1
|
Zhang G, Wang X, Zhang Q. Cdh11: Roles in different diseases and potential value in disease diagnosis and treatment. Biochem Biophys Rep 2023; 36:101576. [PMID: 38034129 PMCID: PMC10682823 DOI: 10.1016/j.bbrep.2023.101576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Cadherin is a homophilic, Ca2+-dependent cell adhesion glycoprotein that mediates cell-cell adhesion. Among them, Cadherin-11 (CDH11), as a classical cadherin, participates in and influences many crucial aspects of human growth and development. Furthermore, The involvement of CDH11 has been identified in an increasing number of diseases, primarily including various tumorous diseases, fibrotic diseases, autoimmune diseases, neurodevelopmental disorders, and more. In various tumorous diseases, CDH11 acts not only as a tumor suppressor but can also promote migration and invasion of certain tumors through various mechanisms. Likewise, in non-tumorous diseases, CDH11 remains a pivotal factor in disease progression. In this context, we summarize the specific functionalities and mechanisms of CDH11 in various diseases, aiming to gain a more comprehensive understanding of the potential value of CDH11 in disease diagnosis and treatment. This endeavor seeks to provide more effective diagnostic and therapeutic strategies for clinical management across diverse diseases.
Collapse
Affiliation(s)
- Gaoxiang Zhang
- Weifang Medical University, Weifang, Shandong, 261000, China
| | - Xi Wang
- Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, China
| | - Qingguo Zhang
- Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, China
| |
Collapse
|
2
|
Zhou L, Hou Y, Pan X, Wang X, Jin H, Yang X, Wang K, Ding X, Wang K, Zhu M, Pan Y, Wang W, Lu L. Trichosanthin-derived peptide Tk-PQ attenuates immune rejection in mouse tracheal allotransplant model by suppressing PI3K-Akt and inducing type II immune polarization. Int Immunopharmacol 2023; 125:111081. [PMID: 37862724 DOI: 10.1016/j.intimp.2023.111081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
Obliterative bronchiolitis (OB) is one of the main complications affecting long-term survival of post-lung transplantation patients. In this study, we evaluated the efficacy of Tk-PQ (a peptide derived from trichosanthin) in alleviating OB in a mouse ectopic tracheal transplant model. We found that post-transplantation treatment of Tk-PQ significant ameliorated OB symptoms including luminal occlusion, epithelial cells loss and fibrosis in the allograft. In addition, Tk-PQ promoted immune suppressive environment by inducing Th2 polarization and increasing Treg population which in turn led to elevated levels of anti-inflammatory cytokines IL-4, IL-10, IL-33 and decreased levels of pro-inflammatory IL-1β. Mechanistically, we used transcriptome analysis of splenic T cells from allografted mice to show that Tk-PQ treatment down-regulated the PI3K-Akt signaling pathway. Indeed, the immune suppression phenotypes of Tk-PQ was recapitulated by a PI3K inhibitor LY294002. Taken together, Tk-PQ regulates post-transplantation immuno-rejection by modulating the balance of T cell response via the PI3K-Akt pathway, making it a promising peptide based immune rejection suppressant for patients receiving allotransplant.
Collapse
Affiliation(s)
- Lin Zhou
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yafei Hou
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xufeng Pan
- Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xue Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haizhen Jin
- Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiaohua Yang
- Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Kefan Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuping Ding
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kai Wang
- Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Minfang Zhu
- Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yan Pan
- Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Weimin Wang
- Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Liming Lu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| |
Collapse
|
3
|
Peng H, Sun F, Jiang Y, Guo Z, Liu X, Zuo A, Lu D. Semaphorin 7a aggravates TGF-β1-induced airway EMT through the FAK/ERK1/2 signaling pathway in asthma. Front Immunol 2023; 14:1167605. [PMID: 38022556 PMCID: PMC10646317 DOI: 10.3389/fimmu.2023.1167605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Background TGF-β1 can induce epithelial-mesenchymal transition (EMT) in primary airway epithelial cells (AECs). Semaphorin7A (Sema7a) plays a crucial role in regulating immune responses and initiating and maintaining transforming growth factor β1 TGF-β1-induced fibrosis. Objective To determine the expression of Sema7a, in serum isolated from asthmatics and non-asthmatics, the role of Sema7a in TGF-β1 induced proliferation, migration and airway EMT in human bronchial epithelial cells (HBECs) in vitro. Methods The concentrations of Sema7a in serum of asthmatic patients was detected by enzyme-linked immunosorbent assay (ELISA). The expressions of Sema7a and integrin-β1 were examined using conventional western blotting and real-time quantitative PCR (RT-PCR). Interaction between