1
|
Zhang M, Li S, Wu S, Zhou D, Lu M, Lin C, Liu C, Xie Q. Tea consumption and bone health in postmenopausal women: a systematic review and meta-analysis. Arch Osteoporos 2025; 20:20. [PMID: 39907867 DOI: 10.1007/s11657-025-01506-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
OBJECTIVE The impact of tea on bone health in postmenopausal women has generated conflicting opinions. The current study pooled previous research to evaluate the relationship between tea consumption and bone health in postmenopausal women. METHODS Relevant papers published before October 2024 were included by conducting a comprehensive literature search in the Embase, PubMed, Scopus, and The Cochrane Library databases. Observational studies reporting the association between tea consumption and bone mineral density (BMD) or the risk of osteoporosis and fractures in women after menopause were deemed eligible. The weighted mean difference (WMD) for BMD and the pooled odds ratio (OR) for osteoporosis and fractures were calculated, together with their corresponding 95% confidence intervals (CIs). RESULTS The meta-analysis examined 18 studies with a total of 48,615 individuals. The combined results indicated that postmenopausal women who consumed tea had higher BMD at several skeletal sites, including the lumbar spine (WMD, 0.02; 95% CI, 0.01-0.04; P < 0.001), greater trochanter (WMD, 0.02; 95% CI, 0.02-0.03; P < 0.001), femoral neck (WMD, 0.01; 95% CI, 0.00-0.02; P = 0.049), and ward's triangle (WMD, 0.02; 95% CI, 0.01-0.03; P = 0.002). Additionally, these women had a lower risk of osteoporosis (OR, 0.41; 95% CI, 0.26-0.67; P < 0.001) and fracture (OR, 0.81; 95% CI, 0.67-0.98; P = 0.031). CONCLUSIONS The findings of this meta-analysis suggest that postmenopausal women who regularly consumed tea saw an increase in BMD and a decreased likelihood of developing osteoporosis and experiencing fractures. Future research should give priority to conducting prospective cohort studies with a more stringent methodology to verify the dose-response connection between tea consumption and the risk of osteoporosis or fracture in postmenopausal women. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42019112196.
Collapse
Affiliation(s)
- Minjun Zhang
- Department of Trauma Surgery, Guangzhou First People's Hospital, Guangzhou, Guangdong, China
| | - Shuxia Li
- Department of Surgery, Guangzhou First People's Hospital, Guangzhou, Guangdong, China
| | - Shishi Wu
- Department of Trauma Surgery, Guangzhou First People's Hospital, Guangzhou, Guangdong, China
| | - Dang Zhou
- Department of Trauma Surgery, Guangzhou First People's Hospital, Guangzhou, Guangdong, China
| | - Mengni Lu
- Department of Trauma Surgery, Guangzhou First People's Hospital, Guangzhou, Guangdong, China
| | - Chuyan Lin
- Zhongshan City People's Hospital, Zhongshan, Guangdong Province, China
| | - Chengjiang Liu
- Department of General Medicine, Anhui Medical University, Hefei, China
| | - Qingmei Xie
- Department of Surgery, Guangzhou First People's Hospital, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Xv D, Cao Y, Hou Y, Hu Y, Li M, Xie C, Lu X. Polyphenols and Functionalized Hydrogels for Osteoporotic Bone Regeneration. Macromol Rapid Commun 2025; 46:e2400653. [PMID: 39588839 DOI: 10.1002/marc.202400653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/02/2024] [Indexed: 11/27/2024]
Abstract
Osteoporosis induces severe oxidative stress and disrupts bone metabolism, complicating the treatment of bone defects. Current therapies often have side effects and require lengthy bone regeneration periods. Hydrogels, known for their flexible mechanical properties and degradability, are promising carriers for drugs and bioactive factors in bone tissue engineering. However, they lack the ability to regulate the local pathological environment of osteoporosis and expedite bone repair. Polyphenols, with antioxidative, anti-inflammatory, and bone metabolism-regulating properties, have emerged as a solution. Combining hydrogels and polyphenols, polyphenol-based hydrogels can regulate local bone metabolism and oxidative stress while providing mechanical support and tissue adhesion, promoting osteoporotic bone regeneration. This review first provides a brief overview of the types of polyphenols and the mechanisms of polyphenols in facilitating adhesion, antioxidant, anti-inflammatory, and bone metabolism modulation in modulating the pathological environment of osteoporosis. Next, this review examines recent advances in hydrogels for the treatment of osteoporotic bone defects, including their use in angiogenesis, oxidative stress modulation, drug delivery, and stem cell therapy. Finally, it highlights the latest research on polyphenol hydrogels in osteoporotic bone defect regeneration. Overall, this review aims to facilitate the clinical application of polyphenol hydrogels for the treatment of osteoporotic bone defects.
