1
|
Feng L, Wu YJ, Yang YR, Yue BJ, Peng C, Chen C, Peng F, Du JR, Long FY. QBT improved cognitive dysfunction in rats with vascular dementia by regulating the Nrf2/xCT/GPX4 and NLRP3/Caspase-1/GSDMD pathways to inhibit ferroptosis and pyroptosis of neurons. Int Immunopharmacol 2024; 142:113070. [PMID: 39265351 DOI: 10.1016/j.intimp.2024.113070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND The novel phthalein component QBT, extracted from Ligusticum chuanxiong, shows promising biological activity against cerebrovascular diseases. This study focused on ferroptosis and pyroptosis to explore the effects of QBT on nerve injury, cognitive dysfunction, and related mechanisms in a rat model of vascular dementia (VaD). METHODS We established a rat model of VaD and administered QBT as a treatment. Cognitive dysfunction in VaD rats was evaluated using novel object recognition and Morris water maze tests. Neuronal damage and loss in the brain tissues of VaD rats were assessed with Nissl staining and immunofluorescence. Furthermore, we investigated the neuroprotective mechanisms of QBT by modulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/cystine-glutamate antiporter (xCT)/glutathione peroxidase 4 (GPX4) and Nod-like receptor family pyrin domain-containing 3 (NLRP3)/cysteine-requiring aspartate protease-1 (Caspase-1)/Gasdermin D (GSDMD) pathways to inhibit ferroptosis and pyroptosis both in vivo and in vitro. RESULTS Our findings indicated that QBT significantly ameliorated neuronal damage and cognitive dysfunction in VaD rats. Additionally, QBT reversed abnormal changes associated with ferroptosis and pyroptosis in the brains of VaD rats, concurrently up-regulating the Nrf2/xCT/GPX4 pathway and down-regulating the NLRP3/Caspase-1/GSDMD pathway to inhibit ferroptosis and pyroptosis in neuronal cells, thereby exerting a neuroprotective role. CONCLUSION In summary, QBT effectively mitigated neuronal damage and cognitive dysfunction in VaD rats, demonstrating a neuroprotective effect by inhibiting ferroptosis and pyroptosis in neuronal cells. This study offers a novel perspective and theoretical foundation for the future development of drugs targeting VaD.
Collapse
Affiliation(s)
- Lu Feng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Yi-Jin Wu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Yan-Rong Yang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Bing-Jie Yue
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China.
| | - Chu Chen
- Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine, Chengdu, Sichuan, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Jun-Rong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Fang-Yi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Wang Z, Zhang X, Zhang G, Zheng YJ, Zhao A, Jiang X, Gan J. Astrocyte modulation in cerebral ischemia-reperfusion injury: A promising therapeutic strategy. Exp Neurol 2024; 378:114814. [PMID: 38762094 DOI: 10.1016/j.expneurol.2024.114814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/03/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) poses significant challenges for drug development due to its complex pathogenesis. Astrocyte involvement in CIRI pathogenesis has led to the development of novel astrocyte-targeting drug strategies. To comprehensively review the current literature, we conducted a thorough analysis from January 2012 to December 2023, identifying 82 drugs aimed at preventing and treating CIRI. These drugs target astrocytes to exert potential benefits in CIRI, and their primary actions include modulation of relevant signaling pathways to inhibit neuroinflammation and oxidative stress, reduce cerebral edema, restore blood-brain barrier integrity, suppress excitotoxicity, and regulate autophagy. Notably, active components from traditional Chinese medicines (TCM) such as Salvia miltiorrhiza, Ginkgo, and Ginseng exhibit these important pharmacological properties and show promise in the treatment of CIRI. This review highlights the potential of astrocyte-targeted drugs to ameliorate CIRI and categorizes them based on their mechanisms of action, underscoring their therapeutic potential in targeting astrocytes.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Jia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Anliu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
3
|
de Oliveira RMW, Kohara NA, Milani H. Cannabidiol in experimental cerebral ischemia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:95-120. [PMID: 39029992 DOI: 10.1016/bs.irn.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The absence of blood flow in cerebral ischemic conditions triggers a multitude of intricate pathophysiological mechanisms, including excitotoxicity, oxidative stress, neuroinflammation, disruption of the blood-brain barrier and white matter disarrangement. Despite numerous experimental studies conducted in preclinical settings, existing treatments for cerebral ischemia (CI), such as mechanical and pharmacological therapies, remain constrained and often entail significant side effects. Therefore, there is an imperative to explore innovative strategies for addressing CI outcomes. Cannabidiol (CBD), the most abundant non-psychotomimetic compound derived from Cannabis sativa, is a pleiotropic substance that interacts with diverse molecular targets and has the potential to influence various pathophysiological processes, thereby contributing to enhanced outcomes in CI. This chapter provides a comprehensive overview of the primary effects of CBD in in vitro and diverse animal models of CI and delves into some of its plausible mechanisms of neuroprotection.