the Sema7a and Integrin-β1 was detected using the Integrin-β1 blocking antibody (GLPG0187). The changes in EMT indicators were performed by western blotting and immunofluorescence, as well as the expression levels of phosphorylated Focal-adhesion kinase (FAK) and Extracellular-signal-regulated kinase1/2 (ERK1/2) were analyzed by western blot and their mRNA expression was determined by RT-PCR. Results We described the first differentially expressed protein of sema7a, in patients with diagnosed bronchial asthma were significantly higher than those of healthy persons (P<0.05). Western blotting and RT-PCR showed that Sema7a and Integrin-β1 expression were significantly increased in lung tissue from the ovalbumin (OVA)-induced asthma model. GLPG0187 inhibited TGF-β1-mediated HBECs EMT, proliferation and migration, which was associated with Focal-adhesion kinase (FAK) and Extracellular-signal-regulated kinase1/2 (ERK1/2) phosphorylation. Conclusion Sema7a may play an important role in asthma airway remodeling by inducing EMT. Therefore, new therapeutic approaches for the treatment of chronic asthma, could be aided by the development of agents that target the Sema7a.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Degan Lu
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
| |
Collapse
|
4
|
Romero-Tapia SDJ, Becerril-Negrete JR, Castro-Rodriguez JA, Del-Río-Navarro BE. Early Prediction of Asthma. J Clin Med 2023; 12:5404. [PMID: 37629446 PMCID: PMC10455492 DOI: 10.3390/jcm12165404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The clinical manifestations of asthma in children are highly variable, are associated with different molecular and cellular mechanisms, and are characterized by common symptoms that may diversify in frequency and intensity throughout life. It is a disease that generally begins in the first five years of life, and it is essential to promptly identify patients at high risk of developing asthma by using different prediction models. The aim of this review regarding the early prediction of asthma is to summarize predictive factors for the course of asthma, including lung function, allergic comorbidity, and relevant data from the patient's medical history, among other factors. This review also highlights the epigenetic factors that are involved, such as DNA methylation and asthma risk, microRNA expression, and histone modification. The different tools that have been developed in recent years for use in asthma prediction, including machine learning approaches, are presented and compared. In this review, emphasis is placed on molecular mechanisms and biomarkers that can be used as predictors of asthma in children.
Collapse
Affiliation(s)
- Sergio de Jesus Romero-Tapia
- Health Sciences Academic Division (DACS), Juarez Autonomous University of Tabasco (UJAT), Villahermosa 86040, Mexico
| | - José Raúl Becerril-Negrete
- Department of Clinical Immunopathology, Universidad Autónoma del Estado de México, Toluca 50000, Mexico;
| | - Jose A. Castro-Rodriguez
- Department of Pediatric Pulmonology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile;
| | | |
Collapse
|
5
|
Chen Q, Liao X, Lin L, Wu L, Tang Q. FOXF1 attenuates TGF‑β1‑induced bronchial epithelial cell injury by inhibiting CDH11‑mediated Wnt/β‑catenin signaling. Exp Ther Med 2023; 25:103. [PMID: 36798677 PMCID: PMC9926140 DOI: 10.3892/etm.2023.11802] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/11/2022] [Indexed: 01/22/2023] Open
Abstract
Forkhead box F1 (FOXF1) has been reported to be associated with lung development. However, the role of FOXF1 in asthma is still not fully understood. In the present study, the biological role and the potential mechanism of FOXF1 was explored in transforming growth factor β1 (TGF-β1)-induced bronchial epithelial cell injury. Reverse transcription-quantitative PCR and western blotting were performed to detect the expression levels of FOXF1 and cadherin (CDH) 11 in TGF-β1-induced bronchial epithelial cells. Proliferation, apoptosis and inflammation were assessed using Cell Counting Kit-8 assay, flow cytometry, western blotting and ELISA. Fibrosis and epithelial-mesenchymal transition (EMT) were evaluated using immunofluorescence and western blotting. The expression levels of the proteins involved in the Wnt/β-catenin pathway were detected by western blotting. The results indicated that FOXF1 expression was downregulated, while CDH11 expression was upregulated in TGF-β1-treated BEAS-2B cells. FOXF1 overexpression promoted proliferation, inhibited induction of apoptosis and suppressed the inflammatory response of BEAS-2B cells exposed to TGF-β1. In addition, FOXF1 overexpression restrained TGF-β1-induced bronchial epithelial fibrosis and EMT and inhibited the activation of the Wnt/β-catenin pathway. CDH11 overexpression reversed the effects of FOXF1 overexpression on proliferation, apoptosis, fibrosis, EMT and inflammation by regulating the Wnt/β-catenin pathway. Collectively, the results of the present study suggested that FOXF1 regulated TGF-β1-induced BEAS-2B cell injury by inhibiting CDH11-mediated Wnt/β-catenin signaling. This may provide a novel therapeutic strategy for the treatment of asthma.
