1
|
Lan W, Zhuang W, Wang R, Wang X, Lin Z, Fu L, Zhang Y, Wen Y. Advanced lung cancer inflammation index is associated with prognosis in skin cancer patients: a retrospective cohort study. Front Oncol 2024; 14:1365702. [PMID: 39464703 PMCID: PMC11502321 DOI: 10.3389/fonc.2024.1365702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024] Open
Abstract
Background Skin cancer ranks as one of the most prevalent malignant tumors affecting humans. This study was designed to explore the correlation between the advanced lung cancer inflammation index (ALI), a metric that gauged both nutrition and inflammation statuses, in skin cancer patients and their subsequent prognosis. Methods Data from the National Health and Nutrition Examination Survey (NHANES) spanning 1999-2018 were scrutinized, along with mortality tracking extending to December 31, 2019. Kaplan-Meier survival curves and COX regression analysis, utilizing NHANES-recommended weights, delineated the association between ALI levels and skin cancer prognosis. To decipher the potential non-linear relationship, a restricted cubic spline analysis was applied. Additionally, stratified analysis was conducted to affirm the robustness of our findings. Results The 1,149 patients participating in NHANES 1999-2018 were enrolled. We observed a reverse J-shaped non-linear relationship between ALI and both skin cancer all-cause mortality and cancer mortality, with inflection points at 81.13 and 77.50, respectively. Conclusions The ALI served as a comprehensive indicator of a patient's nutrition and inflammation status and was demonstrably linked to the prognosis in skin cancer cases. The meticulous evaluation and continuous monitoring of these parameters in skin cancer patients bear clinical importance.
Collapse
Affiliation(s)
- Weifeng Lan
- Department of Plastic Surgery, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Wanli Zhuang
- Department of Gastroenterology, Jinjiang Municipal Hospital, Shanghai Sixth People’s Hospital Fujian, Quanzhou, Fujian, China
| | - Ruiqi Wang
- Department of Gastroenterology, Xiamen Humanity Hospital of Fujian Medical University, Xiamen, Fujian, China
| | - Xuewen Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhou Lin
- Department of Plastic Surgery, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Liqin Fu
- Department of Plastic Surgery, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Yanping Zhang
- Department of Plastic Surgery, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Yuqing Wen
- Department of Plastic Surgery, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| |
Collapse
|
2
|
Ji Y, Li F, Zhang H, Yang L, Yi Y, Wang L, Chen H, Zhang Y, Yang Z. Targeting TRIM40 signaling reduces esophagus cancer development: A mechanism involving in protection of oroxylin A. Int Immunopharmacol 2024; 137:112362. [PMID: 38901248 DOI: 10.1016/j.intimp.2024.112362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/22/2024]
Abstract
Oroxylin A (OA), a naturally active O-methylated flavone derived from Scutellaria baicalensis, is regarded as a potential drug with strong anticancer effects. Unfortunately, our understanding of the antineoplastic mechanism of oral exposure to such flavonoids is inadequate. Growing evidence has confirmed the important role of OA in the regulation of oxidative stress- and inflammatory-response-induced tissue injury. However, it remains unknown whether OA is capable of mitigating esophagus cancer (EC) progression and its potential molecular mechanism. Furthermore, the tripartite motif containing 40 (TRIM40) is a ubiquitin ligase that mediates the immune response. The potential molecular function of TRIM40 in regulating EC is largely unknown. We confirmed that OA-triggered oxidative stress markedly upregulates TRIM40. During the OA challenge, increased TRIM40 reduced oxidative stress and promoted the ER stress response. Inversely, deletion of TRIM40 facilitated oxidative stress and blocked cancer cell growth in vivo and in vitro. Mechanistically, in response to OA treatment, TRIM40 directly interacts with Keap1 and promotes ubiquitin-proteasome degradation, thus leading to the promotion of Nrf2 nuclear translocation and its downstream cascade activation, which increases antioxidant defense and cell survival. TRIM40 expression was positively correlated with Nrf2 expression and negatively associated with Keap1 expression in EC xenografts and human specimens. In addition, high TRIM40 expression correlates with poor patient survival in EC. The findings suggested that oral exposure to OA significantly mitigates EC development by targeting TRIM40 activity. These findings further elucidated the potential role of TRIM40 in EC progression by mediating Keap1 degradation, which could be considered a therapeutic target for the treatment of such a disease.