Collapse
Affiliation(s)
- Dejia Xv
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuming Cao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yue Hou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yuelin Hu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250000, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, 250000, China
| | - Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
3
|
Xu Q, Yu Y, Chen K. The potential application of fermented tea as a drink for regulating bone mass. Front Pharmacol 2024; 15:1353811. [PMID: 39027330 PMCID: PMC11254645 DOI: 10.3389/fphar.2024.1353811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Currently, there is evidence to suggest the benefits of drinking fermented tea for people with osteoporosis, and based on this, many studies have been conducted on the dosage, exact ingredients, mechanisms, and industrial applications of fermented tea for protecting against osteoporosis. A summary and analysis of studies on the regulation of bone mass by oolong tea, black tea, and their active ingredients (including 39 known catechin compounds) was conducted. It was found that the regulation of bone mass by fermented tea is backed by evidence from epidemiology, animal experiments, and cell experiments. The main active components of fermented tea are tea polyphenols, tea pigments, and trace amino acids. The specific mechanisms involved include regulating bone marrow mesenchymal stem cell osteogenesis, inhibiting osteoclast activity, promoting calcium and phosphorus absorption, reducing inflammation levels, regulating gut microbiota, regulating endocrine function, and inhibiting oxidative stress. In terms of its application, extraction, precipitation, biosynthesis and membrane separation method are mainly used to separate the active ingredients of anti osteoporosis from fermented tea. In conclusion, fermented tea has sufficient theoretical and practical support for regulating bone mass and preventing osteoporosis, and is suitable for development as a health supplement. At the same time, a large amount of epidemiological evidence is needed to prove the specific dosage of tea consumption.
Collapse
Affiliation(s)
- Qiaolu Xu
- Department of Geriatric Medicine, The Second Hospital of Jinhua, Jinhua, China
| | - Yikang Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ke Chen
- Orthopedics and Traumatology Department, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Wei F, Lin K, Ruan B, Wang C, Yang L, Wang H, Wang Y. Epigallocatechin gallate protects MC3T3-E1 cells from cadmium-induced apoptosis and dysfunction via modulating PI3K/AKT/mTOR and Nrf2/HO-1 pathways. PeerJ 2024; 12:e17488. [PMID: 38827303 PMCID: PMC11141548 DOI: 10.7717/peerj.17488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/09/2024] [Indexed: 06/04/2024] Open
Abstract
Epigallocatechin gallate (EGCG), an active constituent of tea, is recognized for its anticancer and anti-inflammatory properties. However, the specific mechanism by which EGCG protects osteoblasts from cadmium-induced damage remains incompletely understood. Here, the action of EGCG was investigated by exposing MC3T3-E1 osteoblasts to EGCG and CdCl2 and examining their growth, apoptosis, and differentiation. It was found that EGCG promoted the viability of cadmium-exposed MC3T3-E1 cells, mitigated apoptosis, and promoted both maturation and mineralization. Additionally, CdCl2 has been reported to inhibit both the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and nuclear factor erythroid 2-related factor 2/heme oxygenase-1(Nrf2/HO-1) signaling pathways. EGCG treatment attenuated cadmium-induced apoptosis in osteoblasts and restored their function by upregulating both signaling pathways. The findings provide compelling evidence for EGCG's role in attenuating cadmium-induced osteoblast apoptosis and dysfunction through activating the PI3K/AKT/mTOR and Nrf2/HO-1 pathways. This suggests the potential of using EGCG for treating cadmium-induced osteoblast dysfunction.