Collapse
Affiliation(s)
- Qin Chen
- Department of Pediatrics, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Xing Liao
- Department of Pediatrics, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Ling Lin
- Department of Pediatrics, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Ling Wu
- Department of Pediatrics, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Qiuyu Tang
- Department of Pediatrics, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350000, P.R. China,Correspondence to: Dr Qiuyu Tang, Department of Pediatrics, Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 966 Hengyu Road, Jin’an, Fuzhou, Fujian 350000, P.R. China
| |
Collapse
|
6
|
Dou L, Wang W, Wang J, Zhang X, Hu X, Zheng W, Han K, Wang G. miR-3934 regulates the apoptosis and secretion of inflammatory cytokines of basophils via targeting RAGE in asthma. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2022; 18:66. [PMID: 35927714 PMCID: PMC9354354 DOI: 10.1186/s13223-022-00704-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/03/2022] [Indexed: 11/12/2022]
Abstract
Background Several miRNAs are now known to have clear connections to the pathogenesis of asthma. The present study focused on the potential role of miR-3934 during asthma development. Methods miR-3934 was detected as a down-regulated miRNA in basophils by sequencing analysis. Next, the expression levels of miR-3934 in peripheral blood mononuclear cells of 50 asthma patients and 50 healthy volunteers were examined by RT-qPCR methods. The basophils were then treated with AGEs and transfected with miR-3934 mimics. The apoptosis levels were examined by flow cytometry assay; and the expression levels of cytokines were detected using the ELISA kits. Finally, the Western blot was performed to examined the expression of key molecules in the TGF-β/Smad signaling pathway. Results miR-3934 was down-regulated in the basophils of asthmatic patients. The expression of the pro-inflammatory cytokines IL-6, IL-8 and IL-33 was enhanced in basophils from asthmatic patients, and this effect was partially reversed by transfection of miR-3934 mimics. Furthermore, receiver operating characteristics analysis showed that miR-3934 levels can be used to distinguish asthma patients from healthy individuals. miR-3934 partially inhibited advanced glycation end products-induced increases in basophil apoptosis by suppressing expression of RAGE. Conclusion Our results indicate that miR-3934 acts to mitigate the pathogenesis of asthma by targeting RAGE and suppressing TGF-β/Smad signaling.
Collapse
Affiliation(s)
- Liyan Dou
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Wenyu Wang
- Department of Respiratory and Critical Medicine, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Junwei Wang
- Department of Respiratory and Critical Medicine, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Xiaofei Zhang
- Department of Respiratory and Critical Medicine, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Xiaoman Hu
- Department of Respiratory and Critical Medicine, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Weili Zheng
- Department of Respiratory and Critical Medicine, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Kaiyu Han
- Department of Respiratory and Critical Medicine, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China.
| | - Guangyou Wang
- Department of Neurobiology, Harbin Medical University, Heilongjiang, China.
| |
Collapse
|
7
|
Liang Q, He J, Yang Q, Zhang Q, Xu Y. MicroRNA-335-5p alleviates inflammatory response, airway fibrosis, and autophagy in childhood asthma through targeted regulation of autophagy related 5. Bioengineered 2022; 13:1791-1801. [PMID: 34699311 PMCID: PMC8805899 DOI: 10.1080/21655979.2021.1996315] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/16/2021] [Indexed: 12/15/2022] Open
Abstract
Childhood asthma is the most universal chronic disease, with significant cases reported. Despite the current progress in treatment, prognosis remains poor and the existing drugs cause serious side effects. This investigation explored the mechanisms and use of miR-335-5p on childhood asthma therapy. MiR-335-5p and ATG5 expression was analyzed in clinical plasma samples through RT-qPCR. Airway smooth muscle cells (ASMCs) were cultured, and transfected with miR-335-5p mimic, miR-335-5p inhibitor, and pcDNA3.1-ATG5, or co-transfected with miR-335-5p mimic + pcDNA3.1-ATG5. Asthma cell models were constructed through TGF-β1, and animal models through ovalbumin (OVA). Monocyte-macrophage infiltration in bronchoalveolar lavage fluid (BALF) was determined by May-Grunwald-Giemsa staining, and collagen in lung tissue was assessed via Masson staining. Relationship between miR-335-5p and ATG5 was detected by dual-luciferase assay. Cell proliferation was detected by MTT assay. MiR-335-5p and ATG5 RNA expression was determined by RT-qPCR. Collagen I, collagen III, α-SMA, ATG5, LC3I/II, Beclin-1, and p62 protein expression levels in ASMCs were detected by western blot. MiR-335-5p expression was low, but ATG5 expression was high in childhood asthma. Versus OVA+ mimic NC group, the number of eosinophil and collagen in OVA+ miR-335-5p mimic group were reduced. In contrast to TGF-β1 + mimic NC group, TGF-β1 + miR-335-5p mimic group reduced inflammatory, airway fibrosis, and autophagy in ASMCs. ATG5 was miR-335-5p target. Overexpressing ATG5 significantly reversed the inhibitory effects of miR-335-5p on inflammatory response, fibrosis, and autophagy in ASMCs. Overall, the study concludes that MiR-335-5p alleviate inflammatory response, airway fibrosis, and autophagy in childhood asthma through targeted regulation of ATG5.