Collapse
Affiliation(s)
- Yanlei Ji
- Department of Ultrasound Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Fengxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Hui Zhang
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Linke Yang
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Yan Yi
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Lan Wang
- General Internal Medicine, Laiyang Hospital of Traditional Chinese Medicine, Laiyang, Shandong Province 265200, China
| | - Hua Chen
- Department of Interventional Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Yong Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China.
| | - Zhengqiang Yang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China.
| |
Collapse
|
3
|
Wang PX, Mu XN, Huang SH, Hu K, Sun ZG. Cellular and molecular mechanisms of oroxylin A in cancer therapy: Recent advances. Eur J Pharmacol 2024; 969:176452. [PMID: 38417609 DOI: 10.1016/j.ejphar.2024.176452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Seeking an effective and safe scheme is the common goal of clinical treatment of tumor patients. In recent years, traditional Chinese medicine has attracted more and more attention in order to discover new drugs with good anti-tumor effects. Oroxylin A (OA) is a compound found in natural Oroxylum indicum and Scutellaria baicalensis Georgi plants and has been used in the treatment of various cancers. Studies have shown that OA has a wide range of powerful biological activities and plays an important role in neuroprotection, anti-inflammation, anti-virus, anti-allergy, anti-tumor and so on. OA shows high efficacy in tumor treatment. Therefore, it has attracted great attention of researchers all over the world. This review aims to discuss the anti-tumor effects of OA from the aspects of cell cycle arrest, induction of cell proliferation and apoptosis, induction of autophagy, anti-inflammation, inhibition of glycolysis, angiogenesis, invasion, metastasis and reversal of drug resistance. In addition, the safety and toxicity of the compound were also discussed. As a next step, to clarify the benefits and adverse effects of Oroxylin A in cancer patients further experiments, especially clinical trials, are needed.
Collapse
Affiliation(s)
- Peng-Xin Wang
- Departments of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China; Medical College, Jining Medical University, Jining 272067, Shandong, China
| | - Xiao-Nan Mu
- Health Care (& Geriatrics) Ward 1, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, China
| | - Shu-Hong Huang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Kang Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, 215000, Jiangsu, China.
| | - Zhi-Gang Sun
- Departments of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China.
| |
Collapse
|
4
|
Li L, Zhao H, Li Z, Shi W, Jiao Z. SHCBP1 Overexpression Aggravates Pancreatitis by Triggering the Loss of Primary Cilia. DNA Cell Biol 2024; 43:141-151. [PMID: 38215233 DOI: 10.1089/dna.2023.0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024] Open
Abstract
Primary cilia are microtubule-based organelles that mediate various biological processes. Pancreatic cells are typically ciliated; however, the role of primary cilia in acute pancreatitis (AP) is largely unknown. Here, we report that the loss of primary cilia, mediated by SHCBP1 (SHC1 binding protein), exerted a provocative effect on AP. Primary cilia are extensively lost in inflamed pancreatic cells in vitro and in mouse tissues with AP in vivo. Abrogation of primary cilia aggravated lipopolysaccharide (LPS)-induced inflammation in pancreatic cells. Mechanistically, AP induced the overexpression of SHCBP1 mitotic factor, which is localized to the base of primary cilia. SHCBP1 deficiency relieved LPS- and cerulein-induced pancreatitis by preventing the loss of primary cilia in vitro and in vivo. Collectively, we reveal that inflammation-induced loss of primary cilia aggravates AP. Furthermore, abrogating SHCBP1 to prevent primary cilia loss is an efficient strategy to combat AP.
Collapse
Affiliation(s)
- Lianshun Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Huiming Zhao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Zhengyang Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Wengui Shi
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Zuoyi Jiao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, China
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
5
|
Yu X, Sun Z, Nie S, Zhang T, Lu H. Effects of Resveratrol on Mouse B16 Melanoma Cell Proliferation through the SHCBP1-ERK1/2 Signaling Pathway. Molecules 2023; 28:7614. [PMID: 38005336 PMCID: PMC10674768 DOI: 10.3390/molecules28227614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Melanoma originates from the malignant mutational transformation of melanocytes in the basal layer of the epidermal layer of the skin. It can easily spread and metastasize in the early stage, resulting in a poor prognosis. Therefore, it is particularly important to find effective antitumor adjuvant drugs to inhibit the occurrence and development of melanoma. In this study, we found that resveratrol, a polyphenolic compound from grape plants, can significantly inhibit the proliferation, colony formation and migration of mouse melanoma B16 cells. Notably, resveratrol was also found to inhibit the expression of SHCBP1 in B16 cells. Transcriptional analysis and cellular studies showed that SHCBP1 can activate the MAPK/ERK signaling pathway to regulate cyclin expression and promote the G1/S phase transition of the cell cycle by upregulating ERK1/2 phosphorylation levels. Resveratrol further downregulates the phosphorylation level of ERK1/2 by inhibiting SHCBP1 expression, thus inhibiting tumor cell proliferation. In conclusion, resveratrol inhibits the proliferation of B16 cells by regulating the ERK1/2 signaling pathway through SHCBP1. As an upstream protein of the ERK1/2 signaling pathway, SHCBP1 may be involved in the process of resveratrol-mediated inhibition of tumor cell proliferation.