Collapse
Affiliation(s)
- Fanhao Wei
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Kai Lin
- Nanjing University Medical School, Nanjing, China
| | - Binjia Ruan
- Nanjing University Medical School, Nanjing, China
| | | | - Lixun Yang
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Hongwei Wang
- Nanjing University Medical School, Nanjing, China
| | - Yongxiang Wang
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Wang X, Sheng Y, Guan J, Zhang F, Lou C. Sanmiao wan alleviates inflammation and exhibits hypouricemic effect in an acute gouty arthritis rat model. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117764. [PMID: 38219882 DOI: 10.1016/j.jep.2024.117764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sanmiao wan (SMW), a classical traditional Chinese medicine (TCM) formula, has been employed to treat gouty diseases in clinic as early as Yuan dynasty. It shows remarkably therapeutic effects in acute gouty arthritis (GA). However, the potential mechanisms of SMW are still not fully revealed. AIM OF THE STUDY The objective of this project is to evaluate the pharmacological effects and possible mechanisms of SMW in a rat model of acute GA. MATERIALS AND METHODS Monosodium urate (MSU) suspension was injected into the ankle joint of rats to establish acute GA model. The inflammation was evaluated by measuring the posterior ankle diameter. The pathological status of synovial tissue was assessed by hematoxylin eosin (HE), Masson, and picrosirius red staining. The level of IL-6 was measured using ELISA kit. The levels of blood urea nitrogen (BUN), creatinine (CR), UA (uric acid), and xanthine oxidase (XOD) in the serum were measured using standard diagnostic kits. The percentage of Th17 cells in blood samples was performed using flow cytometry. Moreover, RT-qPCR was performed to examine the mRNA level of RANK, RORγt, RANKL, and STAT3 in the synovial tissue. Furthermore, immunofluorescence was carried out to assess the expression of STAT3 in the synovial tissue. RESULTS SMW effectively alleviated the inflammation and improved the pathological status of the ankle joint in rats with acute GA. It significantly suppressed the release of proinflammatory cytokine (IL-6). Meanwhile, the levels of UA, BUN, and CR were markedly reduced after SMW treatment. A remarkable reduction of XOD activity was observed in the study. Importantly, SMW treatment significantly reduced the frequency of Th17 cells, decreased the mRNA levels of RANK, RORγt, RANKL, and STAT3 in the synovial tissue. Furthermore, the suppression of STAT3 was also demonstrated using immunofluorescence in SMW-treated group. CONCLUSION SMW showed significant anti-inflammatory and hypouricemic effects in a rat model of GA. It is an effective TCM formula for GA therapy.
Collapse
Affiliation(s)
- Xiaoqian Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| | - Yunjie Sheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| | - Jiaqi Guan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| | - Fengling Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| | - Chenghua Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| |
Collapse
|
6
|
Xie X, Fu J, Gou W, Qin Y, Wang D, Huang Z, Wang L, Li X. Potential mechanism of tea for treating osteoporosis, osteoarthritis, and rheumatoid arthritis. Front Med (Lausanne) 2024; 11:1289777. [PMID: 38420363 PMCID: PMC10899483 DOI: 10.3389/fmed.2024.1289777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/08/2024] [Indexed: 03/02/2024] Open
Abstract
Osteoporosis (OP), osteoarthritis (OA), and rheumatoid arthritis (RA) are common bone and joint diseases with a high incidence and long duration. Thus, these conditions can affect the lives of middle-aged and elderly people. Tea drinking is a traditional lifestyle in China, and the long-term intake of tea and its active ingredients is beneficial to human health. However, the mechanisms of action of tea and its active ingredients against OP, OA, and RA are not completely elucidated. This study aimed to assess the therapeutic role and related mechanisms of tea and its active ingredients in OP, OA, and RA. Moreover, it expanded the potential mechanisms of tea efficacy based on network pharmacology and molecular docking. Results showed that tea has potential anti-COX properties and hormone-like effects. Compared with a single component, different tea components synergize or antagonize each other, thereby resulting in a more evident dual effect. In conclusion, tea has great potential in the medical and healthcare fields. Nevertheless, further research on the composition, proportion, and synergistic mechanism of several tea components should be performed.