Collapse
Affiliation(s)
- Qingbin Liang
- Department of Emergency, Qingdao Women and Children’s Hospital, Qingdao City, Shandong Province, China
| | - Jingjing He
- Department of Internal Medicine, Qingdao University Staff Hospital, Qingdao City, Shandong Province, China
| | - Qian Yang
- Department of Emergency, Qingdao Women and Children’s Hospital, Qingdao City, Shandong Province, China
| | - Qinghua Zhang
- Department of Infection, Qingdao Women and Children’s Hospital, Qingdao City, Shandong Province, China
| | - Yingjun Xu
- Department of Pediatrics, Qingdao Women and Children’s Hospital, Qingdao City, Shandong Province, China
| |
Collapse
|
8
|
Yang T, Xu C, Ding N, Luo S, Luo L, Jin S, Chen Y. MiR-140 suppresses airway inflammation and inhibits bronchial epithelial cell apoptosis in asthma by targeting GSK3β. Exp Mol Pathol 2021:104717. [PMID: 34742738 DOI: 10.1016/j.yexmp.2021.104717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
AIM OF THE STUDY Asthma is a common and complex chronic inflammatory disease induced by genetic and environmental factors that affects the airways of the lungs. MicroRNAs (miRNAs) are key regulators of various cellular processes and have been shown to be critically involved in asthma progression. The objective of our study was to clarify the function and molecular mechanism of miR-140 in the progression of asthma. MATERIALS AND METHODS MiR-140 expression was evaluated using RT-qPCR. Pathological changes in the lung tissue were confirmed using HE and PAS staining. The levels of IL-5, TGF-β1, and IL-13 in the serum or bronchioalveolar lavage fluid were detected with an ELISA. Cellular apoptosis was measured using a TUNEL assay. The levels of Bax, Bcl-2, Cleaved caspase-3, and glycogen synthase kinase-3β (GSK-3β) were verified with a western blot. GSK3β expression was also confirmed by immunohistochemistry. The binding ability between miR-140 and GSK3β was confirmed using a luciferase reporter assay, RNA immunoprecipitation (RIP) assay and Pull-down assay. RESULTS MiR-140 was markedly downregulated in asthmatic mice. Additionally, miR-140 weakened airway inflammation and bronchial epithelial cell apoptosis in asthmatic mice. Further experiments revealed that miR-140 negatively regulated GSK3β expression and could bind to GSK3β in asthma. Finally, rescue assays demonstrated that GSK3β overexpression rescued the effects of miR-140 on asthma progression. CONCLUSION MiR-140 targeted GSK3β to suppress airway inflammation and inhibit bronchial epithelial cell apoptosis in asthma.
Collapse
Affiliation(s)
- Ting Yang
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha city, Hunan 410000, China
| | - Chang Xu
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha city, Hunan 410000, China
| | - Niu Ding
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha city, Hunan 410000, China
| | - Shujuan Luo
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha city, Hunan 410000, China
| | - Liyan Luo
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha city, Hunan 410000, China
| | - Shijie Jin
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha city, Hunan 410000, China
| | - Yanping Chen
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha city, Hunan 410000, China.
| |
Collapse
|
9
|
Roffel MP, Boudewijn IM, van Nijnatten JLL, Faiz A, Vermeulen CJ, van Oosterhout AJ, Affleck K, Timens W, Bracke KR, Maes T, Heijink IH, Brandsma CA, van den Berge M. Identification of asthma associated microRNAs in bronchial biopsies. Eur Respir J 2021; 59:13993003.01294-2021. [PMID: 34446467 DOI: 10.1183/13993003.01294-2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/30/2021] [Indexed: 11/05/2022]
Abstract
Changes in microRNA (miRNA) expression can contribute to the pathogenesis of many diseases, including asthma. We aimed to identify miRNAs that are differentially expressed between asthma patients and healthy controls and explored their association with clinical and inflammatory parameters of asthma.Differentially expressed miRNAs were determined by small RNA sequencing on bronchial biopsies of 79 asthma patients and 82 healthy controls using linear regression models. Differentially expressed miRNAs were associated with clinical and inflammatory asthma features. Potential miRNA-mRNA interactions were analysed using mRNA data available from the same bronchial biopsies and enrichment of pathways was identified with Enrichr and g:Profiler.In total 78 differentially expressed miRNAs were identified in bronchial biopsies of asthma patients compared to controls, of which 60 remained differentially expressed after controlling for smoke and inhaled corticosteroid treatment. We identified several asthma associated miRNAs, including miR-125b-5p and miR-223-3p, based on a significant association with multiple clinical and inflammatory asthma features and their negative correlation with genes associated with the presence of asthma. The most enriched biological pathway(s) affected by miR-125b-5p and miR-223-3p were inflammatory response and cilium assembly and organisation. Of interest, we identified that lower expression of miR-26a-5p was linked to more severe eosinophilic inflammation as measured in blood, sputum as well as bronchial biopsies. Collectively, we identified miR-125b-5p, miR-223-3p and miR-26a-5p, as potential regulators that could contribute to the pathogenesis of asthma.
