1
|
Liu SM, Chen JC, Huang SM, Lin SH, Chen WC. Enhanced Cell Osteogenic Differentiation in Alendronate Acid and Flufenamic Acid Drug-Impregnated Nanoparticles of Mesoporous Bioactive Glass Composite Calcium Phosphate Bone Cement In Vitro. Pharmaceuticals (Basel) 2023; 16:ph16050680. [PMID: 37242463 DOI: 10.3390/ph16050680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
This study aims to compare the anti-osteoporotic drugs alendronic acid (ALN) and flufenamic acid (FA) alone impregnate into nanoparticles of mesoporous bioactive glass (nMBG), which further composites calcium phosphate cement (CPC) and investigates their in vitro performance. The drug release, physicochemical properties, and biocompatibility of nMBG@CPC composite bone cement are tested, and the effect of the composites on improving the proliferation and differentiation efficiency of mouse precursor osteoblasts (D1 cells) is also investigated. Drug release shows that FA impregnates nMBG@CPC composite, a large amount of FA is released rapidly within 8 h, gradually reaching a stable release within 12 h, followed by a slow and sustained release within 14 days, and then reaches a plateau within 21 days. The release phenomenon confirms that the drug-impregnated nBMG@CPC composite bone cement effectively achieves slow drug delivery. The working time and setting time of each composite are within 4-10 min and 10-20 min, respectively, meeting the operational requirements of clinical applications. The addition of nMBG nanoparticles in the CPC matrix did not prevent the aggregation phenomenon under microstructural observation, thus resulting in a decrease in the strength of the nMBG@CPC composite. However, after 24 h of immersed reaction, the strength of each 5 wt.% nMBG impregnated with different concentrations of FA and ALN is still greater than 30 MPa, which is higher than the general trabecular bone strength. The drug-impregnated nMBG@CPC composites did not hinder the product formation and exhibit biocompatibility. Based on the proliferation and mineralization of D1 cells, the combination of nMBG with abundant FA and ALN in CPC is not conducive to the proliferation of D1 cells. However, when D1 cells are contact cultured for 21 days, alkaline phosphatase (ALP) enzyme activity shows higher ALP secretion from drug-impregnated nMBG@CPC composites than drug-free composites. Accordingly, this study confirms that nMBG can effectively impregnate the anti-osteoporosis drugs FA and ALN, and enhance the mineralization ability of osteoblasts. Furthermore, drug-impregnated nMBG applications can be used alone or in combination with CPC as a new option for osteoporotic bone-filling surgery.
Collapse
Affiliation(s)
- Shih-Ming Liu
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Jian-Chih Chen
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
- Department of Orthopedics, Faculty of Medical School, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ssu-Meng Huang
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Shang-Hong Lin
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Wen-Cheng Chen
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
2
|
Zhang Y, Han Y, Wang L, Kong J, Pan W, Zhang X, Chen L, Yao Z, Zhou T, Cao J. Flufenamic Acid, a Promising Agent for the Sensitization of Colistin-Resistant Gram-Negative Bacteria to Colistin. Microbiol Spectr 2023; 11:e0405222. [PMID: 36971552 PMCID: PMC10100705 DOI: 10.1128/spectrum.04052-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
The continuous development of multidrug-resistant (MDR) Gram-negative bacteria poses a serious risk to public health on a worldwide scale. Colistin is used as the last-line antibiotic for the treatment of MDR pathogens, and colistin-resistant (COL-R) bacterial emergence thus has the potential to have a severe adverse impact on patient outcomes. In this study, synergistic activity was observed when colistin and flufenamic acid (FFA) were combined and used for the in vitro treatment of clinical COL-R Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii strains, as shown by checkerboard and time-kill assays. Crystal violet staining and scanning electron microscopy revealed the synergistic action of colistin-FFA against biofilms. When used to treat murine RAW264.7 macrophages, this combination did not induce any adverse toxicity. Strikingly, the survival rates of bacterially infected Galleria mellonella larvae were improved by such combination treatment, which was also sufficient to reduce the measured bacterial loads in a murine thigh infection model. Mechanistic propidium iodide (PI) staining analysis further demonstrated the ability of these agents to alter bacterial permeability in a manner that enhanced the efficacy of colistin treatment. Together, these data thus demonstrate that colistin and FFA can be synergistically combined to combat the spread of COL-R Gram-negative bacteria, providing a promising therapeutic tool with the potential to protect against COL-R bacterial infections and improve patient outcomes. IMPORTANCE Colistin is a last-line antibiotic used for the treatment of MDR Gram-negative bacterial infections. However, increasing resistance to it has been observed during clinical treatment. In this work, we assessed the efficacy of the combination of colistin and FFA for the treatment of COL-R bacterial isolates, demonstrating that the combined treatment has effective antibacterial and antibiofilm activities. Due to its low cytotoxicity and good therapeutic effects in vitro, the colistin-FFA combination may be a potential candidate for research into a resistance-modifying agent to combat infections caused by COL-R Gram-negative bacteria.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yijia Han