Collapse
Affiliation(s)
| | - Nathalia Akemi Kohara
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
4
|
Ma KT, Wu YJ, Yang YX, Wu T, Chen C, Peng F, Du JR, Peng C. A novel phthalein component ameliorates neuroinflammation and cognitive dysfunction by suppressing the CXCL12/CXCR4 axis in rats with vascular dementia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118117. [PMID: 38548120 DOI: 10.1016/j.jep.2024.118117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chuanxiong, a plant of the Umbelliferae family, is a genuine medicinal herb from Sichuan Province. Phthalides are one of its main active components and exhibit good protective effect against cerebrovascular diseases. However, the mechanism by which phthalides exert neuroprotective effects is still largely unclear. AIM OF THE STUDY In this study, we extracted a phthalein component (named as QBT) from Ligusticum Chuanxiong, and investigated its neuroprotective effects against vascular dementia (VaD) rats and the underlying mechanism, focusing on the chemokine 12 (CXCL12)/chemokine (C-X-C motif) receptor 4 (CXCR4) axis. METHODS A rat model of VaD was established, and treated with QBT. Cognitive dysfunction in VaD rats was assessed using the Y-maze, new object recognition, and Morris water maze tests. Neuronal damage and inflammatory response in VaD rats were examined through Nissl staining, immunofluorescence, enzyme-linked immunospecific assay, and western blotting analysis. Furthermore, the effects of QBT on CXCL12/CXCR4 axis and its downstream signaling pathways, Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT)/nuclear factor-κB (NF-κB), were investigated in VaD rats and BV2 microglial cells exposed to oxygen glucose deprivation. RESULTS QBT significantly alleviated cognitive dysfunction and neuronal damage in VaD rats, along with inhibition of VaD-induced over-activation of microglia and astrocytes and inflammatory response. Moreover, QBT exhibited anti-inflammatory effects by inhibiting the CXCL12/CXCR4 axis and its downstream JAK2/STAT3 and PI3K/AKT/NF-κB pathways, thereby attenuating the neuroinflammatory response both in vivo and in vitro. CONCLUSION QBT effectively mitigated neuronal damage and cognitive dysfunction in VaD rats, exerting neuroprotective effects by suppressing neuroinflammatory response through inhibition of the CXCL12/CXCR4 axis.
Collapse
Affiliation(s)
- Kai-Ting Ma
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Yi-Jin Wu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Xin Yang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Wu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Chu Chen
- Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Jun-Rong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Li J, Wang Z, Li J, Zhao H, Ma Q. HMGB1: A New Target for Ischemic Stroke and Hemorrhagic Transformation. Transl Stroke Res 2024:10.1007/s12975-024-01258-5. [PMID: 38740617 DOI: 10.1007/s12975-024-01258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
Stroke in China is distinguished by its high rates of morbidity, recurrence, disability, and mortality. The ultra-early administration of rtPA is essential for restoring perfusion in acute ischemic stroke, though it concurrently elevates the risk of hemorrhagic transformation. High-mobility group box 1 (HMGB1) emerges as a pivotal player in neuroinflammation after brain ischemia and ischemia-reperfusion. Released passively by necrotic cells and actively secreted, including direct secretion of HMGB1 into the extracellular space and packaging of HMGB1 into intracellular vesicles by immune cells, glial cells, platelets, and endothelial cells, HMGB1 represents a prototypical damage-associated molecular pattern (DAMP). It is intricately involved in the pathogenesis of atherosclerosis, thromboembolism, and detrimental inflammation during the early phases of ischemic stroke. Moreover, HMGB1 significantly contributes to neurovascular remodeling and functional recovery in later stages. Significantly, HMGB1 mediates hemorrhagic transformation by facilitating neuroinflammation, directly compromising the integrity of the blood-brain barrier, and enhancing MMP9 secretion through its interaction with rtPA. As a systemic inflammatory factor, HMGB1 is also implicated in post-stroke depression and an elevated risk of stroke-associated pneumonia. The role of HMGB1 extends to influencing the pathogenesis of ischemia by polarizing various subtypes of immune and glial cells. This includes mediating excitotoxicity due to excitatory amino acids, autophagy, MMP9 release, NET formation, and autocrine trophic pathways. Given its multifaceted role, HMGB1 is recognized as a crucial therapeutic target and prognostic marker for ischemic stroke and hemorrhagic transformation. In this review, we summarize the structure and redox properties, secretion and pathways, regulation of immune cell activity, the role of pathophysiological mechanisms in stroke, and hemorrhage transformation for HMGB1, which will pave the way for developing new neuroprotective drugs, reduction of post-stroke neuroinflammation, and expansion of thrombolysis time window.
Collapse
Affiliation(s)
- Jiamin Li
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China
| | - Zixin Wang
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China
| | - Jiameng Li
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China
| | - Haiping Zhao
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China.
| | - Qingfeng Ma
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China.
| |
Collapse
|
6
|
Fang H, Bo Y, Hao Z, Mang G, Jin J, Wang H. A promising frontier: targeting NETs for stroke treatment breakthroughs. Cell Commun Signal 2024; 22:238. [PMID: 38654328 PMCID: PMC11036592 DOI: 10.1186/s12964-024-01563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/07/2024] [Indexed: 04/25/2024] Open
Abstract
Stroke is a prevalent global acute cerebrovascular condition, with ischaemic stroke being the most frequently occurring type. After a stroke, neutrophils accumulate in the brain and subsequently generate and release neutrophil extracellular traps (NETs). The accumulation of NETs exacerbates the impairment of the blood‒brain barrier (BBB), hampers neovascularization, induces notable neurological deficits, worsens the prognosis of stroke patients, and can facilitate the occurrence of t-PA-induced cerebral haemorrhage subsequent to ischaemic stroke. Alternative approaches to pharmacological thrombolysis or endovascular thrombectomy are being explored, and targeting NETs is a promising treatment that warrants further investigation.
