to January 2021. Eighty-one articles were screened in accordance with the inclusion and exclusion criteria of the study. Finally, eight articles were included in this systematic review. RESULTS The finding showed that the lung irradiation-induced pneumonitis and lung fibrosis. The co-treatment with melatonin could alleviate these compliances through its anti-oxidant and anti-inflammatory actions. Melatonin through upregulation of some enzymes such as catalase, superoxide dismutase, glutathione, NADPH oxidases 2 and 4, dual oxidases 1 and 2, and also downregulation of malondialdehyde reduced oxidative stress following lung radiation. Moreover, melatonin through its anti-inflammatory effects, can attenuate the increased levels of nuclear factor kappa B, tumor necrosis factor alpha, transforming growth factor beta 1, SMAD2, interleukin (IL)-4, IL-4 receptor-a1 (IL4ra1), and IL-1 beta following lung radiation. The histological damages induced by ionizing radiation were also alleviated by co-treatment with melatonin. CONCLUSION According to the obtained results, it was found that melatonin can have anti-pneumonitis and anti-fibrotic following lung irradiation.
Collapse
Affiliation(s)
- Sahar Sheikholeslami
- Department of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Tayebeh Aryafar
- Department of Radiation Sciences, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Amin Banaei
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoumeh Dorri-Giv
- Nuclear Medicine Research Center, Department of Nuclear Medicine, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Zamani
- Department of Medical Physics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Gholamreza Ataei
- Department of Radiology Technology, Faculty of Paramedical Sciences, Babol University of Medical Science, Babol, Iran
| | - Mehrsa Majdaeen
- Department of Radiotherapy and Oncology, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
43
|
Chen L, Musa AE. Boosting immune system against cancer by resveratrol. Phytother Res 2021; 35:5514-5526. [PMID: 34101276 DOI: 10.1002/ptr.7189] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 01/16/2023]
Abstract
Modulation of the immune system is a critical part of anticancer therapies including immunotherapy, chemotherapy, and radiotherapy. The aim of immunomodulation in cancer therapy is boosting immune system cells including CD8+ T lymphocytes and natural killer (NK) cells, as well as suppression of immunosuppressive responses by macrophages and regulatory T cells (Tregs). Usually, using single or dual modality can induce immune system responses against cancer. However, immunosuppressive responses attenuate antitumor immunity following cancer therapy. Using some agents to boost immune system's function against cancer can increase therapeutic efficiency of anticancer therapy. Resveratrol, as a natural agent, has shown ability to modulate the immune system to potentiate antitumor immunity. Resveratrol has been shown to induce the release of anticancer cytokines such as IFN-γ and TNF-α and also inhibits the release of TGF-β. It also can stimulate the polarization of CD4+ T cells and macrophages toward anticancer cells and reduce infiltration and polarization of immunosuppressive cells. Furthermore, resveratrol can sensitize cancer cells to the released dead signals by anticancer immune cells. This review explains how resveratrol can boost the immune system against cancer via modulation of immune cell responses within tumor.
Collapse
Affiliation(s)
- Libo Chen
- School of Pharmaceutical and Environmental Technology, Jilin Vocational College of Industry and Technology, Jilin, China
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Sheikholeslami S, Khodaverdian S, Dorri-Giv M, Mohammad Hosseini S, Souri S, Abedi-Firouzjah R, Zamani H, Dastranj L, Farhood B. The radioprotective effects of alpha-lipoic acid on radiotherapy-induced toxicities: A systematic review. Int Immunopharmacol 2021; 96:107741. [PMID: 33989970 DOI: 10.1016/j.intimp.2021.107741] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Radiation therapy is one of the main cancer treatment modalities applied in 50-70% of cancer patients. Despite the many advantages of this treatment, such as non-invasiveness, organ-preservation, and spatiotemporal flexibility in tumor targeting, it can lead to complications in irradiated healthy cells/tissues. In this regard, the use of radio-protective agents can alleviate radiation-induced complications. This study aimed to review the potential role of alpha-lipoic acid in the prevention/reduction of radiation-induced toxicities on healthy cells/tissues. METHODS A systematic search was performed following PRISMA guidelines to identify relevant literature on the "role of alpha-lipoic acid in the treatment of radiotherapy-induced toxicity" in the electronic databases of Web of Science, Embase, PubMed, and Scopus up to January 2021. Based on the inclusion and exclusion criteria of the present study, 278 articles were screened. Finally, 29 articles were included in this systematic review. RESULTS The obtained results showed that in experimental in vivo models, the radiation-treated groups had decreased survival rate and body weight compared to the control groups. It was also found that radiation can induce mild to severe toxicities on gastrointestinal, circulatory, reproductive, central nervous, respiratory, endocrine, exocrine systems, etc. However, the use of alpha-lipoic acid could alleviate the radiation-induced toxicities in most cases. This radio-protective agent exerts its effects through mechanisms of anti-oxidant, anti-apoptosis, anti-inflammatory, and so on. CONCLUSION According to the obtained results, it can be mentioned that co-treatment of alpha-lipoic acid with radiotherapy ameliorates the radiation-induced toxicities in healthy cells/tissues.