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Lingbo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Jingchun Kong
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wei Pan
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Xiaodong Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Zhuocheng Yao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Jianming Cao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
3
|
Malek G, Richard H, Beauchamp G, Laverty S. An in vitro model for discovery of osteoclast specific biomarkers towards identification of racehorses at risk for catastrophic fractures. Equine Vet J 2022; 55:534-550. [PMID: 35616632 DOI: 10.1111/evj.13600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/12/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Focal bone microcracks with osteoclast recruitment and bone lysis, may reduce fracture resistance in racehorses. As current imaging does not detect all horses at risk for fracture, the discovery of novel serum biomarkers of bone resorption or osteoclast activity could potentially address this unmet clinical need. The biology of equine osteoclasts on their natural substrate, equine bone, has never been studied in vitro and may permit identification of specific biomarkers of their activity. OBJECTIVES 1) Establish osteoclast cultures on equine bone, 2) Measure biomarkers (tartrate resistant acid phosphatase isoform 5b (TRACP-5b) and C-terminal telopeptide of type I collagen (CTX-I)) in vitro and 3) Study the effects of inflammation. STUDY DESIGN In vitro experiments. METHODS Haematopoietic stem cells, from 5 equine sternal bone marrow aspirates, were differentiated into osteoclasts and cultured either alone or on equine bone slices, with or without pro-inflammatory stimulus (IL-1β or LPS). CTX-I and TRACP-5b were immunoassayed in the media. Osteoclast numbers and bone resorption area were assessed. RESULTS TRACP-5b increased over time without bone (p < 0.0001) and correlated with osteoclast number (r = 0.63, p < 0.001). CTX-I and TRACP-5b increased with time for cultures with bone (p = 0.002; p = 0.02 respectively), correlated with each other (r = 0.64, p < 0.002) and correlated with bone resorption (r = 0.85, p < 0.001; r = 0.82, p < 0.001 respectively). Inflammation had no measurable effects. MAIN LIMITATIONS Specimen numbers limited. CONCLUSIONS Equine osteoclasts were successfully cultured on equine bone slices and their bone resorption quantified. TRACP-5b was shown to be a biomarker of equine osteoclast number and bone resorption for the first time; CTX-I was also confirmed to be a biomarker of equine bone resorption in vitro. This robust equine specific in vitro assay will help the study of osteoclast biology.
Collapse
Affiliation(s)
- Gwladys Malek
- Comparative Orthopaedic Research Laboratory, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, St-Hyacinthe, QC, Canada
| | - Hélène Richard
- Comparative Orthopaedic Research Laboratory, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, St-Hyacinthe, QC, Canada
| | - Guy Beauchamp
- Comparative Orthopaedic Research Laboratory, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, St-Hyacinthe, QC, Canada
| | - Sheila Laverty
- Comparative Orthopaedic Research Laboratory, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, St-Hyacinthe, QC, Canada
| |
Collapse
|
4
|
Tao ZS, Li TL, Xu HG, Yang M. Hydrogel contained valproic acid accelerates bone-defect repair via activating Notch signaling pathway in ovariectomized rats. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 33:4. [PMID: 34940936 PMCID: PMC8702411 DOI: 10.1007/s10856-021-06627-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/16/2021] [Indexed: 05/23/2023]
Abstract
The purpose was to observe whether valproic acid (VPA) has a positive effect on bone-defect repair via activating the Notch signaling pathway in an OVX rat model. The MC3T3-E1 cells were cocultured with VPA and induced to osteogenesis, and the osteogenic activity was observed by alkaline phosphatase (ALP) staining, Alizarin Red (RES) staining and Western blotting (WB). Then the hydrogel-containing VPA was implanted into the femoral epiphysis bone-defect model of ovariectomized (OVX) rats for 12 weeks. Micro-CT, biomechanical testing, histology, immunofluorescence, RT-qPCR, and WB analysis were used to observe the therapeutic effect and explore the possible mechanism. ALP and ARS staining and WB results show that the cell mineralization, osteogenic activity, and protein expression of ALP, OPN, RUNX-2, OC, Notch 1, HES1, HEY1, and JAG1 of VPA group is significantly higher than the control group. Micro-CT, biomechanical testing, histology, immunofluorescence, and RT-qPCR evaluation show that group VPA presented the stronger effect on bone strength, bone regeneration, bone mineralization, higher expression of VEGFA, BMP-2, ALP, OPN, RUNX-2, OC, Notch 1, HES1, HEY1, and JAG1 of VPA when compared with OVX group. Our current study demonstrated that local treatment with VPA could stimulate repair of femoral condyle defects, and these effects may be achieved by activating Notch signaling pathway and acceleration of blood vessel and bone formation.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China.