Collapse
Affiliation(s)
- Huijie Fang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yunfei Bo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhongfei Hao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ge Mang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaqi Jin
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Hongjun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
7
|
Phthalide derivative CD21 regulates the platelet- neutrophil extracellular trap-thrombin axis and protects against ischemic brain injury in rodents. Int Immunopharmacol 2023; 114:109547. [PMID: 36527877 DOI: 10.1016/j.intimp.2022.109547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Prothrombotic and proinflammatory properties of neutrophil extracellular traps (NETs) contribute to brain damage after ischemic stroke. CD21 is a novel phthalide neuroprotectant against cerebral ischemia in rodents. This study investigated effects of CD21 on the platelet-NET-thrombin axis and ischemic brain injury and the underlying mechanism. CD21 exerteddose-dependent neuroprotectionin rats that were subjected to2 h middle cerebral artery occlusion,dose-dependentlyinhibited adenosine diphosphate-mediatedplatelet aggregationin rats, and dose-dependentlyexertedanti-thrombotic activityin rodents that received a collagen-epinephrine combination, ferric chloride, or an arteriovenous shunt. Equimolar CD21 doses exerted stronger efficacy than 3-N-butylphthalide (NBP, natural phthalide for the treatment of ischemic stroke). CD21 dose-dependently improved regional cerebral blood flow, neurobehavioral deficits, and infarct volume in mice that were subjected to photothrombotic stroke (PTS). CD21 (13.79 mg/kg, i.v.) significantly decreased NET components (plasma dsDNA concentrations; mRNA levels of elastase, myeloperoxidase, and neutrophil gelatinase-associated lipocalin and protein level of citrullinated histone H3 in ischemic brain tissues), mRNA and protein levels of peptidyl-arginine deiminase 4 (PDA4, NET formation enzyme), and mRNA levels of NET-related inflammatory mediators (interleukin-1β, interleukin-17A, matrix metalloproteinase 8, and matrix metalloproteinase 9) in ischemic brain tissues, despite no effect on mRNA levels of deoxyribonuclease I (NET elimination enzyme). Pretreatment with compound C (inhibitor of adenosine monophosphate-activated protein kinase [AMPK]) significantly reversed the inhibitory effects of CD21 on NETs, PDA4, and inflammatory mediators in PTS mice. These results suggest that CD21 might regulate the platelet-NET-thrombin axis and protect against ischemic brain injury partly through the induction of AMPK activation.
Collapse
|
8
|
Sadıkoğulları BC, Şenel P, Çini N, Faysal AA, Odabaşoğlu M, Özdemir AD, Gölcü A. An Overview of Natural and Synthetic Phthalides Involved in Cancer Studies: Past, Present, and Future. ChemistrySelect 2022. [DOI: 10.1002/slct.202202004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bleda Can Sadıkoğulları
- Istanbul Technical University Faculty of Sciences and Letters Department of Chemistry Istanbul 34469 Turkey
| | - Pelin Şenel
- Istanbul Technical University Faculty of Sciences and Letters Department of Chemistry Istanbul 34469 Turkey
| | - Nejla Çini
- Istanbul Technical University Faculty of Sciences and Letters Department of Chemistry Istanbul 34469 Turkey
| | - Abdullah Al Faysal
- Istanbul Technical University Faculty of Sciences and Letters Department of Chemistry Istanbul 34469 Turkey
| | - Mustafa Odabaşoğlu
- Karadeniz Technical University Faculty of Sciences and Letters Department of Chemistry Trabzon 61080 Turkey
| | - Ayşe Daut Özdemir
- Istanbul Technical University Faculty of Sciences and Letters Department of Chemistry Istanbul 34469 Turkey
| | - Ayşegül Gölcü
- Istanbul Technical University Faculty of Sciences and Letters Department of Chemistry Istanbul 34469 Turkey
| |
Collapse
|
9
|
Ghafouri-Fard S, Shoorei H, Poornajaf Y, Hussen BM, Hajiesmaeili Y, Abak A, Taheri M, Eghbali A. NLRP3: Role in ischemia/reperfusion injuries. Front Immunol 2022; 13:926895. [PMID: 36238294 PMCID: PMC9552576 DOI: 10.3389/fimmu.2022.926895] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/01/2022] [Indexed: 12/05/2022] Open
Abstract
NLR family pyrin domain containing 3 (NLRP3) is expressed in immune cells, especially in dendritic cells and macrophages and acts as a constituent of the inflammasome. This protein acts as a pattern recognition receptor identifying pathogen-associated molecular patterns. In addition to recognition of pathogen-associated molecular patterns, it recognizes damage-associated molecular patterns. Triggering of NLRP3 inflammasome by molecules ATP released from injured cells results in the activation of the inflammatory cytokines IL-1β and IL-18. Abnormal activation of NLRP3 inflammasome has been demonstrated to stimulate inflammatory or metabolic diseases. Thus, NLRP3 is regarded as a proper target for decreasing activity of NLRP3 inflammasome. Recent studies have also shown abnormal activity of NLRP3 in ischemia/reperfusion (I/R) injuries. In the current review, we have focused on the role of this protein in I/R injuries in the gastrointestinal, neurovascular and cardiovascular systems.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Yadollah Poornajaf
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | | | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri, ; Ahmad Eghbali,
| | - Ahmad Eghbali
- Anesthesiology Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Ahmad Eghbali,
| |
Collapse
|
10
|