Collapse
Affiliation(s)
- Sahar Sheikholeslami
- Department of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shaghayegh Khodaverdian
- Department of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoumeh Dorri-Giv
- Nuclear Medicine Research Center, Department of Nuclear Medicine, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed Mohammad Hosseini
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shokoufeh Souri
- Department of Medical Physics, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Hamed Zamani
- Department of Medical Physics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Leila Dastranj
- Department of Physics, Hakim Sabzevari Universuty, Sabzevar, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan. Iran.
| |
Collapse
|
45
|
Jin J, Li Y, Zhao Q, Chen Y, Fu S, Wu J. Coordinated regulation of immune contexture: crosstalk between STAT3 and immune cells during breast cancer progression. Cell Commun Signal 2021; 19:50. [PMID: 33957948 PMCID: PMC8101191 DOI: 10.1186/s12964-021-00705-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022] Open
Abstract
Recent insights into the molecular and cellular mechanisms underlying cancer development have revealed the tumor microenvironment (TME) immune cells to functionally affect the development and progression of breast cancer. However, insufficient evidence of TME immune modulators limit the clinical application of immunotherapy for advanced and metastatic breast cancers. Intercellular STAT3 activation of immune cells plays a central role in breast cancer TME immunosuppression and distant metastasis. Accumulating evidence suggests that targeting STAT3 and/or in combination with radiotherapy may enhance anti-cancer immune responses and rescue the systemic immunologic microenvironment in breast cancer. Indeed, apart from its oncogenic role in tumor cells, the functions of STAT3 in TME of breast cancer involve multiple types of immunosuppression and is associated with tumor cell metastasis. In this review, we summarize the available information on the functions of STAT3-related immune cells in TME of breast cancer, as well as the specific upstream and downstream targets. Additionally, we provide insights about the potential immunosuppression mechanisms of each type of evaluated immune cells. Video abstract.
Collapse
Affiliation(s)
- Jing Jin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Yi Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Qijie Zhao
- Department of Radiologic Technology, Center of Excellence for Molecular Imaging (CEMI), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Pathophysiology, College of Basic Medical Science, Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000 Sichuan People’s Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000 Sichuan People’s Republic of China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - JingBo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000 Sichuan People’s Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000 Sichuan People’s Republic of China
| |
Collapse
|
46
|
Abstract
Tumors are equipped with a highly complex machinery of interrelated events so as to adapt to hazardous conditions, preserve a growing cell mass and thrive at the site of metastasis. Tumor cells display metastatic propensity toward specific organs where the stromal milieu is appropriate for their further colonization. Effective colonization relies on the plasticity of tumor cells in adapting to the conditions of the new area by reshaping their epigenetic landscape. Breast cancer cells, for instance, are able to adopt brain-like or epithelial/osteoid features in order to pursue effective metastasis into brain and bone, respectively. The aim of this review is to discuss recent insights into organ tropism in tumor metastasis, outlining potential strategies to address this driver of tumor aggressiveness.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Cancer & Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, 66177‐13446, Iran
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, 66177‐13446, Iran
| |
Collapse
|
47
|
Zeng L, Cao Y, He L, Ding S, Bian XW, Tian G. Metal-ligand coordination nanomaterials for radiotherapy: emerging synergistic cancer therapy. J Mater Chem B 2021; 9:208-227. [PMID: 33215626 DOI: 10.1039/d0tb02294b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Radiotherapy (RT) plays a central role in curing malignant tumors. However, the treatment outcome is often impeded by low radiation absorption coefficients and radiation resistance of tumors along with normal tissue radio-toxicity. With the development of nanotechnology, nanomaterials in combination with RT offer the possibility to improve the therapeutic efficacy yet reduce side-effects. Metal-ligand coordination nanomaterials, including nanoscale metal-organic frameworks (NMOFs) and nanoscale coordination polymers (NCPs), formed by coordination interactions between inorganic metal ions/clusters with organic bridging ligands, have shown great potential in the field of radiation oncology in recent years in view of their unique advantages including the porous structure, high surface area, periodic frameworks, and diverse selections of both metal ions/clusters and organic ligands. In this review, we summarize the recent advances in NMOF/NCP-mediated synergistic RT in combination with hypoxia relief, chemotherapy, photodynamic therapy, photothermal therapy, chemodynamic therapy or immunotherapy, which emerged in the last 3 years, and describe cooperative enhancement interactions among these synergistic combinations. Moreover, the potential challenges and future prospects of this rapidly growing direction were also addressed.