Collapse
Affiliation(s)
- Xiaoke Yu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.Y.); (Z.S.); (S.N.); (T.Z.)
| | - Zhiyang Sun
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.Y.); (Z.S.); (S.N.); (T.Z.)
| | - Saiya Nie
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.Y.); (Z.S.); (S.N.); (T.Z.)
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.Y.); (Z.S.); (S.N.); (T.Z.)
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
- Department of Biology, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.Y.); (Z.S.); (S.N.); (T.Z.)
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
- Department of Biology, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
| |
Collapse
|
6
|
Porras SM, Saavedra RA, Sierra LJ, González RT, Martínez JR, Stashenko EE. Chemical Characterization and Determination of the Antioxidant Properties of Phenolic Compounds in Three Scutellaria sp. Plants Grown in Colombia. Molecules 2023; 28:molecules28083474. [PMID: 37110708 PMCID: PMC10142030 DOI: 10.3390/molecules28083474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Plants of the genus Scutellaria (Lamiaceae) have a wide variety of bioactive secondary metabolites with diverse biological properties, e.g., anti-inflammatory, antiallergenic, antioxidant, antiviral, and antitumor activities. The chemical composition of the hydroethanolic extracts, obtained from dried plants of S. incarnata, S. coccinea, and S. ventenatii × S. incarnata, was determined by UHPLC/ESI-Q-Orbitrap-MS. The flavones were found in a higher proportion. Baicalin and dihydrobaicalein-glucuronide were the major extract components in S. incarnata (287.127 ± 0.005 mg/g and 140.18 ± 0.07 mg/g), in S. coccinea (158.3 ± 0.34 mg/g and 51.20 ± 0.02 mg/g), and in S. ventenatii × S. incarnata (186.87 ± 0.01 mg/g and 44.89 ± 0.06 mg/g). The S. coccinea extract showed the highest antioxidant activity in the four complementary techniques employed to evaluate all extracts: ORAC (3828 ± 3.0 µmol Trolox®/g extract), ABTS+• (747 ± 1.8 µmol Trolox®/g extract), online HPLC-ABTS+• (910 ± 1.3 µmol Trolox®/g extract), and β-carotene (74.3 ± 0.8 µmol Trolox®/g extract).
Collapse
Affiliation(s)
- Silvia M Porras
- Research Center for Chromatography and Mass Spectrometry (CROM-MASS), Center for Biomolecules (CIBIMOL), Universidad Industrial de Santander, Carrera 27, Calle 9, Bucaramanga 680002, Colombia
| | - Rogerio A Saavedra
- Research Center for Chromatography and Mass Spectrometry (CROM-MASS), Center for Biomolecules (CIBIMOL), Universidad Industrial de Santander, Carrera 27, Calle 9, Bucaramanga 680002, Colombia
| | - Lady J Sierra
- Research Center for Chromatography and Mass Spectrometry (CROM-MASS), Center for Biomolecules (CIBIMOL), Universidad Industrial de Santander, Carrera 27, Calle 9, Bucaramanga 680002, Colombia
| | - Robert T González
- Research Group on Orchids and Ecology, Universidad Nacional de Colombia, Carrera 32, Palmira 763533, Colombia
| | - Jairo R Martínez
- Research Center for Chromatography and Mass Spectrometry (CROM-MASS), Center for Biomolecules (CIBIMOL), Universidad Industrial de Santander, Carrera 27, Calle 9, Bucaramanga 680002, Colombia
| | - Elena E Stashenko
- Research Center for Chromatography and Mass Spectrometry (CROM-MASS), Center for Biomolecules (CIBIMOL), Universidad Industrial de Santander, Carrera 27, Calle 9, Bucaramanga 680002, Colombia
| |
Collapse
|
7
|
Biological functions and therapeutic potential of SHCBP1 in human cancer. Biomed Pharmacother 2023; 160:114362. [PMID: 36739763 DOI: 10.1016/j.biopha.2023.114362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The incidence of cancer is increasing globally, and it is the most common cause of death. The identification of novel cancer diagnostic and prognostic biomarkers is important for developing cancer treatment strategies and reducing mortality. SHCSH2 domain-binding protein 1 (SHCBP1) is a protein that specifically binds to the SH2 domain of Src homology-collagen. It participates in the regulation of a variety of signal transduction pathways and can activate a variety of signaling molecules to perform a series of physiological functions. SHCBP1 is expressed in a variety of human tissues, but its abnormal expression in various systems is associated with cancer. SHCBP1 is abnormally expressed in a variety of tumors, and plays roles in almost all aspects of cancer biology (such as cell proliferation, apoptosis prevention, invasion, and metastasis) through various possible mechanisms. Its expression level is related to the clinicopathological characteristics of patients. In addition, the SHCBP1 expression pattern is closely related to cancer type, stage, and other clinical variables. Therefore, SHCBP1 is a promising tumor biomarker for cancer diagnosis and prognosis and a potential therapeutic target. This article reviews the expression, biological functions, mechanisms, and potential clinical significance of SHCBP1 in various human tumors to provide a new theoretical basis for clinical molecular diagnosis, molecular targeted therapy, and scientific research on cancer.