Collapse
Affiliation(s)
- Xinyu Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiehui Fu
- Department of Sports Medicine (Orthopedics), Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou, China
| | - Weiying Gou
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yifei Qin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Dingzhen Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zuer Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lili Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xihai Li
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
7
|
Zheng H, Liu Y, Deng Y, Li Y, Liu S, Yang Y, Qiu Y, Li B, Sheng W, Liu J, Peng C, Wang W, Yu H. Recent advances of NFATc1 in rheumatoid arthritis-related bone destruction: mechanisms and potential therapeutic targets. Mol Med 2024; 30:20. [PMID: 38310228 PMCID: PMC10838448 DOI: 10.1186/s10020-024-00788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease characterized by inflammation of the synovial tissue and joint bone destruction, often leading to significant disability. The main pathological manifestation of joint deformity in RA patients is bone destruction, which occurs due to the differentiation and proliferation of osteoclasts. The transcription factor nuclear factor-activated T cell 1 (NFATc1) plays a crucial role in this process. The regulation of NFATc1 in osteoclast differentiation is influenced by three main factors. Firstly, NFATc1 is activated through the upstream nuclear factor kappa-B ligand (RANKL)/RANK signaling pathway. Secondly, the Ca2+-related co-stimulatory signaling pathway amplifies NFATc1 activity. Finally, negative regulation of NFATc1 occurs through the action of cytokines such as B-cell Lymphoma 6 (Bcl-6), interferon regulatory factor 8 (IRF8), MAF basic leucine zipper transcription factor B (MafB), and LIM homeobox 2 (Lhx2). These three phases collectively govern NFATc1 transcription and subsequently affect the expression of downstream target genes including TRAF6 and NF-κB. Ultimately, this intricate regulatory network mediates osteoclast differentiation, fusion, and the degradation of both organic and inorganic components of the bone matrix. This review provides a comprehensive summary of recent advances in understanding the mechanism of NFATc1 in the context of RA-related bone destruction and discusses potential therapeutic agents that target NFATc1, with the aim of offering valuable insights for future research in the field of RA. To assess their potential as therapeutic agents for RA, we conducted a drug-like analysis of potential drugs with precise structures.
Collapse
Affiliation(s)
- Hao Zheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yuexuan Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yasi Deng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yunzhe Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shiqi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yong Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yun Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wenbing Sheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jinzhi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Huanghe Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
8
|
Su Z, Yao B, Liu G, Fang J. Polyphenols as potential preventers of osteoporosis: A comprehensive review on antioxidant and anti-inflammatory effects, molecular mechanisms, and signal pathways in bone metabolism. J Nutr Biochem 2024; 123:109488. [PMID: 37865383 DOI: 10.1016/j.jnutbio.2023.109488] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Osteoporosis (OP) is a skeletal disorder characterized by decreased bone density, alterations in bone microstructure, and increased damage to the bones. As the population ages and life expectancy increases, OP has become a global epidemic, drawing attention from scientists and doctors. Because of polyphenols have favorable antioxidant and anti-allergy effects, which are regarded as potential methods to prevent angiocardipathy and OP. Polyphenols offer a promising approach to preventing and treating OP by affecting bone metabolism, reducing bone resolution, maintaining bone density, and lowering the differentiation level of osteoclasts (OC). There are multiple ways in which polyphenols affect bone metabolism. This article provides an overview of how polyphenols inhibit oxidative stress, exert antibacterial effects, and prevent the occurrence of OP. Furthermore, we will explore the regulatory mechanisms and signaling pathways implicated in this process.