Yan J, Yang X, He L, Huang Z, Zhu M, Fan L, Li H, Wu L, Yu L, Zhu W. Comprehensive Quality and Bioactive Constituent Analysis of Celery Juice Made from Different Cultivars. Foods 2022; 11:2719. [PMID: 36140847 PMCID: PMC9498075 DOI: 10.3390/foods11182719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Celery juice is rich in bioactive constituents, has good health properties, and is becoming much more popular, with its demand continuing to rise. The results of this study show that celery juice from Chinese cultivars contains more bioactive constituents, whereas celery cultivars from the United States and European countries have a higher juice yield. Compared with the other juices, the juices of five cultivars may taste sweeter, and the juices of three cultivars had a higher antioxidant capacity. The juices of six cultivars (three with the highest antioxidant capacity and three with the lowest antioxidant capacity) were selected to analyze bioactive constituents by LC/MS and GC/MS. A total of 71 phenolic acids, 38 flavonoids, 18 coumarins, 41 terpenoids, and 11 phthalides were detected in the juices of the six celery cultivars. The contents of 14 compounds had a more than 10-fold difference among these celery juices. This study first evaluated the comprehensive quality of the juices made from 26 celery cultivars and then analyzed the differences in bioactive constituents in the juices of6 celery cultivars. These findings provide information for the further study on the health functions of celery juice and can also guide celery juice production and celery breeding.
Collapse
Affiliation(s)
- Jun Yan
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology, Shanghai 201403, China
| | - Xiaofeng Yang
- Zhuanghang Integrated Experimental Station, Shanghai Academy of Agricultural Sciences, Shanghai 201415, China
| | - Lizhong He
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology, Shanghai 201403, China
| | - Zhiwu Huang
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology, Shanghai 201403, China
| | - Mingfen Zhu
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology, Shanghai 201403, China
| | - Linhua Fan
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology, Shanghai 201403, China
| | - Han Li
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology, Shanghai 201403, China
| | - Lingyun Wu
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology, Shanghai 201403, China
| | - Li Yu
- Organ Management Office, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Weimin Zhu
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology, Shanghai 201403, China
| |
Collapse
|
11
|
Yılmaz ZT, Odabaşoğlu HY, Şenel P, Yüzbaşıoğlu EÇ, Erdoğan T, Özdemir AD, Gölcü A, Odabaşoğlu M, Büyükgüngör O. Identification of a 3-(5-methyl-2-thiazolylamino)phthalide as a new minor groove agent. J Biomol Struct Dyn 2022; 41:4048-4064. [PMID: 35416121 DOI: 10.1080/07391102.2022.2061595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A new 3-(5-methyl-2-thiazolylamino)phthalide molecule, 3-((5-methylthiazol-2-yl)amino)isobenzofuran-1(3H)-one, was synthesized and characterized experimentally by FT-IR, NMR, UV-Vis, and single-crystal X-ray analysis and theoretically by quantum chemical calculations. The single-crystal X-ray studies revealed that the compound crystallizes in the monoclinic space group P-21/c with unit-cell parameters a = 8.0550(6) Å, b = 6.1386(3) Å, c = 23.3228(18) Å, β = 97.724(6)° and Z = 4. Optimized geometries and the vibrational frequencies were studied at the density functional theory (DFT) level by using the hybrid functional B3LYP with a 6-311 G (d,p) basis set. The title compound was evaluated for its anti-quorum sensing (anti-QS) activity on Chromobacterium violaceum 12472 and additionally for its antibacterial activity against Staphylococcus aureus 29213, Staphylococcus epidermidis 12228, Pseudomonas aeruginosa 27853, Escherichia coli 25922, and Proteus mirabilis 14153. The lowest MIC value was 0.24 μg/mL for S. aureus 29213 and the highest MIC value was 30.75 μg/mL for E. coli 25922. While anti-bacterial activity was observed in those other than the S. epidermidis and P. Mirabilis, anti-QS activity wasn't detected. Investigations on dsDNA binding affinity indicate that the title compound binds to dsDNA via the groove binding mode. Molecular docking calculations and molecular dynamics simulations results showed also that the title compound prefers binding to the minor groove of dsDNA and remains stable in the minor groove throughout the molecular dynamics simulation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Pelin Şenel
- Department of Chemistry, Faculty of Sciences and Letters, Istanbul Technical University, Maslak, Turkey Istanbul
| | - Elif Çepni Yüzbaşıoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Taner Erdoğan
- Department of Chemistry and Chemical Processing Technologies, Kocaeli Vocational School, Kocaeli University, Kocaeli, Turkey
| | - Ayşe Daut Özdemir
- Department of Chemistry, Faculty of Sciences and Letters, Istanbul Technical University, Maslak, Turkey Istanbul
| | - Ayşegül Gölcü
- Department of Chemistry, Faculty of Sciences and Letters, Istanbul Technical University, Maslak, Turkey Istanbul
| | - Mustafa Odabaşoğlu
- Department of Chemistry and Chemical Processing Technologies, Denizli Vocational School of Technical Sciences, Pamukkale University, Denizli, Turkey.,Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey
| | | |
Collapse
|
12
|
Liu J, Ma W, Zang CH, Wang GD, Zhang SJ, Wu HJ, Zhu KW, Xiang XL, Li CY, Liu KP, Guo JH, Li LY. Salidroside inhibits NLRP3 inflammasome activation and apoptosis in microglia induced by cerebral ischemia/reperfusion injury by inhibiting the TLR4/NF-κB signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2022; 9:1694. [PMID: 34988203 PMCID: PMC8667139 DOI: 10.21037/atm-21-5752] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023]
Abstract