Collapse
Affiliation(s)
- Mirjam P Roffel
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,Department of Respiratory Medicine, Ghent University, University Hospital Ghent, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent, Belgium
| | - Ilse M Boudewijn
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jos L L van Nijnatten
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,Faculty of Science, Respiratory Bioinformatics and Molecular Biology (RBMB), University of Technology Sydney, Sydney, Australia
| | - Alen Faiz
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,Faculty of Science, Respiratory Bioinformatics and Molecular Biology (RBMB), University of Technology Sydney, Sydney, Australia
| | - Corneel J Vermeulen
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Antoon J van Oosterhout
- Allergic Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom
| | - Karen Affleck
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, United Kingdom
| | - Wim Timens
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Ken R Bracke
- Department of Respiratory Medicine, Ghent University, University Hospital Ghent, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent, Belgium
| | - Tania Maes
- Department of Respiratory Medicine, Ghent University, University Hospital Ghent, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent, Belgium
| | - Irene H Heijink
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Corry-Anke Brandsma
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,Both senior authors contributed equally
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands .,Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Both senior authors contributed equally
| |
Collapse
|
10
|
Türkeli A, Yilmaz Ö, Karaman M, Kanik ET, Firinci F, İnan S, Yüksel H. Anti-VEGF treatment suppresses remodeling factors and restores epithelial barrier function through the E-cadherin/β-catenin signaling axis in experimental asthma models. Exp Ther Med 2021; 22:689. [PMID: 33986854 PMCID: PMC8112133 DOI: 10.3892/etm.2021.10121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Besides maintaining a physical barrier with adherens junctional (AJ) and tight junctional proteins, airway epithelial cells have important roles in modulating the inflammatory processes of allergic asthma. E-cadherin and β-catenin are the key AJ proteins that are involved in airway remodeling. Various mediators such as transforming growth factor-β (TGF-β), epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet derived growth factor (PDGF), insulin-like growth factor (IGF), tumor necrosis factor-α (TNF-α) and angiogenic factors, such as vascular endothelial growth factor (VEGF), are released by the airway epithelium in allergic asthma. The signaling pathways activated by these growth factors trigger epithelial-mesenchymal transition (EMT), which contributes to fibrosis and subsequent downregulation of E-cadherin. The present study used a mouse asthma model to investigate the effects of anti-VEGF, anti-TNF and corticosteroid therapies on growth factor and E-cadherin/β-catenin expression. The study used 38 male BALB/c mice, divided into 5 groups. A chronic mouse asthma model was created by treating 4 of the groups with inhaled and intraperitoneal ovalbumin (n= 8 per group). Saline, anti-TNF-α (etanercept), anti-VEGF (bevacizumab) or a corticosteroid (dexamethasone) were applied to each group by intraperitoneal injection. No medication was administered to the control group (n=6). Immunohistochemistry for E-cadherin, β-catenin and growth factors was performed on lung tissues and protein expression levels assessed using H-scores. Statistically significant differences were observed in E-cadherin, β-catenin, EGF, FG, and PFGF (P<0.001 for all) as well as the IGF H-scores between the five groups (P<0.005). Only anti-VEGF treatment caused E-cadherin and β-catenin levels to increase to the level of non-asthmatic control groups (P>0.005). All treatment groups had reduced TGF-β, PDGF and FGF H-scores in comparison with the untreated asthma group (P=0.001). The EGF and IGF levels were not significantly different between the untreated asthmatic and non-asthmatic controls. The results suggested that anti-VEGF and TNF-α inhibition treatments are effective in decreasing growth factors, in a similar manner to conventional corticosteroid treatments. Anti-VEGF and TNF inhibition therapy may be an effective treatment for remodeling in asthma while offering an alternative therapeutic option to steroid protective agents. The data suggested that anti-VEGF treatment offered greater restoration of the epithelial barrier than both anti-TNF-α and corticosteroid treatment.