Collapse
Affiliation(s)
- Zhan Su
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan, China
| | - Bin Yao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan, China.
| |
Collapse
|
9
|
Wang K, Hu S. The synergistic effects of polyphenols and intestinal microbiota on osteoporosis. Front Immunol 2023; 14:1285621. [PMID: 37936705 PMCID: PMC10626506 DOI: 10.3389/fimmu.2023.1285621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Osteoporosis is a common metabolic disease in middle-aged and elderly people. It is characterized by a reduction in bone mass, compromised bone microstructure, heightened bone fragility, and an increased susceptibility to fractures. The dynamic imbalance between osteoblast and osteoclast populations is a decisive factor in the occurrence of osteoporosis. With the increase in the elderly population in society, the incidence of osteoporosis, disability, and mortality have gradually increased. Polyphenols are a fascinating class of compounds that are found in both food and medicine and exhibit a variety of biological activities with significant health benefits. As a component of food, polyphenols not only provide color, flavor, and aroma but also act as potent antioxidants, protecting our cells from oxidative stress and reducing the risk of chronic disease. Moreover, these natural compounds exhibit anti-inflammatory properties, which aid in immune response regulation and potentially alleviate symptoms of diverse ailments. The gut microbiota can degrade polyphenols into more absorbable metabolites, thereby increasing their bioavailability. Polyphenols can also shape the gut microbiota and increase its abundance. Therefore, studying the synergistic effect between gut microbiota and polyphenols may help in the treatment and prevention of osteoporosis. By delving into how gut microbiota can enhance the bioavailability of polyphenols and how polyphenols can shape the gut microbiota and increase its abundance, this review offers valuable information and references for the treatment and prevention of osteoporosis.
Collapse
Affiliation(s)
- Keyu Wang
- The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People’s Hospital of Wenling), Wenling, Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Siwang Hu
- The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People’s Hospital of Wenling), Wenling, Zhejiang, China
| |
Collapse
|
10
|
Huang X, Li Y, Liao H, Luo X, Zhao Y, Huang Y, Zhou Z, Xiang Q. Research Advances on Stem Cell-Derived Extracellular Vesicles Promoting the Reconstruction of Alveolar Bone through RANKL/RANK/OPG Pathway. J Funct Biomater 2023; 14:jfb14040193. [PMID: 37103283 PMCID: PMC10145790 DOI: 10.3390/jfb14040193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023] Open
Abstract
Periodontal bone tissue defects and bone shortages are the most familiar and troublesome clinical problems in the oral cavity. Stem cell-derived extracellular vesicles (SC-EVs) have biological properties similar to their sources, and they could be a promising acellular therapy to assist with periodontal osteogenesis. In the course of alveolar bone remodeling, the RANKL/RANK/OPG signaling pathway is an important pathway involved in bone metabolism. This article summarizes the experimental studies of SC-EVs applied for the therapy of periodontal osteogenesis recently and explores the role of the RANKL/RANK/OPG pathway in their mechanism of action. Their unique patterns will open a new field of vision for people, and they will help to advance a possible future clinical treatment.
Collapse
Affiliation(s)
- Xia Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
- Department of Orthodontics, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yuxiao Li
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Hui Liao
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Xin Luo
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yueping Zhao
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Zhiying Zhou
- School of Stomatology, Jinan University, Guangzhou 510632, China
- Department of Orthodontics, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
11
|
Xu H, Gan C, Xiang Z, Xiang T, Li J, Huang X, Qin X, Liu T, Sheng J, Wang X. Targeting the TNF-α-TNFR interaction with EGCG to block NF-κB signaling in human synovial fibroblasts. Biomed Pharmacother 2023; 161:114575. [PMID: 36963358 DOI: 10.1016/j.biopha.2023.114575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023] Open
Abstract
The tumor necrosis factor alpha (TNF-α)-TNF-α receptor (TNFR) interaction plays a central role in the pathogenesis of various autoimmune diseases, particularly rheumatoid arthritis, and is therefore considered a key target for drug discovery. However, natural compounds that can specifically block the TNF-α-TNFR interaction are rarely reported. (-)-Epigallocatechin-3-gallate (EGCG) is the most active, abundant, and thoroughly investigated polyphenolic compound in green tea. However, the molecular mechanism by which EGCG ameliorates autoimmune arthritis remains to be elucidated. In the present study, we found that EGCG can directly bind to TNF-α, TNFR1, and TNFR2 with similar μM affinity and disrupt the interactions between TNF-α and TNFR1 and TNFR2, which inhibits TNF-α-induced L929 cell death, blocks TNF-α-induced NF-κB activation in 293-TNF-α response cell line, and eventually leads to inhibition of TNF-α-induced NF-κB signaling pathway in HFLS and MH7A cells. Thus, regular consumption of EGCG in green tea may represent a potential therapeutic agent for the treatment of TNF-α-associated diseases.