Collapse
|
8
|
Steinhoff M, Alam M, Ahmad A, Uddin S, Buddenkotte J. Targeting oncogenic transcription factors in skin malignancies: An update on cancer stemness and therapeutic outcomes. Semin Cancer Biol 2022; 87:98-116. [PMID: 36372325 DOI: 10.1016/j.semcancer.2022.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
The skin is the largest organ of the human body and prone to various diseases, including cancer; thus, provides the first line of defense against exogenous biological and non-biological agents. Skin cancer, a complex and heterogenic process, with steep incidence rate often metastasizes due to poor understanding of the underlying mechanisms of pathogenesis and clinical challenges. Indeed, accumulating evidence indicates that deregulation of transcription factors (TFs) due to genetic, epigenetic and signaling distortions plays essential role in the development of cutaneous malignancies and therapeutic challenges including cancer stemness features and reprogramming. This review highlights the recent developments exploring underlying mechanisms how deregulated TFs (e.g., NF-κB, AP-1, STAT etc.,) orchestrates cutaneous onco-pathogenesis, reprogramming, stemness and poor clinical outcomes. Along this line, bioactive drugs, and their derivatives from natural and or synthetic origin has gained attention due to their multitargeting potential, potentially safer and effective therapeutic outcome for human malignancies. We also discussed therapeutic importance of targeting aberrantly expressed TFs in skin cancers with bioactive natural products and or synthetic agents.
Collapse
Affiliation(s)
- Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar.
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Center, Qatar University, Doha, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
9
|
Sajeev A, Hegde M, Daimary UD, Kumar A, Girisa S, Sethi G, Kunnumakkara AB. Modulation of diverse oncogenic signaling pathways by oroxylin A: An important strategy for both cancer prevention and treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154369. [PMID: 35985182 DOI: 10.1016/j.phymed.2022.154369] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/14/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Regardless of major advances in diagnosis, prevention and treatment strategies, cancer is still a foreboding cause due to factors like chemoresistance, radioresistance, adverse side effects and cancer recurrence. Therefore, continuous development of unconventional approaches is a prerequisite to overcome foregoing glitches. Natural products have found their way into treatment of serious health conditions, including cancer since ancient times. The compound oroxylin A (OA) is one among those with enormous potential against different malignancies. It is a flavonoid obtained from the several plants such as Oroxylum indicum, Scutellaria baicalensis and S. lateriflora, Anchietea pyrifolia, and Aster himalaicus. PURPOSE The main purpose of this study is to comprehensively elucidate the anticancerous effects of OA against various malignancies and unravel their chemosensitization and radiosensitization potential. Pharmacokinetic and pharmacodynamic studies of OA have also been investigated. METHOD The literature on antineoplastic effects of OA was searched in PubMed and Scopus, including in vitro and in vivo studies and is summarized based on a systematic review protocol prepared according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The term "oroxylin A" was used in combination with "cancer" and all the title, abstracts and keywords appeared were considered. RESULTS In Scopus, a total of 157 articles appeared out of which 103 articles that did not meet the eligibility criteria were eliminated and 54 were critically evaluated. In PubMed, from the 85 results obtained, 26 articles were eliminated and 59 were included in the preparation of this review. Mounting number of studies have illustrated the anticancer effects of OA, and its mechanism of action. CONCLUSION OA is a promising natural flavonoid possessing wide range of pleiotropic properties and is a potential anticancer agent. It has a great potential in the treatment of multiple cancers including brain, breast, cervical, colon, esophageal, gall bladder, gastric, hematological, liver, lung, oral, ovarian, pancreatic and skin. However, lack of pharmacokinetic studies, toxicity assessments, and dose standardization studies and adverse effects limit the optimization of this compound as a therapeutic agent.