Collapse
Affiliation(s)
- Lijuan Zeng
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Yuhua Cao
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Ling He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Shuaishuai Ding
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Gan Tian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| |
Collapse
|
48
|
Liu H, Liu B, Ma Y, Guo L, Wu D, Shi A, Liu M. Giant Fungated Locally Advanced Breast Carcinoma Responded to Hypofractionated Radiotherapy Combined with Apatinib: A Case Report and Literature Review. Cancer Manag Res 2021; 13:605-611. [PMID: 33519240 PMCID: PMC7837545 DOI: 10.2147/cmar.s291029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Locally advanced breast cancer (LABC) is frequently encountered in clinical practice. Primary systemic therapy is regarded as the cornerstone of LABC management to downstage the disease and enable surgery. However, multiple lines of systemic agents may fail to control tumor growth in a considerable number of patients, and few options remain available for such patients. Here, we present a case of triple-negative, right breast cancer that progressed aggressively despite 3 lines of standard chemotherapy. The patient suffered from severe skin ulceration, bleeding, pain, infection, and fungation. The small-molecular tyrosine kinase inhibitor (TKI) apatinib was initiated, which targets vascular endothelial growth factor receptor 2 (VEGFR2). The patient then underwent hypofractionated irradiation applied to the whole right breast at 40 Gy/8 f. The tumor responded dramatically to this combination, and a near-complete remission (CR) response was achieved 2 months after irradiation. Our case is novel and instructional and demonstrated the efficacy and safety of hypofractionated irradiation combined with antiangiogenesis for the treatment of intractable LABC, shedding light on this difficult situation. In the near future, large-scale clinical trials will be initiated to further explore this issue.
Collapse
Affiliation(s)
- Hui Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Bailong Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Yunfei Ma
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Liang Guo
- Department of Pathology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Di Wu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Aiping Shi
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Min Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
49
|
Nodooshan SJ, Amini P, Ashrafizadeh M, Tavakoli S, Aryafar T, Khalafi L, Musa AE, Mahdavi SR, Najafi M, Ahmadi A, Farhood B. Suberosin Attenuates the Proliferation of MCF-7 Breast Cancer Cells in Combination with Radiotherapy or Hyperthermia. Curr Drug Res Rev 2021; 13:148-153. [PMID: 33371865 DOI: 10.2174/2589977512666201228104528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/08/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
AIM The aim of this study was to determine the proliferation of MCF-7 following irradiation or hyperthermia as alone or pre-treatment with suberosin. BACKGROUND Radiotherapy is a major therapeutic modality for the control of breast cancer. However, hyperthermia can be prescribed for relief of pain or enhancing cancer cell death. Some studies have attempted its use as an adjuvant to improve therapeutic efficiency. Suberosin is a cumarin- derived natural agent that has shown anti-inflammatory properties. OBJECTIVE In this in vitro study, possible sensitization effect of suberosin in combination with radiation or hyperthermia was evaluated. METHODS MCF-7 breast cancer cells were irradiated or received hyperthermia with or without treatment with suberosin. The incidence of apoptosis as well as viability of MCF-7 cells were observed. Furthermore, the expressions of pro-apoptotic genes such as Bax, Bcl-2, and some caspases were evaluated using real-time PCR. RESULTS Both radiotherapy or hyperthermia reduced the proliferation of MCF-7 cells. Suberosin amplified the effects of radiotherapy or hyperthermia for induction of pro-apoptotic genes and reducing cell viability. CONCLUSION Suberosin has a potent anti-cancer effect when combined with radiotherapy or hyperthermia. It could be a potential candidate for killing breast cancer cells as well as increasing the therapeutic efficiency of radiotherapy or hyperthermia.
Collapse
Affiliation(s)
- Saeedeh Jafari Nodooshan
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical Science, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey
| | - Saeed Tavakoli
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Tayebeh Aryafar
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Khalafi
- Omid Tehran Radiation Oncology Center, Physics Section, Tehran, Iran
| | - Ahmed Eleojo Musa
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Rabie Mahdavi
- Medical Physics Department, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Akbar Ahmadi
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
50
|
Mortezaee K, Najafi M. Immune system in cancer radiotherapy: Resistance mechanisms and therapy perspectives. Crit Rev Oncol Hematol 2020; 157:103180. [PMID: 33264717 DOI: 10.1016/j.critrevonc.2020.103180] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is a common modality for more than half of cancer patients. Classically, radiation is known as a strategy to kill cancer cells via direct interaction with DNA or generation of free radicals. Nowadays, we know that modulation of immune system has a key role in the outcome of radiotherapy. Selecting an appropriate dose per fraction is important for stimulation of anti-tumor immunity. Unfortunately, cancer cells and other cells within tumor microenvironment (TME) promote some mechanisms implicated in the attenuation of anti-tumor immunity via exhaustion of CD8 + T lymphocytes and natural killer (NK) cells. Immunotherapy with immune checkpoint inhibitors (ICIs) has shown to be an interesting adjuvant for induction of more effective anti-tumor immunity. Clinical trial studies are ongoing for uncovering more knowledge about the efficacy of ICI combination with radiotherapy. Some newer pre-clinical studies show more effective therapeutic window for targeting PD-1 and some other targets in combination with hypofractionated radiotherapy. In this review, we explain cellular and molecular consequences in the TME following radiotherapy and promising immune targets to enhance anti-tumor immunity.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran; Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|