Collapse
Affiliation(s)
- Ahmet Türkeli
- Department of Pediatric Allergy and Immunology, Kütahya Health Science University Medical Faculty, Kütahya 43050, Turkey
| | - Özge Yilmaz
- Department of Pediatric Allergy and Immunology, Celal Bayar University Medical Faculty, Manisa 45030, Turkey
| | - Meral Karaman
- Multidisciplinary Laboratory, Dokuz Eylül University Medical Faculty, Izmir 35210, Turkey
| | - Esra Toprak Kanik
- Department of Pediatric Allergy and Immunology, Celal Bayar University Medical Faculty, Manisa 45030, Turkey
| | - Fatih Firinci
- Department of Pediatric Allergy and Immunology, Dokuz Eylül University Medical Faculty, Izmir 35210, Turkey
| | - Sevinç İnan
- Department of Histology and Embryology, Izmir University of Economics, Medical Faculty, Izmir 35330, Turkey
| | - Hasan Yüksel
- Department of Pediatric Allergy and Immunology, Celal Bayar University Medical Faculty, Manisa 45030, Turkey
| |
Collapse
|
11
|
Adamczyk P, Narożna B, Szczepankiewicz A, Bręborowicz A, Pucher B, Kotowski M, Sroczyński J, Kałużna-Młynarczyk A, Szydłowski J. Decreased miRNA-320e correlates with allergy in children with otitis media with effusion. Auris Nasus Larynx 2021; 48:1061-1066. [PMID: 33812758 DOI: 10.1016/j.anl.2021.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/08/2021] [Accepted: 03/02/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Otitis media with effusion (OME) is a common childhood disease and the main cause of conductive hearing loss in this age group. Many factors predispose to OME but allergy is still widely disputed. The answer may lay in the molecular mechanisms of ear exudate formation and the recent studies showed miRNAs might take part in it. MiRNAs are also potent regulators of allergic response. As miRNAs are present in the middle ear, we hypothesized their expression differs between allergic and non-allergic patients and reflects the difference in pathomechanism of effusion formation between these two groups. MATERIALS AND METHODS This study aimed to establish the expression of 5 different miRNAs (miR-223-3p, miR-451a, miR-16-5p, miR-320e, miR-25-3p) in ear exudates in children diagnosed with OME. The allergy group consisted of 18 patients whereas the non-allergic group had 36 patients. MicroRNA was isolated from the middle ear fluid collected during myringotomy and transcribed into cDNA. MiRNA expression was measured with TaqMan™ MicroRNA Assays and analyzed with DataAssist software. The comparative CT method was used for calculating the relative quantification of gene expression based on the endogenous control gene expression (U6 snRNA-001973). RESULTS MiR-320e expression was significantly decreased in allergic children with OME. Other studied miRNAs also showed reduced expression in allergic children, but the decrease was not significant. CONCLUSIONS MiRNA expression differs between children with and without allergy in the course of OME, but further studies are needed to explain the exact role of miR-320e and its target genes in OME pathology in allergic patients.
Collapse
Affiliation(s)
- Paulina Adamczyk
- Department of Pediatric Otolaryngology, Poznan University of Medical Sciences, Szpitalna 27/33 60-572 Poznań, Poland.
| | - Beata Narożna
- Laboratory of Molecular and Cell Biology, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, IIIrd Department of Pediatrics, Poznan University of Medical Sciences, Szpitalna 27/33 60-572 Poznań, Poland
| | - Aleksandra Szczepankiewicz
- Laboratory of Molecular and Cell Biology, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, IIIrd Department of Pediatrics, Poznan University of Medical Sciences, Szpitalna 27/33 60-572 Poznań, Poland
| | - Anna Bręborowicz
- Department of Pediatric Pulmonology, Allergy and Clinical Immunology, IIIrd Department of Pediatrics, Poznan University of Medical Sciences, Szpitalna 27/33 60-572 Poznań, Poland
| | - Beata Pucher
- Department of Pediatric Otolaryngology, Poznan University of Medical Sciences, Szpitalna 27/33 60-572 Poznań, Poland
| | - Michał Kotowski
- Department of Pediatric Otolaryngology, Poznan University of Medical Sciences, Szpitalna 27/33 60-572 Poznań, Poland
| | - Jakub Sroczyński
- Department of Pediatric Otolaryngology, Poznan University of Medical Sciences, Szpitalna 27/33 60-572 Poznań, Poland
| | - Agata Kałużna-Młynarczyk
- Department of Pediatric Otolaryngology, Poznan University of Medical Sciences, Szpitalna 27/33 60-572 Poznań, Poland
| | - Jarosław Szydłowski
- Department of Pediatric Otolaryngology, Poznan University of Medical Sciences, Szpitalna 27/33 60-572 Poznań, Poland
| |
Collapse
|
12
|