Collapse
Affiliation(s)
- Anjana Sajeev
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, 781039, Assam, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, 781039, Assam, India.
| |
Collapse
|
10
|
Sajeev A, Hegde M, Girisa S, Devanarayanan TN, Alqahtani MS, Abbas M, Sil SK, Sethi G, Chen JT, Kunnumakkara AB. Oroxylin A: A Promising Flavonoid for Prevention and Treatment of Chronic Diseases. Biomolecules 2022; 12:1185. [PMID: 36139025 PMCID: PMC9496116 DOI: 10.3390/biom12091185] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
There have been magnificent advancements in the understanding of molecular mechanisms of chronic diseases over the past several years, but these diseases continue to be a considerable cause of death worldwide. Most of the approved medications available for the prevention and treatment of these diseases target only a single gene/protein/pathway and are known to cause severe side effects and are less effective than they are anticipated. Consequently, the development of finer therapeutics that outshine the existing ones is far-reaching. Natural compounds have enormous applications in curbing several disastrous and fatal diseases. Oroxylin A (OA) is a flavonoid obtained from the plants Oroxylum indicum, Scutellaria baicalensis, and S. lateriflora, which have distinctive pharmacological properties. OA modulates the important signaling pathways, including NF-κB, MAPK, ERK1/2, Wnt/β-catenin, PTEN/PI3K/Akt, and signaling molecules, such as TNF-α, TGF-β, MMPs, VEGF, interleukins, Bcl-2, caspases, HIF-1α, EMT proteins, Nrf-2, etc., which play a pivotal role in the molecular mechanism of chronic diseases. Overwhelming pieces of evidence expound on the anti-inflammatory, anti-bacterial, anti-viral, and anti-cancer potentials of this flavonoid, which makes it an engrossing compound for research. Numerous preclinical and clinical studies also displayed the promising potential of OA against cancer, cardiovascular diseases, inflammation, neurological disorders, rheumatoid arthritis, osteoarthritis, etc. Therefore, the current review focuses on delineating the role of OA in combating different chronic diseases and highlighting the intrinsic molecular mechanisms of its action.
Collapse
Affiliation(s)
- Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Thulasidharan Nair Devanarayanan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Center, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Samir Kumar Sil
- Cell Physiology and Cancer Biology Laboratory, Department of Human Physiology, Tripura University, Suryamaninagar 799022, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
11
|
Zhu S, Zhao Z, Qin W, Liu T, Yang Y, Wang Z, Ma H, Wang X, Liu T, Qi D, Guo P, Pi J, Tian B, Zhang H, Li N. The Nanostructured lipid carrier gel of Oroxylin A reduced UV-induced skin oxidative stress damage. Colloids Surf B Biointerfaces 2022; 216:112578. [PMID: 35636325 DOI: 10.1016/j.colsurfb.2022.112578] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
Oxidative stress damage caused by sun exposure damages the appearance and function of the skin, which is one of the essential inducements of skin aging and even leads to skin cancer. Oroxylin A (OA) is a flavonoid with excellent antioxidant activity and has protective effects against photoaging induced by UV irradiation. However, the strong barrier function of the skin stratum corneum prevents transdermal absorption of the drug, which limits the application of OA in dermal drug delivery. Studies have shown that nanostructured lipid carriers (NLC) can promote not only transdermal absorption of drugs but also increase drug stability and control drug release efficiency, which has broad prospects for clinical applications. In this paper, NLC loaded with OA (OA-NLC) was prepared in order to improve the skin permeability and stability of OA. In vitro studies revealed that OA-NLC had better therapeutic effects than OA solution (OA-Sol) in the cellular model of UVB radiation. OA-Sol and OA-NLC were immobilized in a hydrogel matrix to facilitate application to the dorsal skin of mice. It was found that OA-NLC-gel showed significant antioxidant and anti-apoptotic activity compared to OA-Sol-gel, which was able to protect against skin damage in mice after UV radiation. These results suggest that OA-NLC can improve the deficiencies of OA in skin delivery and show better resistance to UV-induced oxidative damage. The application of OA-NLC to skin delivery systems has good prospects and deserves further development and investigation.
