1
|
Santhosh S, Zanoletti L, Stamp LA, Hao MM, Matteoli G. From diversity to disease: unravelling the role of enteric glial cells. Front Immunol 2024; 15:1408744. [PMID: 38957473 PMCID: PMC11217337 DOI: 10.3389/fimmu.2024.1408744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Enteric glial cells (EGCs) are an essential component of the enteric nervous system (ENS) and play key roles in gastrointestinal development, homeostasis, and disease. Derived from neural crest cells, EGCs undergo complex differentiation processes regulated by various signalling pathways. Being among the most dynamic cells of the digestive system, EGCs react to cues in their surrounding microenvironment and communicate with various cell types and systems within the gut. Morphological studies and recent single cell RNA sequencing studies have unveiled heterogeneity among EGC populations with implications for regional functions and roles in diseases. In gastrointestinal disorders, including inflammatory bowel disease (IBD), infections and cancer, EGCs modulate neuroplasticity, immune responses and tumorigenesis. Recent evidence suggests that EGCs respond plastically to the microenvironmental cues, adapting their phenotype and functions in disease states and taking on a crucial role. They exhibit molecular abnormalities and alter communication with other intestinal cell types, underscoring their therapeutic potential as targets. This review delves into the multifaceted roles of EGCs, particularly emphasizing their interactions with various cell types in the gut and their significant contributions to gastrointestinal disorders. Understanding the complex roles of EGCs in gastrointestinal physiology and pathology will be crucial for the development of novel therapeutic strategies for gastrointestinal disorders.
Collapse
Affiliation(s)
- Sneha Santhosh
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa Zanoletti
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Lincon A. Stamp
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Marlene M. Hao
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Gianluca Matteoli
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Leuven Institute for Single-cell Omics (LISCO), KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Jiang P, Li SS, Xu XF, Yang C, Cheng C, Wang JS, Zhou PZ, Liu SW. TRPV4 channel is involved in HSV-2 infection in human vaginal epithelial cells through triggering Ca 2+ oscillation. Acta Pharmacol Sin 2023; 44:811-821. [PMID: 36151392 PMCID: PMC10042832 DOI: 10.1038/s41401-022-00975-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
Herpes simplex virus (HSV) infection induces a rapid and transient increase in intracellular calcium concentration ([Ca2+]i), which plays a critical role in facilitating viral entry. T-type calcium channel blockers and EGTA, a chelate of extracellular Ca2+, suppress HSV-2 infection. But the cellular mechanisms mediating HSV infection-activated Ca2+ signaling have not been completely defined. In this study we investigated whether the TRPV4 channel was involved in HSV-2 infection in human vaginal epithelial cells. We showed that the TRPV4 channel was expressed in human vaginal epithelial cells (VK2/E6E7). Using distinct pharmacological tools, we demonstrated that activation of the TRPV4 channel induced Ca2+ influx, and the TRPV4 channel worked as a Ca2+-permeable channel in VK2/E6E7 cells. We detected a direct interaction between the TRPV4 channel protein and HSV-2 glycoprotein D in the plasma membrane of VK2/E6E7 cells and the vaginal tissues of HSV-2-infected mice as well as in phallic biopsies from genital herpes patients. Pretreatment with specific TRPV4 channel inhibitors, GSK2193874 (1-4 μM) and HC067047 (100 nM), or gene silence of the TRPV4 channel not only suppressed HSV-2 infectivity but also reduced HSV-2-induced cytokine and chemokine generation in VK2/E6E7 cells by blocking Ca2+ influx through TRPV4 channel. These results reveal that the TRPV4 channel works as a Ca2+-permeable channel to facilitate HSV-2 infection in host epithelial cells and suggest that the design and development of novel TRPV4 channel inhibitors may help to treat HSV-2 infections.
Collapse
Affiliation(s)
- Ping Jiang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Song-Shan Li
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xin-Feng Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chen Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jin-Shen Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ping-Zheng Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Shu-Wen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Ji H, Lai D, Tou J. Neuroimmune regulation in Hirschsprung's disease associated enterocolitis. Front Immunol 2023; 14:1127375. [PMID: 37138874 PMCID: PMC10149972 DOI: 10.3389/fimmu.2023.1127375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Neuroimmune pathways are important part of the regulation of inflammatory response. Nerve cells regulate the functions of various immune cells through neurotransmitters, and then participate in the inflammatory immune response. Hirschsprung's disease (HD) is a congenital abnormal development of intestinal neurons, and Hirschsprung-associated enterocolitis (HAEC) is a common complication, which seriously affects the quality of life and even endangers the lives of children. Neuroimmune regulation mediates the occurrence and development of enteritis, which is an important mechanism. However, there is a lack of review on the role of Neuroimmune regulation in enterocolitis associated with Hirschsprung's disease. Therefore, this paper summarizes the characteristics of the interaction between intestinal nerve cells and immune cells, reviews the neuroimmune regulation mechanism of Hirschsprung's disease associated enterocolitis (HAEC), and looks forward to the potential clinical application value.