Zhang HT, Wang P, Li Y, Bao YB. SerpinA3n affects ovalbumin (OVA)-induced asthma in neonatal mice via the regulation of collagen deposition and inflammatory response. Respir Physiol Neurobiol 2021; 288:103642. [PMID: 33609775 DOI: 10.1016/j.resp.2021.103642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/07/2021] [Accepted: 02/13/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To investigate the effects of serine protease inhibitor 3n (SerpinA3n) in a neonatal mouse model of asthma. METHODS The study utilized a neonatal mouse ovalbumin (OVA) sensitization model of asthma. Wild type (WT) and SerpinA3n-/- mice were randomly divided into WT/SerpinA3n-/- + saline, WT/SerpinA3n-/- + OVA, WT/SerpinA3n-/- + OVA + rSerpinA3n (recombinant mouse SerpinA3n protein), and WT/SerpinA3n-/- + OVA + DEX (dexamethasone, positive control) groups followed by hematoxylin-eosin (HE) staining, Masson's trichrome stainings, Sircol soluble collagen assay, quantitative real time polymerase chain reaction (qRT-PCR), Western Blot and enzyme linked immunosorbent assay (ELISA). RESULTS OVA-induced neonatal mice showed the increases in airway hyper-reactivity with the up-regulated total cells, eosinophil, lymphocyte and neutrophil in bronchoalveolar lavage fluid (BALF), which was much higher in WT + OVA + rSerpinA3n group (P < 0.05). SerpinA3n-/- suppressed the serum concentrations of total immunoglobulin E (IgE) and OVA-specific IgG1 in OVA-induced asthmatic mice, and alleviated the pathological changes of lung tissues, which was reversed by rSerpinA3n injection (P < 0.05). Besides, WT + OVA group showed more severe in collagen deposition in lung tissues than SerpinA3n-/- + OVA group with increased expression of matrix metallopeptidase-2 (MMP-2), MMP-9, Eotaxin-1, Interleukin 5 (IL-5), IL-13 and IL-4 in lung tissues and deceased IL-10 and Interferon-gamma (IFN-γ) (P < 0.05). Nevertheless, the ameliorating effects of SerpinA3n knockout on OVA-induced asthmatic mice can be reversed by rSerpinA3n. CONCLUSION SerpinA3n knockout can attenuate airway hyper-reactivity, mitigate inflammatory responses and reduce collagen deposition in lung tissues of neonatal mice with asthma.
Collapse
Affiliation(s)
- Hai-Tao Zhang
- Department of Pediatrics, The People's Hospital of Shouguang, Shouguang, 262700, Shandong, China
| | - Ping Wang
- Department of Pediatrics, The People's Hospital of Shouguang, Shouguang, 262700, Shandong, China
| | - Yuan Li
- Department of Pediatrics, The People's Hospital of Shouguang, Shouguang, 262700, Shandong, China
| | - Yong-Bo Bao
- Department of Pediatrics, Zaozhuang Municipal Hospital, Zaozhuang, 277100, Shandong, China.
| |
Collapse
|
13
|
Milmoe NJ, Tucker AS. Craniofacial transitions: the role of EMT and MET during head development. Development 2021; 148:148/4/dev196030. [DOI: 10.1242/dev.196030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ABSTRACT
Within the developing head, tissues undergo cell-fate transitions to shape the forming structures. This starts with the neural crest, which undergoes epithelial-to-mesenchymal transition (EMT) to form, amongst other tissues, many of the skeletal tissues of the head. In the eye and ear, these neural crest cells then transform back into an epithelium, via mesenchymal-to-epithelial transition (MET), highlighting the flexibility of this population. Elsewhere in the head, the epithelium loses its integrity and transforms into mesenchyme. Here, we review these craniofacial transitions, looking at why they happen, the factors that trigger them, and the cell and molecular changes they involve. We also discuss the consequences of aberrant EMT and MET in the head.
Collapse
Affiliation(s)
- Natalie J. Milmoe
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Abigail S. Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
14
|
Anderson ED, Alishahedani ME, Myles IA. Epithelial-Mesenchymal Transition in Atopy: A Mini-Review. FRONTIERS IN ALLERGY 2020; 1. [PMID: 34308414 PMCID: PMC8301597 DOI: 10.3389/falgy.2020.628381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Atopic diseases, particularly atopic dermatitis (AD), asthma, and allergic rhinitis (AR) share a common pathogenesis of inflammation and barrier dysfunction. Epithelial to mesenchymal transition (EMT) is a process where epithelial cells take on a migratory mesenchymal phenotype and is essential for normal tissue repair and signal through multiple inflammatory pathways. However, while links between EMT and both asthma and AR have been demonstrated, as we outline in this mini-review, the literature investigating AD and EMT is far less well-elucidated. Furthermore, current studies on EMT and atopy are mostly animal models or ex vivo studies on cell cultures or tissue biopsies. The literature covered in this mini-review on EMT-related barrier dysfunction as a contributor to AD as well as the related (perhaps resultant) atopic diseases indicates a potential for therapeutic targeting and carry treatment implications for topical steroid use and environmental exposure assessments. Further research, particularly in vivo studies, may greatly advance the field and translate into benefit for patients and families.