Collapse
Affiliation(s)
- Shan Zhu
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhiyue Zhao
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wenxiao Qin
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tao Liu
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yi Yang
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zijing Wang
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongfei Ma
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiang Wang
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tao Liu
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dongli Qi
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Pan Guo
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - JiaXin Pi
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - BaoCheng Tian
- School of Pharmacy, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, China
| | - Han Zhang
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Nan Li
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
12
|
Identification of SHCBP1 as a potential biomarker involving diagnosis, prognosis, and tumor immune microenvironment across multiple cancers. Comput Struct Biotechnol J 2022; 20:3106-3119. [PMID: 35782736 PMCID: PMC9233189 DOI: 10.1016/j.csbj.2022.06.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/29/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
Shc SH2-domain binding protein 1 (SHCBP1), a protein specific binding to SH2 domain of Src homolog and collagen homolog (Shc), takes part in the regulation of various signal transduction pathways, which has been reported to be associated with tumorigenesis and progression. However, the pathological mechanisms are not completely investigated. Thus, this study aimed to comprehensively elucidate the potential functions of SHCBP1 in multiple cancer types. The comprehensive analyses for SHCBP1 in various tumors, including gene expression, diagnosis, prognosis, immune-related features, genetic alteration, and function enrichment, were conducted based on multiple databases and analysis tools. SHCBP1 was upregulated in most types of cancers. The results of qRT-PCR had confirmed that SHCBP1 mRNA was significantly upregulated in lung adenocarcinoma (LUAD) and liver hepatocellular carcinoma (LIHC) cell lines. Based on the receiver operating characteristic (ROC) and survival analysis, SHCBP1 was considered as a potential diagnostic and prognostic biomarker. Furthermore, SHCBP1 expression was linked with tumor immunity and immunosuppressive microenvironment according to the correlation analysis of SHCBP1 expression with immune cells infiltration, immune checkpoint genes, and immune-related genes (MHC genes, chemokines, and chemokines receptors). Moreover, SHCBP1 expression correlated with tumor mutational burden (TMB), microsatellite instability (MSI), and neoantigens. The feature of SHCBP1 mutational landscape in pan-cancer was identified. Finally, we focused on investigating the clinical significance and the potential biological role of SHCBP1 in LUAD. Our study comprehensively uncovered that SHCBP1 could be identified as an immune-related biomarker for cancer diagnosis and prognosis, and a potential therapeutic target for tumor immunotherapy.