Background The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is an important mediator of neuroinflammatory responses that regulates inflammatory injury following cerebral ischemia and may be a potential target. Salidroside (Sal) has good anti-inflammatory effects; however, it remains unclear whether Sal can regulate NLRP3 inflammasome activation through the Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway after cerebral ischemia to alleviate inflammatory injury. Methods We established an oxygen-glucose deprivation and reoxygenation (OGD/R) model of BV2 cells and a middle cerebral artery occlusion/reperfusion (MCAO/R) rat model. Cell Counting Kit-8 (CCK-8), flow cytometry and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay were used to detect the viability and apoptosis of BV2 cells. Enzyme-linked immunosorbent assay (ELISA) was used to detect the level of inflammatory factors. 2,3,5-triphenyltetrazolium chloride (TTC) staining and modified Neurological Severity Score (mNSS) were used to detect cerebral infarction volume and neurological deficit in rats. Western blot, immunohistochemistry and immunofluorescence staining were used to detect the protein expression levels. Results Our results showed that Sal increased viability, inhibited lactate dehydrogenase (LDH) release, and reduced apoptosis in OGD/R-induced BV2 cells. Sal reduced the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-8. Following induction by OGD/R, BV2 cells exhibited NLRP3 inflammasome activation and increased protein levels of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, IL-1β, and IL-18. Protein levels of key TLR4 signaling pathway elements, such as TLR4, myeloid differentiation primary response 88 (MyD88), and phosphorylated nuclear factor kappa B p65 (p-NF-κB p65)/NF-κB p65 were upregulated. Interestingly, it was revealed that Sal could reverse these changes. In addition, TAK242, a specific inhibitor of TLR4, had the same effect as Sal treatment on BV2 cells following induction by OGD/R. In the MCAO/R rat model, Sal was also observed to inhibit NLRP3 inflammasome activation in microglia, reduce cerebral infarction volume, and inhibit apoptosis. Conclusions In summary, we found that Sal inhibited NLRP3 inflammasome activation and apoptosis in microglia induced by cerebral ischemia/reperfusion injury by inhibiting the TLR4/NF-κB signaling pathway, thus playing a protective role. Therefore, Sal may be a promising drug for the clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jie Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Cheng-Hao Zang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, China
| | - Guo-Dong Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Si-Jia Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Hong-Jie Wu
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Ke-Wei Zhu
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Xiang-Lin Xiang
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Chun-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Kuang-Pin Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Jian-Hui Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, China
| | - Li-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| |
Collapse
|
13
|
The Influence of Mitochondrial-DNA-Driven Inflammation Pathways on Macrophage Polarization: A New Perspective for Targeted Immunometabolic Therapy in Cerebral Ischemia-Reperfusion Injury. Int J Mol Sci 2021; 23:ijms23010135. [PMID: 35008558 PMCID: PMC8745401 DOI: 10.3390/ijms23010135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022] Open
Abstract
Cerebral ischemia-reperfusion injury is related to inflammation driven by free mitochondrial DNA. At the same time, the pro-inflammatory activation of macrophages, that is, polarization in the M1 direction, aggravates the cycle of inflammatory damage. They promote each other and eventually transform macrophages/microglia into neurotoxic macrophages by improving macrophage glycolysis, transforming arginine metabolism, and controlling fatty acid synthesis. Therefore, we propose targeting the mtDNA-driven inflammatory response while controlling the metabolic state of macrophages in brain tissue to reduce the possibility of cerebral ischemia-reperfusion injury.
Collapse
|
14
|
Agomelatine Exerts an Anti-inflammatory Effect by Inhibiting Microglial Activation Through TLR4/NLRP3 Pathway in pMCAO Rats. Neurotox Res 2021; 40:259-266. [PMID: 34843079 DOI: 10.1007/s12640-021-00447-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/07/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022]
Abstract
Cerebral ischemic stroke is one of the main causes of death and long-term disability worldwide. However, the mechanism is unclear, and treatments are limited. In this study, we aimed to investigate the anti-inflammatory effect of agomelatine in a permanent middle cerebral artery occlusion (pMCAO) model. Forty-eight male Wistar rats were randomly divided into four groups: sham, pMCAO + vehicle, pMCAO + agomelatine (40 mg/kg, i.p.), and pMCAO + melatonin (10 mg/kg, i.p.) groups. On day 1 after permanent cerebral ischemia, the animals were sacrificed, and brain tissues were collected for western blot analysis, and immunohistochemistry. Agomelatine treatment ameliorated inflammatory responses by decreasing the protein levels of trigger Toll-like receptor (TLR4)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway components together with nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome components. In addition, agomelatine suppressed microglial activation and pyroptotic cell death after cerebral ischemic injury. These results suggest that agomelatine exerts an anti-inflammatory effect and attenuates brain damage by inhibiting microglial activation through the TLR4/NLRP3 signaling pathway.