Collapse
Affiliation(s)
- Huanhuan Xu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Chunxia Gan
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Zemin Xiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Ting Xiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jin Li
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Xueqin Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Xiangdong Qin
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Titi Liu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China.
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650201, China.
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650201, China.
| |
Collapse
|
12
|
Li H, Deng W, Qin Q, Lin Y, Liu T, Mo G, Shao Y, Tang Y, Yuan K, Xu L, Li Y, Zhang S. Isoimperatorin attenuates bone loss by inhibiting the binding of RANKL to RANK. Biochem Pharmacol 2023; 211:115502. [PMID: 36921635 DOI: 10.1016/j.bcp.2023.115502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
Osteoporosis, an immune disease characterized by bone mass loss and microstructure destruction, is often seen in postmenopausal women. Isoimperatorin (ISO), a bioactive, natural furanocoumarin isolated from many traditional Chinese herbal medicines, has therapeutic effects against various diseases; however, its effect on bone homeostasis remains unclear. In this study, we investigated the effect of ISO on the differentiation and activation of osteoclast and its molecular mechanism in vitro, and evaluated the effect of ISO on bone metabolism by ovariectomized (OVX) rat model. In vitro experiments showed that ISO affected RANKL-induced MAPK, NFAT, NFATc1 trafficking and expression, osteoclast F-actin banding, osteoclast-characteristic gene expression, ROS inhibitory activity, and calcium oscillations, NF-κB signaling pathway. In vivo experiments showed that oral administration of ISO effectively reduced bone loss caused by ovariectomy and retained bone mass.Collectively, ISO inhibits RANK/RANKL binding, thereby reducing the activity of NFATc1, calcium, and ROS and inhibiting osteoclast generation. In addition, ISO protects bone mass by slowing osteoclast production and downregulating NFATc1 gene and protein expression in the bone tissue microenvironment and inhibits OVX-induced bone loss in vivo.
Collapse
Affiliation(s)
- HaiShan Li
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Deng
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - QiuLi Qin
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - YueWei Lin
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Teng Liu
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - GuoYe Mo
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Shao
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - YongChao Tang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai Yuan
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - LiangLiang Xu
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - YongXian Li
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - ShunCong Zhang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
13
|
Olędzka AJ, Czerwińska ME. Role of Plant-Derived Compounds in the Molecular Pathways Related to Inflammation. Int J Mol Sci 2023; 24:ijms24054666. [PMID: 36902097 PMCID: PMC10003729 DOI: 10.3390/ijms24054666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Inflammation is the primary response to infection and injury. Its beneficial effect is an immediate resolution of the pathophysiological event. However, sustained production of inflammatory mediators such as reactive oxygen species and cytokines may cause alterations in DNA integrity and lead to malignant cell transformation and cancer. More attention has recently been paid to pyroptosis, which is an inflammatory necrosis that activates inflammasomes and the secretion of cytokines. Taking into consideration that phenolic compounds are widely available in diet and medicinal plants, their role in the prevention and support of the treatment of chronic diseases is apparent. Recently, much attention has been paid to explaining the significance of isolated compounds in the molecular pathways related to inflammation. Therefore, this review aimed to screen reports concerning the molecular mode of action assigned to phenolic compounds. The most representative compounds from the classes of flavonoids, tannins, phenolic acids, and phenolic glycosides were selected for this review. Our attention was focused mainly on nuclear factor-κB (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), and mitogen-activated protein kinase (MAPK) signaling pathways. Literature searching was performed using Scopus, PubMed, and Medline databases. In conclusion, based on the available literature, phenolic compounds regulate NF-κB, Nrf2, and MAPK signaling, which supports their potential role in chronic inflammatory disorders, including osteoarthritis, neurodegenerative diseases, cardiovascular, and pulmonary disorders.