Collapse
|
13
|
Shen J, Li P, Liu S, Liu Q, Li Y, Sun Y, He C, Xiao P. Traditional uses, ten-years research progress on phytochemistry and pharmacology, and clinical studies of the genus Scutellaria. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113198. [PMID: 32739568 DOI: 10.1016/j.jep.2020.113198] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/08/2020] [Accepted: 07/17/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria (Lamiaceae), which includes approximately 360-469 accepted species, is widespread in Europe, North America, East Asia, and South America. Several species have a long history being used as traditional medicines to treat respiratory, peptic, neurological, and hepatic and gall diseases. The phytochemistry and pharmacology of the genus Scutellaria have been developed dramatically in the past ten years, and the traditional uses and clinical studies of the genus have not been systematically summarized. Therefore, it is especially valuable to review the current state of knowledge to provide a basis for further exploration of its medicinal potential. AIM OF THE REVIEW The review aims to provide updated information on the ethnopharmacology, the ten-year research progress of phytochemistry and pharmacology, and clinical studies of Scutellaria and to explore the potential medicinal values and further studies of Scutellaria. MATERIALS AND METHODS This review is based on published studies and books from the library and electronic sources, including SciFinder, Scopus, PubMed, Web of Science, Baidu Scholar, CNKI, the online ethnobotanical database, and ethnobotanical monographs. This literature is related to ethnopharmacology, the ten-year research progress on the phytochemistry and pharmacology, and clinical studies of Scutellaria. RESULTS A total of 50 species, 5 subspecies and 17 varieties of the genus Scutellaria are used as traditional medicine with various biological activities. In the past ten years, 208 chemical constituents have been identified from 16 species and 1 variety of the genus Scutellaria, such as neo-clerodane diterpenoids, sesterterpenoids, terpenoids, flavonoids. Pharmacological research has demonstrated that the extracts and compounds identified from this genus exhibit extensive biological activities, including anticancer, antioxidant, anti-inflammatory, antiviral and antibacterial activities, effects on cardiovascular, cerebrovascular diseases as well as hepatoprotective and neuroprotective effects. The species S. baicalensis, S. barbata, and S. lateriflora and the main compounds baicalein, baicalin and wogonin are involved in clinical trials, which point the way for us to conduct further studies, such as study on the anticancer, antihypertensive, anti-infective, anti-inflammatory, neuroprotective and other effects of Scutellaria. CONCLUSIONS The species included in the genus Scutellaria can be used to treat cancer, infection, hepatic disorders, cardiovascular and cerebrovascular diseases, neurodegenerative diseases, and other diseases. Some indications in traditional medicines have been confirmed by modern pharmacological studies, such as anticancer, anti-inflammatory, anti-infective activity, and hepatoprotective and neuroprotective effects. The available literature indicated that most of the bioactivities could be attributed to flavonoids and neo-clerodane diterpenoids. Although there are some uses of Scutellaria in clinical practice, the existing research on this genus is still limited. In order to expand the development of medicinal resources of Scutellaria, the already studied species in this genus are recommended for more comprehensive investigation on their active substances, pharmacological mechanisms, quality control, clinical use and new drug research. Additionally, it is necessary to study species that their chemical composition or pharmacological activity have not yet been investigated, especially those used in folk medicine.
Collapse
Affiliation(s)
- Jie Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Pei Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Shuangshuang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Qing Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Yue Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Yuhua Sun
- Xinjiang Institute of Materia Medica, Urumqi, 830004, China.
| | - Chunnian He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| |
Collapse
|
14
|
Chen C, Gu J, Wang J, Wu Y, Yang A, Chen T, Zhou T, Liu Z. Physcion 8-O-β-glucopyranoside ameliorates liver fibrosis through inflammation inhibition by regulating SIRT3-mediated NF-κB P65 nuclear expression. Int Immunopharmacol 2021; 90:107206. [PMID: 33246826 DOI: 10.1016/j.intimp.2020.107206] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/15/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022]
Abstract
Physcion 8-O-β-glucopyranoside (PSG), an anthraquinone extracted from Rumex japonicus Houtt, has various pharmacological effects, however, the effect of PSG on liver fibrosis and its related mechanism remain to be determined. We here showed that PSG ameliorated liver injury and liver fibrosis, decreased collagen deposition and inhibited inflammation in carbon tetrachloride (CCl4)-induced rats. Consistent with the in vivo results, PSG suppressed the transforming growth factor-β1 (TGF-β1)-induced cell viability, liver fibrosis and secretion of inflammatory factors in hepatic stellate cells (HSCs). Interestingly, PSG increased the enzyme activity and promoter activity of sirtuin 3 (SIRT3) in fibrotic liver and activated HSCs. In addition, PSG notably increased the mRNA and protein expression of SIRT3 both in vivo and in vitro. Depletion of SIRT3 either by using 3-TYP (SIRT3 selective inhibitor) or SIRT3 siRNA attenuated the anti-inflammatory effect of PSG in activated HSCs. Further study found that TGF-β1 increased the nuclear expression of NF-κB p65, but showed no obvious effect on the total NF-κB p65 expression. Compared to the control adenovirus (Ad.mk), overexpression of SIRT3 by infecting adenovirus encoding SIRT3 (Ad.SIRT3) notably decreased the nuclear expression of NF-κB p65 in activated HSCs. Our results demonstrated that PSG attenuated inflammation by regulating SIRT3-mediated NF-κB P65 nuclear expression in liver fibrosis, providing novel molecular insights into the anti-fibrotic effect of PSG.