Collapse
|
4
|
Increased Numbers of Enteric Glial Cells in the Peyer’s Patches and Enhanced Intestinal Permeability by Glial Cell Mediators in Patients with Ileal Crohn’s Disease. Cells 2022; 11:cells11030335. [PMID: 35159145 PMCID: PMC8833935 DOI: 10.3390/cells11030335] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
Enteric glial cells (EGC) are known to regulate gastrointestinal functions; however, their role in Crohn’s disease (CD) is elusive. Microscopic erosions over the ileal Peyer’s patches are early signs of CD. The aim of this work was to assess the localization of EGC in the follicle and interfollicular region of the Peyer’s patches and in the lamina propria and study the effects of EGC mediators on barrier function in CD patients and non-inflammatory bowel disease (non-IBD) controls. EGC markers, glial fibrillary acidic protein (GFAP), and S100 calcium-binding protein β (S100β) were quantified by immunofluorescence and Western blotting. Both markers showed significantly more EGC in the Peyer’s patches and lamina propria of CD patients compared to the non-IBD controls. In CD patients there were significantly more EGC in Peyer’s patches compared to lamina propria, while the opposite pattern was seen in controls. Barrier function studies using Ussing chambers showed increased paracellular permeability by EGC mediators in CD patients, whereas permeability decreased by the mediators in controls. We show the accumulation of EGC in Peyer’s patches of CD patients. Moreover, EGC mediators induced barrier dysfunction in CD patients. Thus, EGC might have harmful impacts on ongoing inflammation and contribute to the pathophysiology of the disease.
Collapse
|
5
|
Li T, Liu W, Hui W, Shi T, Liu H, Feng Y, Gao F. Integrated Analysis of Ulcerative Colitis Revealed an Association between PHLPP2 and Immune Infiltration. DISEASE MARKERS 2022; 2022:4983471. [PMID: 35308140 PMCID: PMC8931176 DOI: 10.1155/2022/4983471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
Ulcerative colitis (UC) is a progressive intestine inflammatory disease that is prone to recur. Herein, we utilize microarray technology and bioinformatics to reveal the underlying pathogenesis of UC and provide novel markers. Colonic biopsies were taken from eight UC patients and eight healthy controls. Three differentially expressed miRNAs (DEMIs) and 264 differentially expressed genes (DEGs) were screened using mRNA and miRNA microarray. Most DEGs were significantly associated with immune response and were markedly enriched in the IL-17 signaling pathway. Among the target genes of DEMIs, PHLPP2 overlapped with DEGs and the downregulation of PHLPP2 group was mainly involved in the epithelial-mesenchymal transition. PHLPP2 was downregulated in UC patients, which was validated in 5 GEO datasets and qRT-PCR. The ROC curve demonstrated that PHLPP2 has a perfect ability to distinguish UC patients from healthy controls. Moreover, PHLPP2 was low expression in patients with active UC. CIBERSORT algorithm indicated that the abundance of gamma delta T cells (P = 0.04), M0 macrophages (P = 0.01), and activated mast cells (P < 0.01) was significantly greater than that of the control group. The Spearman correlation analysis showed that PHLPP2 was positively correlated with the proportion of activated NK cells (rho = 0.62, P = 0.013) and Tregs (rho = 0.55, P = 0.03), but negatively correlated with those of activated mast cells (rho = -0.8, P < 0.01) and macrophages (rho = -0.73, P < 0.01). These results indicate that PHLPP2 is associated with immune cells in the pathogenesis of UC, as well as provide new prospects and future directions of investigation.
Collapse
Affiliation(s)
- Ting Li
- 1Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Weidong Liu
- 2Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- 3Xinjiang Clinical Research Center for Digestive Diseases, China
| | - Wenjia Hui
- 2Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- 3Xinjiang Clinical Research Center for Digestive Diseases, China
| | - Tian Shi
- 2Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- 3Xinjiang Clinical Research Center for Digestive Diseases, China
| | - Huan Liu
- 2Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- 3Xinjiang Clinical Research Center for Digestive Diseases, China
| | - Yan Feng
- 2Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- 3Xinjiang Clinical Research Center for Digestive Diseases, China
| | - Feng Gao
- 1Xinjiang Medical University, Urumqi, Xinjiang, China
- 2Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- 3Xinjiang Clinical Research Center for Digestive Diseases, China
| |
Collapse
|
6
|
Chen H, Han T, Gao L, Zhang D. The Involvement of Glial Cell-Derived Neurotrophic Factor in Inflammatory Bowel Disease. J Interferon Cytokine Res 2021; 42:1-7. [PMID: 34846920 DOI: 10.1089/jir.2021.0116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory gastrointestinal diseases characterized by dysregulation of the intestinal epithelial barrier (IEB) and intermittent relapses. Recent data show that the glial cell line-derived neurotrophic factor (GDNF) promotes IEB function and wound healing. Apart from protective effects of GDNF on enteric nervous system and IEB, an immunomodulatory role has been assumed. However, it is inconsistent whether GDNF levels are increased or decreased in the inflamed colon of patients with IBD. Furthermore, GDNF is 1 of 3 protein markers associated with relapse in a prospective cohort study in IBD patients with clinically and endoscopically quiescent disease. Additionally, not only enteric glial cells (EGCs), but also intestinal smooth muscle cells and enterocytes synthesize GDNF in significant amounts; in addition, its receptors are expressed in intestinal neurons, EGCs, immune cells and epithelial cells, which points to a potential auto- or paracrine signaling loop between some of these cells. Whether GDNF is involved in IBD-associated fibrosis and colitis-associated colorectal cancer remains to be confirmed. In this review we aim to summarize and discuss the current knowledge on the effects of GDNF and its potential role in the contribution to the pathogenesis of IBD.