Collapse
|
15
|
Sun K, Zhang J, Yang Q, Zhu J, Zhang X, Wu K, Li Z, Xie W, Luo X. Dexmedetomidine exerts a protective effect on ischemic brain injury by inhibiting the P2X7R/NLRP3/Caspase-1 signaling pathway. Brain Res Bull 2021; 174:11-21. [PMID: 33991606 DOI: 10.1016/j.brainresbull.2021.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 12/29/2022]
Abstract
Dexmedetomidine (Dex) has been suggested to exert a protective function in ischemic brain injury. In this study, we aimed to elucidate the intrinsic mechanisms of Dex in regulating microglia pyroptosis in ischemic brain injury via the purinergic 2X7 receptor (P2X7R)/NLRP3/Caspase-1 signaling pathway. First, permanent middle cerebral artery occlusion (p-MCAO) rat model was established, followed by the measurement of behavioral deficit, neuronal injury, the volume of brain edema and the infarct size. Dex treatment was suggested to alleviate the neurological deficits in p-MCAO rats and reduce the brain water content and infarct size. Additionally, rat microglia were cultured in vitro and a model of oxygen and glucose (OGD) was established. Microglia cell activity and ultrastructure were detected. Dex could increase cell activity and reduce LDH activity, partially reversing the changes in cell morphology. Furthermore, the activation of P2X7R/NLRP3/Caspase-1 pathway was tested. The obtained findings indicated Dex suppressed microglial pyroptosis by inhibiting the P2X7R/NLRP3/Caspase-1 pathway. Inhibition of P2X7R or NLRP3 could inhibit Caspase-1 p10 expression, improve cell activity, and reduce LDH activity. The same result was verified in vivo experiments. This study indicated that Dex inhibited microglia pyroptosis by blocking the P2X7R/NLRP3/Caspase-1 pathway, thus playing a protective role against ischemic brain injury.
Collapse
Affiliation(s)
- Ke Sun
- Department of Neurology, Anyang People's Hospital, Anyang, Henan, 455000, China
| | - Jiangang Zhang
- Department of Neurology, Anyang People's Hospital, Anyang, Henan, 455000, China
| | - Qingcheng Yang
- Department of Neurology, Anyang People's Hospital, Anyang, Henan, 455000, China.
| | - Jinzhao Zhu
- Department of Neurology, Anyang People's Hospital, Anyang, Henan, 455000, China
| | - Xiangdong Zhang
- Department of Neurology, Anyang People's Hospital, Anyang, Henan, 455000, China
| | - Kun Wu
- Department of Neurology, Anyang People's Hospital, Anyang, Henan, 455000, China
| | - Zhenhua Li
- Department of Neurology, Anyang People's Hospital, Anyang, Henan, 455000, China
| | - Weizheng Xie
- Department of Neurology, Anyang People's Hospital, Anyang, Henan, 455000, China
| | - Xue Luo
- Department of Neurology, Anyang People's Hospital, Anyang, Henan, 455000, China
| |
Collapse
|
16
|
Han Y, Li X, Yang L, Zhang D, Li L, Dong X, Li Y, Qun S, Li W. Ginsenoside Rg1 attenuates cerebral ischemia-reperfusion injury due to inhibition of NOX2-mediated calcium homeostasis dysregulation in mice. J Ginseng Res 2021; 46:515-525. [PMID: 35818419 PMCID: PMC9270650 DOI: 10.1016/j.jgr.2021.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022] Open
Abstract
Background The incidence of ischemic cerebrovascular disease is increasing in recent years and has been one of the leading causes of neurological dysfunction and death. Ginsenoside Rg1 has been found to protect against neuronal damage in many neurodegenerative diseases. However, the effect and mechanism by which Rg1 protects against cerebral ischemia-reperfusion injury (CIRI) are not fully understood. Here, we report the neuroprotective effects of Rg1 treatment on CIRI and its possible mechanisms in mice. Methods A bilateral common carotid artery ligation was used to establish a chronic CIRI model in mice. HT22 cells were treated with Rg1 after OGD/R to study its effect on [Ca2+]i. The open-field test and pole-climbing experiment were used to detect behavioral injury. The laser speckle blood flowmeter was used to measure brain blood flow. The Nissl and H&E staining were used to examine the neuronal damage. The Western blotting was used to examine MAP2, PSD95, Tau, p-Tau, NOX2, PLC, p-PLC, CN, NFAT1, and NLRP1 expression. Calcium imaging was used to test the level of [Ca2+]i. Results Rg1 treatment significantly improved cerebral blood flow, locomotion, and limb coordination, reduced ROS production, increased MAP2 and PSD95 expression, and decreased p-Tau, NOX2, p-PLC, CN, NFAT1, and NLRP1 expression. Calcium imaging results showed that Rg1 could inhibit calcium overload and resist the imbalance of calcium homeostasis after OGD/R in HT22 cells. Conclusion Rg1 plays a neuroprotective role in attenuating CIRI by inhibiting oxidative stress, calcium overload, and neuroinflammation. Rg1 ameliorates I/R-induced motor dysfunction and neuronal damage in mice. Rg1 decreases NOX2 expression and ROS accumulation in cerebral I/R mice. Rg1 inhibits calcium overload and CN-NFAT1 signaling in cerebral I/R mice. Rg1 down-regulates NLRP1 inflammasome in cerebral I/R mice.