Collapse
Affiliation(s)
- Chang Chen
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Jingya Gu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Jue Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Yu Wu
- Department of Pharmacy, Nantong Hospital of Traditional Chinese Medicine, Nantong, Jiangsu 226001, China
| | - Aihua Yang
- Department of Pharmacy, Nantong Maternal and Children Health Care Service Hospital, Nantong 226018, China
| | - Tingting Chen
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Tingting Zhou
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Zhaoguo Liu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
15
|
Song JW, Long JY, Xie L, Zhang LL, Xie QX, Chen HJ, Deng M, Li XF. Applications, phytochemistry, pharmacological effects, pharmacokinetics, toxicity of Scutellaria baicalensis Georgi. and its probably potential therapeutic effects on COVID-19: a review. Chin Med 2020; 15:102. [PMID: 32994803 PMCID: PMC7517065 DOI: 10.1186/s13020-020-00384-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Scutellaria baicalensis Georgi. (SB) is a common heat-clearing medicine in traditional Chinese medicine (TCM). It has been used for thousands of years in China and its neighboring countries. Clinically, it is mostly used to treat diseases such as cold and cough. SB has different harvesting periods and processed products for different clinical symptoms. Botanical researches proved that SB included in the Chinese Pharmacopoeia (1st, 2020) was consistent with the medicinal SB described in ancient books. Modern phytochemical analysis had found that SB contains hundreds of active ingredients, of which flavonoids are its major components. These chemical components are the material basis for SB to exert pharmacological effects. Pharmacological studies had shown that SB has a wide range of pharmacological activities such as antiinflammatory, antibacterial, antiviral, anticancer, liver protection, etc. The active ingredients of SB were mostly distributed in liver and kidney, and couldn't be absorbed into brain via oral absorption. SB's toxicity was mostly manifested in liver fibrosis and allergic reactions, mainly caused by baicalin. The non-medicinal application prospects of SB were broad, such as antibacterial plastics, UV-resistant silk, animal feed, etc. In response to the Coronavirus Disease In 2019 (COVID-19), based on the network pharmacology research, SB's active ingredients may have potential therapeutic effects, such as baicalin and baicalein. Therefore, the exact therapeutic effects are still need to be determined in clinical trials. SB has been reviewed in the past 2 years, but the content of these articles were not comprehensive and accurate. In view of the above, we made a comprehensive overview of the research progress of SB, and expect to provide ideas for the follow-up study of SB.
Collapse
Affiliation(s)
- Jia-Wen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Jia-Ying Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Lin-Lin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Qing-Xuan Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Hui-Juan Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Mao Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Xiao-Fang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| |
Collapse
|
16
|
Interactions between Oroxylin A with the solute carrier transporters and ATP-binding cassette transporters: Drug transporters profile for this flavonoid. Chem Biol Interact 2020; 324:109097. [PMID: 32305507 DOI: 10.1016/j.cbi.2020.109097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/15/2020] [Accepted: 04/05/2020] [Indexed: 12/31/2022]
Abstract
Oroxylin A is a flavonoid monomer extracted from Scutellaria baicalensis Georgi with neuroprotective, anti-tumor activity and many other biological functions. However, the interaction between Oroxylin A and the drug transporters has not been clearly reported. The purpose of this study is to investigate the interaction between Oroxylin A and the solute carrier transporters (OATP1B1, OATP1B3, OAT1, OAT3, OCT2, MATE1, and MATE2K), and ATP-binding cassette transporters (BCRP, MDR1). The HEK293 cell lines (HEK293-OATP1B1, HEK293-OATP1B3, HEK293-OAT1, HEK293-OAT3, HEK293-OCT2, HEK293-MATE1, and HEK293-MATE2K) that stably expressing previous listed human-derived transporters were employed to evaluate the solute carrier transporters. Vesicles expressing human BCRP and MDR1 transporters was employed to research ATP-binding cassette transporters. Our work suggested that Oroxylin A was a substrate of OATP1B1, OATP1B3, but not a substrate of the other transporters in the concentration range of our study. Oroxylin A shows concentration-dependent inhibition of OATP1B1, OAT1, OAT3 and BCRP transportation with the half-inhibitory concentration (IC50) of 7.03, 0.961, 0.112 μM, and 0.477 μM, respectively. No inhibitory effects on the transport activities of other transporters were observed for Oroxylin A. Drug transporters profile of Oroxylin A was first confirmed by our work, which provides important information for its pharmacokinetics, pharmacodynamics, and drug-drug interactions studies.
Collapse
|