| | - Tian-Lin Li
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Hong-Guang Xu
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Min Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| |
Collapse
|
5
|
17 β-Estradiol alleviates oxidative damage in osteoblasts by regulating miR-320/RUNX2 signaling pathway. J Biosci 2021. [DOI: 10.1007/s12038-021-00236-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Rabajdová M, Špaková I, Klepcová Z, Smolko L, Abrahamovská M, Urdzík P, Mareková M. Zinc(II) niflumato complex effects on MMP activity and gene expression in human endometrial cell lines. Sci Rep 2021; 11:19086. [PMID: 34580366 PMCID: PMC8476601 DOI: 10.1038/s41598-021-98512-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/08/2021] [Indexed: 11/23/2022] Open
Abstract
Endometriosis is a chronic inflammatory disease which increasingly affects young women under 35 years of age and leads to subfertility even infertility. Analysis of the cytotoxic effect of zinc(II) niflumato complex with neocuproine ([Zn(neo)(nif)2] or Zn-Nif) on immortalized human endometriotic cell line (12Z) and on control immortalized human endometrial stromal cell line (hTERT) was performed using xCELLigence technology for approximately 72 h following the treatment with Zn-Nif as well as cell viability Trypan Blue Assay. 12Z cell line proliferated more slowly compared to unaffected cells, whereas hTERT cells did not show similar behavior after treatment. The complex probably reduces the effect of pro-inflammatory pathways due to the effect of NSAID, while presence of zinc might reduce the level of ROS and regulate ER2 levels and MMP activity. The observed effects and high selectivity for rapidly proliferating cells with increased inflammatory activity suggest a good prognosis of successful decrease of endometriosis stage with this complex.
Collapse
Affiliation(s)
- Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Ivana Špaková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 11, Košice, Slovakia.
| | - Zuzana Klepcová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Lukáš Smolko
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Michaela Abrahamovská
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Peter Urdzík
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovakia
| | - Mária Mareková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 11, Košice, Slovakia
| |
Collapse
|
7
|
Tao ZS, Zhou WS, Xu HG, Yang M. Intermittent administration sodium valproate has a protective effect on bone health in ovariectomized rats. Eur J Pharmacol 2021; 906:174268. [PMID: 34166702 DOI: 10.1016/j.ejphar.2021.174268] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/09/2022]
Abstract
The present work was aimed to evaluate the effect of different administration modes of sodium valproate (VPA) on bone strength, bone mass and bone mineral density in ovariectomized (OVX) rats and further investigation of the possible mechanism. 60 female SD rats were randomly divided into 4 groups: Sham group (Sham, n = 15), OVX group (OVX, n = 15), OVX rats received intermittent VPA treatment group (IVPA, n = 15) and OVX rats received daily VPA treatment group (EVPA, n = 15). After 12 weeks of treatment, the rats were sacrificed, and serum and femur samples were harvested. DEXA, Micro-CT, history, biomechanical testing, biochemical index and western blot analysis were used to observe the therapeutic effect and explore the possible mechanism. Micro-CT and DEXA analysis of bones revealed better BMD and higher BV/TV, Tb. Th, Tb. N, Conn. D and lower Tb. Sp at femoral metaphysis evaluated in IVPA when compared with OVX and EVPA group (P < 0.05). Histological, fluorescent analysis and biological strength revealed more trabecular bone and higher relative mineral apposition rate, maximal load, elastic modulus and energy at break with evaluated in IVPA when compared with OVX and EVPA group (P < 0.05). The levels of P1NP, estrogen, CTX, TRAP-5b and RANKL of the IVPA group showed a significant increase when compared with the OVX and EVPA group (P < 0.05). We confirm adverse effects on protein expressions including Notch1, Jagged1, HEY1, Wnt 1, β-catenin and RUNX2 following daily VPA treatment in OVX female rats. Our current study demonstrated that intermittent administration of sodium valproate has a protective effect on bone health in OVX rats and these effects may be achieved by activating Notch/Wnt/β-catenin/RUNX2 signal axis.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China.
