1
|
Alves de Melo Fernandes T, Rafaella Costa T, de Paula Menezes R, Arantes de Souza M, Gomes Martins CH, Junior NN, Gobbi Amorim F, Quinton L, Polloni L, Teixeira SC, Amália Vieira Ferro E, Soares AM, de Melo Rodrigues Ávila V. Bothrops snake venom L-amino acid oxidases impair biofilm formation of clinically relevant bacteria. Toxicon 2024; 238:107569. [PMID: 38122835 DOI: 10.1016/j.toxicon.2023.107569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The present work addressed the abilities of two L-amino acid oxidases isolated from Bothrops moojeni (BmooLAAO-I) and Bothrops jararacussu (BjussuLAAO-II) snake venoms to control the growth and prevent the biofilm formation of clinically relevant bacterial pathogens. Upon S. aureus (ATCC BAA44) and S. aureus (clinical isolates), BmooLAAO-I (MIC = 0.12 and 0.24 μg/mL, respectively) and BjussuLAAO-II (MIC = 0.15 μg/mL) showed a potent bacteriostatic effect. Against E. coli (ATCC BAA198) and E. coli (clinical isolates), BmooLAAO-I (MIC = 15.6 and 62.5 μg/mL, respectively) and BjussuLAAO-II (MIC = 4.88 and 9.76 μg/mL, respectively) presented a lower extent effect. Also, BmooLAAO-I (MICB50 = 0.195 μg/mL) and BjussuLAAO-II (MICB50 = 0.39 μg/mL) inhibited the biofilm formation of S. aureus (clinical isolates) in 88% and 89%, respectively, and in 89% and 53% of E. coli (clinical isolates). Moreover, scanning electron microscopy confirmed that the toxins affected bacterial morphology by increasing the roughness of the cell surface and inhibited the biofilm formation. Furthermore, analysis of the tridimensional structures of the toxins showed that the surface-charge distribution presents a remarkable positive region close to the glycosylation motif, which is more pronounced in BmooLAAO-I than BjussuLAAO-II. This region may assist the interaction with bacterial and biofilm surfaces. Collectively, our findings propose that venom-derived antibiofilm agents are promising biotechnological tools which could provide novel strategies for biofilm-associated infections.
Collapse
Affiliation(s)
- Thales Alves de Melo Fernandes
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Tássia Rafaella Costa
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Ralciane de Paula Menezes
- Laboratory of Antimicrobial Testing, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Meliza Arantes de Souza
- Laboratory of Antimicrobial Testing, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Carlos Henrique Gomes Martins
- Laboratory of Antimicrobial Testing, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Nilson Nicolau Junior
- Laboratory of Molecular Modeling, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - Loïc Quinton
- Mass Spectrometry Laboratory, MolSys RU, University of Liège, 4000 Liège, Belgium
| | - Lorena Polloni
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Samuel Cota Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, MG, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, MG, Brazil
| | - Andreimar Martins Soares
- Laboratory of Biotechnology of Proteins and Bioactive Compounds in the Western Amazon (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Federal University of Rondônia (UNIR), And National Institute of Science and Technology of Epidemiology of the Western Amazon, INCT-EPIAMO, Porto Velho-RO, Brazil
| | | |
Collapse
|
2
|
Bothrops moojeni Venom and Its Components Strongly Affect Osteoclasts' Maturation and Protein Patterns. Toxins (Basel) 2021; 13:toxins13070459. [PMID: 34208941 PMCID: PMC8310197 DOI: 10.3390/toxins13070459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Osteoclasts (OCs) are important for bone maintenance, calcium balance, and tissue regeneration regulation and are involved in different inflammatory diseases. Our study aimed to evaluate the effect of Bothrops moojeni's venom and its low and high molecular mass (HMM and LMM) fractions on human peripheral blood mononuclear cell (PBMC)-derived OCs' in vitro differentiation. Bothrops moojeni, a Brazilian lanced-head viper, presents a rich but not well-explored, venom composition. This venom is a potent inducer of inflammation, which can be used as a tool to investigate the inflammatory process. Human PBMCs were isolated and induced to OC differentiation following routine protocol. On the fourth day of differentiation, the venom was added at different concentrations (5, 0.5, and 0.05 µg/mL). We observed a significant reduction of TRAP+ (tartrate-resistant acid phosphatase) OCs at the concentration of 5 µg/mL. We evaluated the F-actin-rich OCs structure's integrity; disruption of its integrity reflects bone adsorption capacity. F-actin rings phalloidin staining demonstrated that venom provoked their disruption in treated OCs. HMM, fraction reduces TRAP+ OCs at a concentration of 5 µg/mL and LMM fraction at 1 µg/mL, respectively. Our results indicate morphological changes that the venom induced cause in OCs. We analyzed the pattern of soluble proteins found in the conditioned cell culture medium OCs treated with venom and its fractions using mass spectrometry (LC-MS/IT-Tof). The proteomic analyses indicate the possible pathways and molecular mechanisms involved in OC reduction after the treatment.
Collapse
|
3
|
El-Benna J, Hurtado-Nedelec M, Gougerot-Pocidalo MA, Dang PMC. Effects of venoms on neutrophil respiratory burst: a major inflammatory function. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200179. [PMID: 34249119 PMCID: PMC8237995 DOI: 10.1590/1678-9199-jvatitd-2020-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/01/2021] [Indexed: 11/24/2022] Open
Abstract
Neutrophils play a pivotal role in innate immunity and in the inflammatory
response. Neutrophils are very motile cells that are rapidly recruited to the
inflammatory site as the body first line of defense. Their bactericidal activity
is due to the release into the phagocytic vacuole, called phagosome, of several
toxic molecules directed against microbes. Neutrophil stimulation induces
release of this arsenal into the phagosome and induces the assembly at the
membrane of subunits of the NAPDH oxidase, the enzyme responsible for the
production of superoxide anion that gives rise to other reactive oxygen species
(ROS), a process called respiratory burst. Altogether, they are responsible for
the bactericidal activity of the neutrophils. Excessive activation of
neutrophils can lead to extensive release of these toxic agents, inducing tissue
injury and the inflammatory reaction. Envenomation, caused by different animal
species (bees, wasps, scorpions, snakes etc.), is well known to induce a local
and acute inflammatory reaction, characterized by recruitment and activation of
leukocytes and the release of several inflammatory mediators, including
prostaglandins and cytokines. Venoms contain several molecules such as enzymes
(phospholipase A2, L-amino acid oxidase and proteases, among others) and
peptides (disintegrins, mastoporan, parabutoporin etc.). These molecules are
able to stimulate or inhibit ROS production by neutrophils. The present review
article gives a general overview of the main neutrophil functions focusing on
ROS production and summarizes how venoms and venom molecules can affect this
function.
Collapse
Affiliation(s)
- Jamel El-Benna
- Université de Paris, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Margarita Hurtado-Nedelec
- Université de Paris, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France.,AP-HP, Centre Hospitalier Universitaire Xavier Bichat, UF Dysfonctionnements Immunitaires, Paris, France
| | - Marie-Anne Gougerot-Pocidalo
- Université de Paris, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France.,AP-HP, Centre Hospitalier Universitaire Xavier Bichat, UF Dysfonctionnements Immunitaires, Paris, France
| | - Pham My-Chan Dang
- Université de Paris, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| |
Collapse
|