Collapse
Affiliation(s)
- Agata J. Olędzka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha Str., 02-097 Warsaw, Poland
| | - Monika E. Czerwińska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha Str., 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-116-61-85
| |
Collapse
|
14
|
Bioactivity, Molecular Mechanism, and Targeted Delivery of Flavonoids for Bone Loss. Nutrients 2023; 15:nu15040919. [PMID: 36839278 PMCID: PMC9960663 DOI: 10.3390/nu15040919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Skeletal disabilities are a prominent burden on the present population with an increasing life span. Advances in osteopathy have provided various medical support for bone-related diseases, including pharmacological and prosthesis interventions. However, therapeutics and post-surgery complications are often reported due to side effects associated with modern-day therapies. Thus, therapies utilizing natural means with fewer toxic or other side effects are the key to acceptable interventions. Flavonoids constitute a class of bioactive compounds found in dietary supplements, and their pharmacological attributes have been well appreciated. Recently, flavonoids' role is gaining renowned interest for its effect on bone remodeling. A wide range of flavonoids has been found to play a pivotal role in the major bone signaling pathways, such as wingless-related integration site (Wnt)/β-catenin, bone morphogenetic protein (BMP)/transforming growth factor (TGF)-β, mitogen-activated protein kinase (MAPK), etc. However, the reduced bioavailability and the absorption of flavonoids are the major limitations inhibiting their use against bone-related complications. Recent utilization of nanotechnological approaches and other delivery methods (biomaterial scaffolds, micelles) to target and control release can enhance the absorption and bioavailability of flavonoids. Thus, we have tried to recapitulate the understanding of the role of flavonoids in regulating signaling mechanisms affecting bone remodeling and various delivery methods utilized to enhance their therapeutical potential in treating bone loss.
Collapse
|
15
|
Li H, Qiao C, Zhao L, Jing Q, Xue D, Zhang Y. Epigallocatechin-3-gallate reduces neutrophil extracellular trap formation and tissue injury in severe acute pancreatitis. J Leukoc Biol 2022; 112:1427-1443. [PMID: 35983712 DOI: 10.1002/jlb.3a0322-151r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/22/2022] [Indexed: 01/04/2023] Open
Abstract
Neutrophil extracellular traps (NETs) promote intra-acinar trypsin activation and tissue damage. Therefore, reducing NET formation can reduce tissue damage in severe acute pancreatitis (SAP). However, NET formation pathways may differ among disease models. In this study, we evaluated the role of the myeloperoxidase-neutrophil elastase (NE) pathway in NET formation in SAP. SAP was induced by intraperitoneal injection of cerulein and LPSs in mice, and NE activity was inhibited by GW311616. Pancreatic tissues were collected for multiplex immunofluorescence, scanning electron microscopy, and western blotting to detect NET formation and the effect of NE on citrullinated histone H3, followed by analyses of serum amylase and cytokine levels. Pretreatment with GW311616 significantly reduced NET formation, pancreatic tissue damage, and systemic inflammatory responses in SAP. Network pharmacology analyses using NE as the target revealed the monomeric compound epigallocatechin-3-gallate (EGCG). Binding between EGCG and NE was validated using molecular docking, and the ability of EGCG to inhibit NE activity was verified experimentally. NET formation by PMA-stimulated neutrophils was significantly reduced in vitro when the cells were pretreated with 40 μM EGCG. Pretreatment with EGCG significantly reduced NET formation, pancreatic tissue damage, and systemic inflammatory responses in vivo. These results reveal that NET formation requires the myeloperoxidase-NE pathway, and citrullination of histone H3 is affected by NE activity in SAP. EGCG shows therapeutic potential for affecting NE activity, NET formation, and systemic inflammation in SAP.