Collapse
Affiliation(s)
- HuiLing Chen
- Department of Hematology and Lanzhou University Second Hospital, Gansu, P.R. China
| | - TiYun Han
- Department of Gastroenterology, Lanzhou University Second Hospital, Gansu, P.R. China
| | - LiPing Gao
- Department of Gastroenterology, Lanzhou University Second Hospital, Gansu, P.R. China
| | - DeKui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Gansu, P.R. China
| |
Collapse
|
7
|
Protective Effect of Salvianolic Acid B in Acetic Acid-Induced Experimental Colitis in a Mouse Model. Processes (Basel) 2021. [DOI: 10.3390/pr9091589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In its prominent experimental studies salvianolic acid B (Sal B) is novel because of its well-defined, common physiological effects, which include anti-inflammatory, anti-depressant, cardioprotective, DNA protective, neuroprotective and hepatoprotective activity in experimental animals. Initially, Sal B was studied for its anti-inflammatory properties, used as a remedy for a wide range of disease conditions, but its specific efficacy on inflammatory bowel disease is still unclear. The aim of this current study was to understand the therapeutic potential of Sal B in an acetic acid (AA)—triggered experimental mouse colitis model. Colitis was triggered by intrarectal injection of 5% AA, and then laboratory animals were given Sal B (10, 20 and 40 μg/kg) for seven days. The ulcerated colonic mucosa was assessed by clinical experiment, macroscopical, biological and histopathological analysis. The results showed depleted SOD, CAT, GSH levels and consequential elevated MPO and MDA levels and aberrant crypt foci and mast cells were seen in the AA-induced colonic mucosa of experimental animals. The data obtained from this study demonstrate that a dose of 40 µg/kg showed an efficacious anti-ulcer effect against AA-induced experimental colitis. Based on its antioxidant efficacy, Sal B may therefore be useful as a therapeutic approach for ulcerative colitis.
Collapse
|
8
|
You XY, Zhang HY, Han X, Wang F, Zhuang PW, Zhang YJ. Intestinal Mucosal Barrier Is Regulated by Intestinal Tract Neuro-Immune Interplay. Front Pharmacol 2021; 12:659716. [PMID: 34135754 PMCID: PMC8201607 DOI: 10.3389/fphar.2021.659716] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease, irritable bowel syndrome and severe central nervous system injury can lead to intestinal mucosal barrier damage, which can cause endotoxin/enterobacteria translocation to induce infection and is closely related to the progression of metabolic diseases, cardiovascular and cerebrovascular diseases, tumors and other diseases. Hence, repairing the intestinal barrier represents a potential therapeutic target for many diseases. Enteral afferent nerves, efferent nerves and the intrinsic enteric nervous system (ENS) play key roles in regulating intestinal physiological homeostasis and coping with acute stress. Furthermore, innervation actively regulates immunity and induces inherent and adaptive immune responses through complex processes, such as secreting neurotransmitters or hormones and regulating their corresponding receptors. In addition, intestinal microorganisms and their metabolites play a regulatory role in the intestinal mucosal barrier. This paper primarily discusses the interactions between norepinephrine and β-adrenergic receptors, cholinergic anti-inflammatory pathways, nociceptive receptors, complex ENS networks, gut microbes and various immune cells with their secreted cytokines to summarize the key roles in regulating intestinal inflammation and improving mucosal barrier function.
Collapse
Affiliation(s)
- Xin-Yu You
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han-Yu Zhang
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xu Han
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fang Wang
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng-Wei Zhuang
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan-Jun Zhang
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
9
|
Wang YM, Jia YT, Li ZX. Role of enteric glial cells in intestinal function and intestinal diseases. Shijie Huaren Xiaohua Zazhi 2020; 28:979-985. [DOI: 10.11569/wcjd.v28.i19.979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Enteric glial cells, as a key component of the intestinal nervous system, not only have the function of nutrition and supporting intestinal neurons, but also participate in the regulation of various intestinal functions. Abnormal activation of enteric glial cells may also be one of the important pathogenic factors for inflammatory bowel disease, intestinal infection, intestinal obstruction, colon cancer, and other intestinal diseases. At present, the role of enteric glial cells in the occurrence and development of digestive system diseases remains to be elucidated. This paper reviews the research progress in this area.
Collapse
Affiliation(s)
- Ya-Mei Wang
- Graduate School of Hebei Medical University, Shijiazhuang 050017, Hebei Province, China,Department of Oncology, Heibei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Yi-Tao Jia
- Department of Oncology, Heibei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Zhong-Xin Li
- the Second Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|