| | - Wan-Shu Zhou
- Department of Geriatrics, The Second Affiliated Hospital of Wannan Medical College, No.123, Kangfu Road, Wuhu, 241000, Anhui, People's Republic of China
| | - Hong-Guang Xu
- Department of Spinal Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Min Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| |
Collapse
|
8
|
Huo S, Liu X, Zhang S, Lyu Z, Zhang J, Wang Y, Nie B, Yue B. p300/CBP inhibitor A-485 inhibits the differentiation of osteoclasts and protects against osteoporotic bone loss. Int Immunopharmacol 2021; 94:107458. [PMID: 33626422 DOI: 10.1016/j.intimp.2021.107458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 12/23/2022]
Abstract
Osteoporosis is one of the most common metabolic bone diseases among pre- and post-menopausal women. Despite numerous advances in the treatment of osteoporosis in recent years, the outcomes remain poor due to severe side effects. In this study, we investigated whether A-485, a highly selective catalytic p300/CBP inhibitor, could attenuate RANKL-induced osteoclast differentiation and explored the underlying molecular mechanisms. The protective role of A-485 in osteoporosis was verified using a mouse model of ovariectomy (OVX)-induced bone loss and micro-CT scanning. A-485 inhibited RANKL-induced osteoclast differentiation in vitro by reducing the number of tartrate-resistant acid phosphatase-positive osteoclasts without inducing significant cytotoxicity. In particular, A-485 dose-dependently disrupted F-actin ring formation and downregulated the expression of genes associated with osteoclast differentiation, such as CTSK, c-Fos, TRAF6, VATPs-d2, DC-STAMP, and NFATc1, in a time- and dose-dependent manner. Moreover, A-485 inhibited the RANKL-induced phosphorylation of MAPK pathways and attenuated OVX-induced bone loss in the mouse model while rescuing the loss of bone mineral density. Our in vitro and in vivo findings suggest for the first time that A-485 has the potential to prevent postmenopausal osteoporosis and could therefore be considered as a therapeutic molecule against osteoporosis.
Collapse
Affiliation(s)
- Shicheng Huo
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Xuesong Liu
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Zhuocheng Lyu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Jue Zhang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - You Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Bin'en Nie
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China.
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China.
| |
Collapse
|
9
|
Kokulnathan T, Wang TJ, Kumar EA, Liu ZY. Zinc Manganate: Synthesis, Characterization, and Electrochemical Application toward Flufenamic Acid Detection. Inorg Chem 2021; 60:4723-4732. [DOI: 10.1021/acs.inorgchem.0c03672] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Elumalai Ashok Kumar
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Zhe-Yuan Liu
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| |
Collapse
|
10
|
Zhang S, Tang H, Wang Y, Nie B, Yang H, Yuan W, Qu X, Yue B. Antibacterial and antibiofilm effects of flufenamic acid against methicillin-resistant Staphylococcus aureus. Pharmacol Res 2020; 160:105067. [PMID: 32650057 DOI: 10.1016/j.phrs.2020.105067] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections are one of the most serious surgery complications, and their prevention is of utmost importance. Flufenamic acid is a non-steroid anti-inflammatory drug approved for clinical use to relieve inflammation and pain in rheumatoid arthritis patients. In this study, we explored the antibacterial efficacy of flufenamic acid and the mechanisms underlying this effect. By using minimal inhibitory concentration (MIC), time-kill, resistance induction assays, and the antibiotic synergy test, we demonstrated that flufenamic acid inhibited the growth of methicillin-resistant staphylococci and did not induce resistance when it was used at the MIC. Furthermore, flufenamic acid acted synergistically with the beta-lactam antibiotic oxacillin and did not show significant toxicity toward mammalian cells. The biofilm inhibition assay revealed that flufenamic acid could prevent biofilm formation on medical implants and destroy the ultrastructure of the bacterial cell wall. RNA sequencing and quantitative RT-PCR indicated that flufenamic acid inhibited the expression of genes associated with peptidoglycan biosynthesis, beta-lactam resistance, quorum sensing, and biofilm formation. Furthermore, flufenamic acid efficiently ameliorated a local infection caused by MRSA in mice. In conclusion, flufenamic acid may be a potent therapeutic compound against MRSA infections and a promising candidate for antimicrobial coating of implants and surgical devices.
Collapse
Affiliation(s)
- Shutao Zhang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haozheng Tang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - You Wang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin'en Nie
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongtao Yang
- Department of Plastic & Reconstructive Surgery, The Ohio State University, Columbus, OH 43210, United States
| | - Weien Yuan
- Ministry of Education Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Bing Yue
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|