Collapse
Affiliation(s)
- Hongxuan Li
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Cong Qiao
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lingyu Zhao
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingxu Jing
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingmei Zhang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
16
|
Wang D, Wang T, Zhang Z, Li Z, Guo Y, Zhao G, Wu L. Recent advances in the effects of dietary polyphenols on inflammation in vivo: potential molecular mechanisms, receptor targets, safety issues, and uses of nanodelivery system and polyphenol polymers. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Wang H, Cao X, Guo J, Yang X, Sun X, Fu Z, Qin A, Wu Y, Zhao J. BNTA alleviates inflammatory osteolysis by the SOD mediated anti-oxidation and anti-inflammation effect on inhibiting osteoclastogenesis. Front Pharmacol 2022; 13:939929. [PMID: 36249770 PMCID: PMC9559729 DOI: 10.3389/fphar.2022.939929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/09/2022] [Indexed: 11/15/2022] Open
Abstract
Abnormal activation and overproliferation of osteoclast in inflammatory bone diseases lead to osteolysis and bone mass loss. Although current pharmacological treatments have made extensive advances, limitations still exist. N-[2-bromo-4-(phenylsulfonyl)-3-thienyl]-2-chlorobenzamide (BNTA) is an artificially synthesized molecule compound that has antioxidant and anti-inflammatory properties. In this study, we presented that BNTA can suppress intracellular ROS levels through increasing ROS scavenging enzymes SOD1 and SOD2, subsequently attenuating the MARK signaling pathway and the transcription of NFATc1, leading to the inhibition of osteoclast formation and osteolytic resorption. Moreover, the results also showed an obvious restrained effect of BNTA on RANKL-stimulated proinflammatory cytokines, which indirectly mediated osteoclastogenesis. In line with the in vitro results, BNTA protected LPS-induced severe bone loss in vivo by enhancing scavenging enzymes, reducing proinflammatory cytokines, and decreasing osteoclast formation. Taken together, all of the results demonstrate that BNTA effectively represses oxidation, regulates inflammatory activity, and inhibits osteolytic bone resorption, and it may be a potential and exploitable drug to prevent inflammatory osteolytic bone diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yujie Wu
- *Correspondence: Yujie Wu, ; Jie Zhao,
| | - Jie Zhao
- *Correspondence: Yujie Wu, ; Jie Zhao,
| |
Collapse
|
18
|
EGCG regulated osteolytic microenvironment to enhance the antitumor effect of DOX on orthotopic osteosarcoma. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
19
|
Huang JM, Wang CZ, Lu SY, Wang Z, Yan ZQ. Oroxin B Attenuates Ovariectomy-Induced Bone Loss by Suppressing Osteoclast Formation and Activity. Drug Des Devel Ther 2021; 15:4811-4825. [PMID: 34876805 PMCID: PMC8643139 DOI: 10.2147/dddt.s328238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Background Osteoclasts are the major players in bone resorption and have always been studied in the prevention and treatment of osteoporosis. Previous studies have confirmed that a variety of flavonoids inhibit osteoporosis and improve bone health mainly through inhibiting osteoclastogenesis. Oroxin B (OB) is a flavonoid compound extracted from traditional Chinese herbal medicine Oroxylum indicum (L.) Vent, exerts potent antitumor and anti-inflammation effect, but its effect on osteoclastogensis remains unknown. Methods We comprehensively evaluated the effect of OB on the formation and function of osteoclasts and the underling mechanism by bone marrow-derived macrophage in vitro. In vivo, we used mice ovariectomized model to verify the protective effect of OB. Results OB was found to inhibit osteoclast formation and bone resorption function in vitro, in a dose-dependent manner and the increased osteoclastic-related genes induced by RANKL (NFATc1, c-fos, cathepsin K, RANK, MMP9 and TRAP) were also attenuated following OB treatment. Mechanistical investigation showed OB abrogated the increased phosphorylation level of MAPK and NF-κB pathway, and diminished the expression of the vital transcription factors for osteoclastogenesis. OB also prevented ovariectomy (OVX)-induced bone loss by inhibiting osteoclast formation and activity in mice. Conclusion Our study demonstrated that OB may act as an anti-osteoporosis agent by inhibiting osteoclast maturation and attenuating bone resorption.
Collapse
Affiliation(s)
- Jun-Ming Huang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Chen-Zhong Wang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shun-Yi Lu
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Zhe Wang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Zuo-Qin Yan
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|