1
|
Jiang L, Xiong W, Yang Y, Qian J. Insight into Cardioprotective Effects and Mechanisms of Dexmedetomidine. Cardiovasc Drugs Ther 2024; 38:1139-1159. [PMID: 38869744 DOI: 10.1007/s10557-024-07579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE Cardiovascular disease remains the leading cause of death worldwide. Dexmedetomidine is a highly selective α2 adrenergic receptor agonist with sedative, analgesic, anxiolytic, and sympatholytic properties, and several studies have shown its possible protective effects in cardiac injury. The aim of this review is to further elucidate the underlying cardioprotective mechanisms of dexmedetomidine, thus suggesting its potential in the clinical management of cardiac injury. RESULTS AND CONCLUSION Our review summarizes the findings related to the involvement of dexmedetomidine in cardiac injury and discusses the results in the light of different mechanisms. We found that numerous mechanisms may contribute to the cardioprotective effects of dexmedetomidine, including the regulation of programmed cell death, autophagy and fibrosis, alleviation of inflammatory response, endothelial dysfunction and microcirculatory derangements, improvement of mitochondrial dysregulation, hemodynamics, and arrhythmias. Dexmedetomidine may play a promising and beneficial role in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Leyu Jiang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Xiong
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqiao Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jinqiao Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
2
|
Gustafsson S, Lampa E, Jensevik Eriksson K, Butterworth AS, Elmståhl S, Engström G, Hveem K, Johansson M, Langhammer A, Lind L, Läll K, Masala G, Metspalu A, Moreno-Iribas C, Nilsson PM, Perola M, Simell B, Sipsma H, Åsvold BO, Ingelsson E, Hammar U, Ganna A, Svennblad B, Fall T, Sundström J. Markers of imminent myocardial infarction. NATURE CARDIOVASCULAR RESEARCH 2024; 3:130-139. [PMID: 39196201 PMCID: PMC11357982 DOI: 10.1038/s44161-024-00422-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/04/2024] [Indexed: 08/29/2024]
Abstract
Myocardial infarction is a leading cause of death globally but is notoriously difficult to predict. We aimed to identify biomarkers of an imminent first myocardial infarction and design relevant prediction models. Here, we constructed a new case-cohort consortium of 2,018 persons without prior cardiovascular disease from six European cohorts, among whom 420 developed a first myocardial infarction within 6 months after the baseline blood draw. We analyzed 817 proteins and 1,025 metabolites in biobanked blood and 16 clinical variables. Forty-eight proteins, 43 metabolites, age, sex and systolic blood pressure were associated with the risk of an imminent first myocardial infarction. Brain natriuretic peptide was most consistently associated with the risk of imminent myocardial infarction. Using clinically readily available variables, we devised a prediction model for an imminent first myocardial infarction for clinical use in the general population, with good discriminatory performance and potential for motivating primary prevention efforts.