Collapse
|
17
|
Liu DL, Hong Z, Li JY, Yang YX, Chen C, Du JR. Phthalide derivative CD21 attenuates tissue plasminogen activator-induced hemorrhagic transformation in ischemic stroke by enhancing macrophage scavenger receptor 1-mediated DAMP (peroxiredoxin 1) clearance. J Neuroinflammation 2021; 18:143. [PMID: 34162400 PMCID: PMC8223381 DOI: 10.1186/s12974-021-02170-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/11/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hemorrhagic transformation (HT) is a critical issue in thrombolytic therapy in acute ischemic stroke. Damage-associated molecular pattern (DAMP)-stimulated sterile neuroinflammation plays a crucial role in the development of thrombolysis-associated HT. Our previous study showed that the phthalide derivative CD21 attenuated neuroinflammation and brain injury in rodent models of ischemic stroke. The present study explored the effects and underlying mechanism of action of CD21 on tissue plasminogen activator (tPA)-induced HT in a mouse model of transient middle cerebral artery occlusion (tMCAO) and cultured primary microglial cells. METHODS The tMCAO model was induced by 2 h occlusion of the left middle cerebral artery with polylysine-coated sutures in wildtype (WT) mice and macrophage scavenger receptor 1 knockout (MSR1-/-) mice. At the onset of reperfusion, tPA (10 mg/kg) was intravenously administered within 30 min, followed by an intravenous injection of CD21 (13.79 mg/kg/day). Neuropathological changes were detected in mice 3 days after surgery. The effect of CD21 on phagocytosis of the DAMP peroxiredoxin 1 (Prx1) in lysosomes was observed in cultured primary microglial cells from brain tissues of WT and MSR1-/- mice. RESULTS Seventy-two hours after brain ischemia, CD21 significantly attenuated neurobehavioral dysfunction and infarct volume. The tPA-infused group exhibited more severe brain dysfunction and hemorrhage. Compared with tPA alone, combined treatment with tPA and CD21 significantly attenuated ischemic brain injury and hemorrhage. Combined treatment significantly decreased Evans blue extravasation, matrix metalloproteinase 9 expression and activity, extracellular Prx1 content, proinflammatory cytokine mRNA levels, glial cells, and Toll-like receptor 4 (TLR4)/nuclear factor κB (NF-κB) pathway activation and increased the expression of tight junction proteins (zonula occludens-1 and claudin-5), V-maf musculoaponeurotic fibrosarcoma oncogene homolog B, and MSR1. MSR1 knockout significantly abolished the protective effect of CD21 against tPA-induced HT in tMCAO mice. Moreover, the CD21-induced phagocytosis of Prx1 was MSR1-dependent in cultured primary microglial cells from WT and MSR1-/- mice, respectively. CONCLUSION The phthalide derivative CD21 attenuated tPA-induced HT in acute ischemic stroke by promoting MSR1-induced DAMP (Prx1) clearance and inhibition of the TLR4/NF-κB pathway and neuroinflammation.
Collapse
Affiliation(s)
- Dong-Ling Liu
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Zhi Hong
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Jing-Ying Li
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Yu-Xin Yang
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China.,Present address: The PRIVIS TECHNOLOGY Co., Ltd., Chengdu, 610041, PR China
| | - Chu Chen
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, PR China
| | - Jun-Rong Du
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
18
|
Hou K, Li G, Yu J, Xu K, Wu W. Receptors, Channel Proteins, and Enzymes Involved in Microglia-mediated Neuroinflammation and Treatments by Targeting Microglia in Ischemic Stroke. Neuroscience 2021; 460:167-180. [PMID: 33609636 DOI: 10.1016/j.neuroscience.2021.02.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
Stroke is the largest contributor to global neurological disability-adjusted life-years, posing a huge economic and social burden to the world. Though pharmacological recanalization with recombinant tissue plasminogen activator and mechanical thrombectomy have greatly improved the prognosis of patients with ischemic stroke, clinically, there is still no effective treatment for the secondary injury caused by cerebral ischemia. In recent years, more and more evidences show that neuroinflammation plays a pivotal role in the pathogenesis and progression of ischemic cerebral injury. Microglia are brain resident innate immune cells and act the role peripheral macrophages. They play critical roles in mediating neuroinflammation after ischemic stroke. Microglia-mediated neuroinflammation is not an isolated process and has complex relationships with other pathophysiological processes as oxidative/nitrative stress, excitotoxicity, necrosis, apoptosis, pyroptosis, autophagy, and adaptive immune response. Upon activation, microglia differentially express various receptors, channel proteins, and enzymes involved in promoting or inhibiting the inflammatory processes, making them the targets of intervention for ischemic stroke. To inhibit microglia-related neuroinflammation and promote neurological recovery after ischemic stroke, numerous biochemical agents, cellular therapies, and physical methods have been demonstrated to have therapeutic potentials. Though accumulating experimental evidences have demonstrated that targeting microglia is a promising approach in the treatment of ischemic stroke, the clinical progress is slow. Till now, no clinical study could provide convincing evidence that any biochemical or physical therapies could exert neuroprotective effect by specifically targeting microglia following ischemic stroke.