Collapse
Affiliation(s)
- Erik D Anderson
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - Mohammadali E Alishahedani
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - Ian A Myles
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
15
|
Epithelial-to-mesenchymal transition in neutrophilic chronic rhinosinusitis. Curr Opin Allergy Clin Immunol 2020; 21:30-37. [PMID: 33284158 DOI: 10.1097/aci.0000000000000701] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Barrier dysfunction, tissue fibrosis, and remodeling are essential processes of the pathophysiology of chronic rhinosinusitis (CRS). The role of epithelial-to-mesenchymal transition (EMT) has been assessed in various studies in CRS. In this review, we summarized the pathophysiologic mechanisms of EMT related to CRS, particularly neutrophilic CRS. RECENT FINDINGS Loss of epithelial characteristics due to EMT makes leaky epithelium, and transformed mesenchymal cells cause fibrosis and remodeling. Hypoxia, allergens (house dust mites), infections, and air pollutants were related to the pathogenesis of neutrophilic CRS, and these factors are known to induce barrier dysfunction and EMT in sinonasal epithelia. Some molecular pathways related to EMT have been recognized in CRS, including interferon-γ/p38/extracellular signal-regulated kinase, high-mobility group box 1/receptor of advanced glycosylation end-products, TGF-β1/SMAD, and Wnt/β-catenin-signaling pathways. Apart from, several microRNAs (miR-21, miR-761, and miR-30a-5p) have been identified to regulate EMT in CRS. SUMMARY EMT is considered to be an important pathogenesis mechanism for CRS. The factors cause EMT in CRS, and the associated molecular mechanisms are related to neutrophilic inflammation. Further studies on CRS endotype and/or phenotype are needed to clarify the implication of EMT on CRS pathogenesis.
Collapse
|
16
|
Szczepankiewicz D, Langwiński W, Kołodziejski P, Pruszyńska-Oszmałek E, Sassek M, Nowakowska J, Chmurzyńska A, Nowak KW, Szczepankiewicz A. Allergic Inflammation Alters microRNA Expression Profile in Adipose Tissue in the Rat. Genes (Basel) 2020; 11:genes11091034. [PMID: 32887419 PMCID: PMC7564923 DOI: 10.3390/genes11091034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 01/28/2023] Open
Abstract
Adipose tissue is a major source of circulating exosomal microRNAs (miRNAs) that are modulators of the immune response in various types of tissues and organs, including airways. Still, no evidence exists if allergic airway inflammation may affect fat tissue inflammation via alterations in the miRNA expression profile. Therefore, we investigated the miRNA expression profile in the adipose tissue upon induced allergic inflammation in the airways in the rat. Brown Norway rats were chronically sensitized to house dust mite extract for seven weeks. Body composition was performed using MiniSpec Plus. The eosinophil count and the total IgE level were determined to confirm the induction of allergic inflammation. MiRNA expression profiling was done using the next-generation sequencing with validation by qPCR. We found that allergic airway inflammation significantly increased fat in adipose tissue, glucose concentration, and the gene expression of adipose tissue-derived proinflammatory peptides (leptin, TNFα). In miRNA-seq analysis, we showed significant differences in the expression of 36 mature miRNAs, three precursors, and two miRNA families in adipose tissue of allergic rats. Two miRNAs—miRNA-151-5p and miRNA-423-3p—showed significantly increased expression in qPCR in adipose tissue and lungs of sensitized animals. Allergic airway inflammation affects fat tissue and alters miRNA expression profile in adipose tissue in the rat.
Collapse
Affiliation(s)
- Dawid Szczepankiewicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637 Poznań, Poland; (D.S.); (P.K.); (E.P.-O.); (M.S.); (K.W.N.)
| | - Wojciech Langwiński
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (W.L.); (J.N.)
| | - Paweł Kołodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637 Poznań, Poland; (D.S.); (P.K.); (E.P.-O.); (M.S.); (K.W.N.)
| | - Ewa Pruszyńska-Oszmałek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637 Poznań, Poland; (D.S.); (P.K.); (E.P.-O.); (M.S.); (K.W.N.)
| | - Maciej Sassek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637 Poznań, Poland; (D.S.); (P.K.); (E.P.-O.); (M.S.); (K.W.N.)
| | - Joanna Nowakowska
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (W.L.); (J.N.)
| | - Agata Chmurzyńska
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, 60-624 Poznań, Poland;
| | - Krzysztof W. Nowak
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637 Poznań, Poland; (D.S.); (P.K.); (E.P.-O.); (M.S.); (K.W.N.)
| | - Aleksandra Szczepankiewicz
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (W.L.); (J.N.)
- Correspondence: ; Tel.: +48-61-88547643; Fax: +48-618547663
| |
Collapse
|