Collapse
Affiliation(s)
| | - Erik Lampa
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Adam S Butterworth
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- BHF Centre of Research Excellence, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- HDR UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Sölve Elmståhl
- Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Arnulf Langhammer
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Kristi Läll
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Giovanna Masala
- Clinical Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Andres Metspalu
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Conchi Moreno-Iribas
- Navarra Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Peter M Nilsson
- Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Markus Perola
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Birgit Simell
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Bjørn Olav Åsvold
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
- Department of Endocrinology, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Erik Ingelsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ulf Hammar
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Andrea Ganna
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bodil Svennblad
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Tove Fall
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johan Sundström
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
3
|
Identify Key Genes Correlated to Ischemia-Reperfusion Injury in Aging Livers. DISEASE MARKERS 2023; 2023:4352313. [PMID: 36845012 PMCID: PMC9949953 DOI: 10.1155/2023/4352313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/14/2023] [Accepted: 01/28/2023] [Indexed: 02/18/2023]
Abstract
Background With the intensification of population aging, the proportion of aging livers in the donor pool is increasing rapidly. Compared with young livers, aging livers are more susceptible to ischemia-reperfusion injury (IRI) during liver transplantation, which greatly affects the utilization rate of aging livers. The potential risk factors associated with IRI in aging livers have not been fully elucidated. Methods In this work, five human liver tissue expression profiling datasets (GSE61260, GSE107037, GSE89632, GSE133815, and GSE151648) and a total of 28 young and aging liver tissues of human (N = 20) and mouse (N = 8) were used to screen and verify the potential risk factors associated with aging livers being more prone to IRI. DrugBank Online was used to screen drugs with potential to alleviate IRI in aging livers. Results The gene expression profile and immune cell composition between young and aging livers had significant differences. Among the differentially expressed genes, aryl hydrocarbon receptor nuclear translocator-like (ARNTL), BTG antiproliferation factor 2 (BTG2), C-X-C motif chemokine ligand 10 (CXCL10), chitinase 3-like 1 (CHI3L1), immediate early response 3 (IER3), Fos proto-oncogene, AP-1 transcription factor subunit (FOS), and peroxisome proliferative activated receptor, gamma, coactivator 1 alpha (PPARGC1A), mainly involved in the regulation of cell proliferation, metabolism, and inflammation, were also dysregulated in liver tissues suffered from IRI and could form a FOS-centered interaction network. Nadroparin was screened out with the potential to target FOS in DrugBank Online. In addition, the proportion of dendritic cells (DCs) was significantly upregulated in aging livers. Conclusions We combined the expression profiling datasets of liver tissues and samples collected in our hospital for the first time to reveal that the changes in the expression of ARNTL, BTG2, CXCL10, CHI3L1, IER3, FOS, and PPARGC1A and the proportion of dendritic cells may be associated with aging livers being more prone to IRI. Nadroparin may be used to mitigate IRI in aging livers by targeting FOS, and regulation of DC activity may also reduce IRI.
Collapse
|
4
|
Identification of the Subtypes of Renal Ischemia-Reperfusion Injury Based on Pyroptosis-Related Genes. Biomolecules 2023; 13:biom13020275. [PMID: 36830644 PMCID: PMC9952921 DOI: 10.3390/biom13020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/29/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) often occurs in the process of kidney transplantation, which significantly impacts the subsequent treatment and prognosis of patients. The prognosis of patients with different subtypes of IRI is quite different. Therefore, in this paper, the gene expression data of multiple IRI samples were downloaded from the GEO database, and a double Laplacian orthogonal non-negative matrix factorization (DL-ONMF) algorithm was proposed to classify them. In this algorithm, various regularization constraints are added based on the non-negative matrix factorization algorithm, and the prior information is fused into the algorithm from different perspectives. The connectivity information between different samples and features is added to the algorithm by Laplacian regularization constraints on samples and features. In addition, orthogonality constraints on the basis matrix and coefficient matrix obtained by the algorithm decomposition are added to reduce the influence of redundant samples and redundant features on the results. Based on the DL-ONMF algorithm for clustering, two PRGs-related IRI isoforms were obtained in this paper. The results of immunoassays showed that the immune microenvironment was different among PRGS-related IRI types. Based on the differentially expressed PRGs between subtypes, we used LASSO and SVM-RFE algorithms to construct a diagnostic model related to renal transplantation. ROC analysis showed that the diagnostic model could predict the outcome of renal transplant patients with high accuracy. In conclusion, this paper presents an algorithm, DL-ONMF, which can identify subtypes with different disease characteristics. Comprehensive bioinformatic analysis showed that pyroptosis might affect the outcome of kidney transplantation by participating in the immune response of IRI.