Collapse
Affiliation(s)
- Kun Hou
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Guichen Li
- Department of Neurology, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Jinlu Yu
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Kan Xu
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Wei Wu
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| |
Collapse
|
19
|
Gou X, Ying J, Yue Y, Qiu X, Hu P, Qu Y, Li J, Mu D. The Roles of High Mobility Group Box 1 in Cerebral Ischemic Injury. Front Cell Neurosci 2020; 14:600280. [PMID: 33384585 PMCID: PMC7770223 DOI: 10.3389/fncel.2020.600280] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a ubiquitous nuclear protein that plays an important role in stabilizing nucleosomes and DNA repair. HMGB1 can be passively released from necrotic neurons or actively secreted by microglia, macrophages/monocytes, and neutrophils. Cerebral ischemia is a major cause of mortality and disability worldwide, and its outcome depends on the number of neurons dying due to hypoxia in the ischemic area. HMGB1 contributes to the pathogenesis of cerebral ischemia via mediating neuroinflammatory responses to cerebral ischemic injury. Extracellular HMGB1 regulates many neuroinflammatory events by interacting with its different cell surface receptors, such as receptors for advanced glycation end products, toll-like receptor (TLR)-2, and TLR-4. Additionally, HMGB1 can be redox-modified, thus exerting specific cellular functions in the ischemic brain and has different roles in the acute and late stages of cerebral ischemic injury. However, the role of HMGB1 in cerebral ischemia is complex and remains unclear. Herein, we summarize and review the research on HMGB1 in cerebral ischemia, focusing especially on the role of HMGB1 in hypoxic ischemia in the immature brain and in white matter ischemic injury. We also outline the possible mechanisms of HMGB1 in cerebral ischemia and the main strategies to inhibit HMGB1 pertaining to its potential as a novel critical molecular target in cerebral ischemic injury.
Collapse
Affiliation(s)
- Xiaoyun Gou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Yan Yue
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Xia Qiu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Peng Hu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Jinhui Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
HMGB1 mediates homocysteine-induced endothelial cells pyroptosis via cathepsin V-dependent pathway. Biochem Biophys Res Commun 2020; 532:640-646. [DOI: 10.1016/j.bbrc.2020.08.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 01/20/2023]
|
21
|
Role of DAMPs and of Leukocytes Infiltration in Ischemic Stroke: Insights from Animal Models and Translation to the Human Disease. Cell Mol Neurobiol 2020; 42:545-556. [DOI: 10.1007/s10571-020-00966-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023]
|
22
|
Gan YM, Liu DL, Chen C, Duan W, Yang YX, Du JR. Phthalide derivative CD21 alleviates cerebral ischemia-induced neuroinflammation: Involvement of microglial M2 polarization via AMPK activation. Eur J Pharmacol 2020; 886:173552. [PMID: 32926919 DOI: 10.1016/j.ejphar.2020.173552] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022]
Abstract
Microglia can be activated to become the classic phenotype (M1) or alternative phenotype (M2), which play an important role in regulating neuroinflammatory response and tissue repair after ischemic stroke. CD21, a novel phthalide derivative, is a potential neuroprotectant against ischemic brain injury. The present study further investigated the effects of CD21 on post-ischemic microglial polarization and the underlying mechanisms. Transient middle cerebral artery occlusion (tMCAO) was used as a mouse model of ischemic stroke, while BV2 cells stimulated with conditioned medium collected from oxygen-glucose deprivation-treated HT22 cells were used in in vitro ischemic studies. The current results showed that CD21 dose-dependently and significantly improved neurological outcomes in tMCAO mice. Biochemical analyses revealed that CD21 decreased the expression of M1 phenotype markers (CD86, interleukin-1β and inducible nitric oxide synthase) and increased the expression of M2 phenotype markers (CD206, interleukin-10 and YM1/2) in both ischemic brain tissues and BV2 cells. Meanwhile, CD21 decreased the production of proinflammatory cytokines (interleukin-1β, interleukin-6 and tumor necrosis factor-α), promoted the release of the antiinflammatory cytokine (interleukin-10), and enhanced the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK) in ischemic brain tissue and BV2 cells. Furthermore, the AMPK inhibitor (compound C) reversed these effects of CD21 in BV2 cells. These findings indicate that CD21 alleviates post-ischemic neuroinflammation through induction of microglial M2 polarization that is at least in part medicated by AMPK activation, suggesting that CD21 may be a promising candidate for protecting against ischemic brain injury.
Collapse
Affiliation(s)
- Yu-Miao Gan
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Dong-Ling Liu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Chu Chen
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, PR China
| | - Wei Duan
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria, Australia
| | - Yu-Xin Yang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Jun-Rong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|