Collapse
|
8
|
Effect of Dexmedetomidine on Cardiac Output among Parturient with Severe Preeclampsia after Cesarean Section. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4742350. [PMID: 35465007 PMCID: PMC9023150 DOI: 10.1155/2022/4742350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 03/05/2022] [Indexed: 11/18/2022]
Abstract
This study was to investigate the hemodynamic effect of dexmedetomidine among parturient with severe preeclampsia after cesarean section. Parturient with severe preeclampsia were randomly allocated to receive dexmedetomidine (0.2-0.7 μg/kg/h) or equivalent volumes of 0.9% saline as control after cesarean section, respectively. A total of 36 parturient with severe preeclampsia were enrolled, including 18 in the dexmedetomidine (DEX) group and 18 in the saline group. Compared with the saline group, among those in the DEX group, CO was reduced by 1.30 L/min (95% CI: -2.36 to 0.25;
). Additionally, HR (-13.79 bpm, 95% CI: -22.02 to -5.58;
), SBP (-16.11 mmHg, 95% CI: -30.56 to -1.66;
), DBP (-10.48 mmHg, 95% CI: -18.27 to -2.69;
), and MAP (-12.36 mmHg, 95% CI: -22.05 to -2.66;
) were reduced in the DEX group compared with the saline group. In contrast, there were no changes observed in SV and ICON between groups. In conclusion, dexmedetomidine reduces cardiac output by inhibiting the acceleration of heart rate without sacrificing myocardial contractility and stroke volume.
Collapse
|
9
|
Wu C, Liu B, Wang R, Li G. The Regulation Mechanisms and Clinical Application of MicroRNAs in Myocardial Infarction: A Review of the Recent 5 Years. Front Cardiovasc Med 2022; 8:809580. [PMID: 35111829 PMCID: PMC8801508 DOI: 10.3389/fcvm.2021.809580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/24/2021] [Indexed: 12/21/2022] Open
Abstract
Myocardial infarction (MI) is the most frequent end-point of cardiovascular pathology, leading to higher mortality worldwide. Due to the particularity of the heart tissue, patients who experience ischemic infarction of the heart, still suffered irreversible damage to the heart even if the vascular reflow by treatment, and severe ones can lead to heart failure or even death. In recent years, several studies have shown that microRNAs (miRNAs), playing a regulatory role in damaged hearts, bring light for patients to alleviate MI. In this review, we summarized the effect of miRNAs on MI with some mechanisms, such as apoptosis, autophagy, proliferation, inflammatory; the regulation of miRNAs on cardiac structural changes after MI, including angiogenesis, myocardial remodeling, fibrosis; the application of miRNAs in stem cell therapy and clinical diagnosis; other non-coding RNAs related to miRNAs in MI during the past 5 years.
Collapse
|
10
|
Suo L, Wang M. Dexmedetomidine facilitates the expression of nNOS in the hippocampus to alleviate surgery-induced neuroinflammation and cognitive dysfunction in aged rats. Exp Ther Med 2021; 22:1038. [PMID: 34373724 PMCID: PMC8343769 DOI: 10.3892/etm.2021.10470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 04/29/2021] [Indexed: 12/21/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication in the postoperative nervous system of elderly patients. Surgery-induced hippocampal neuroinflammation is closely associated with POCD. Dexmedetomidine (DEX) is an effective α2-adrenergic receptor agonist, which can reduce inflammation and has neuroprotective effects, thereby improving postoperative cognitive dysfunction. However, the mechanism by which DEX improves POCD is currently unclear. The purpose of the present study was therefore to identify how DEX acted on POCD. Male Sprague Dawley rats with exposed carotid arteries were used to mimic POCD. Locomotor activity was accessed by the open field test and the Morris water maze was performed to estimate spatial learning, memory and cognitive flexibility. Following animal sacrifice, the hippocampus was collected and cell apoptosis was determined by terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling staining. Subsequently, the expression of apoptosis-related proteins Bax, Bcl-2, cleaved caspase-3 and cleaved caspase-9 was determined by western blotting and the concentrations of TNF-α, IL-6, IL-1β and IL-10 were measured in serum using ELISA. Nitric oxide synthase and neuronal nitric oxide synthase activities in the hippocampus were also measured. The T lymphocyte subsets were analyzed by flow cytometry to evaluate the immune function in each group. Compared with the surgery group, DEX ameliorated POCD by improving cognitive dysfunctions and immune function loss, and attenuated neuroinflammation and neuronal apoptosis.
Collapse
Affiliation(s)
- Liangyuan Suo
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Mingyu Wang
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|