1
|
Hajizadeh M, Jabbari A, Spotin A, Hejazian SS, Mikaeili Galeh T, Hassannia H, Sahlolbei M, Pagheh AS, Ahmadpour E. Modulatory Effects of Hydatid Cyst Fluid on a Mouse Model of Experimental Autoimmune Encephalomyelitis. Vet Sci 2024; 11:34. [PMID: 38250940 PMCID: PMC10819194 DOI: 10.3390/vetsci11010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
The reduced burden of helminth parasites in industrialized countries is probably one of the reasons for the increased prevalence of autoimmune disorders such as multiple sclerosis (MS). The current study aimed to evaluate the potential preventive effects of hydatid cyst fluid (HCF) on the disease severity in an EAE mouse model of MS. EAE-induced mice were treated with HCF before and after EAE induction. An RT-PCR-based evaluation of IFN-γ, IL-1β, TNF, T-bet, IL-4, GATA3, IL-17, RoRγ, TGF-β, and FOXP3 expression levels in splenocytes and an ELISA-based analysis of IFN-γ and IL-4 levels in cell culture supernatant of splenocytes were performed. Histopathological examinations of mice during the study were also conducted. The expression levels of T-bet, IL-4, GATA3, TGF-β, and FOXP3 in EAE + HCF mice were significantly higher compared to EAE + PBS mice. In the EAE + HCF group, the expression levels of IFN-γ, IL-1β, and TNF were significantly lower than in the EAE + PBS group. The histopathological results showed significantly reduced inflammation and demyelination in EAE + HCF mice compared to EAE + PBS mice. Our study provides proof-of-concept in the EAE mouse model of MS that helminth-derived products such as HCF have a potential prophylactic effect on MS development and present a novel potential therapeutic strategy.
Collapse
Affiliation(s)
- Maryam Hajizadeh
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| | - Aynaz Jabbari
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| | - Adel Spotin
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran (S.S.H.)
| | - Seyyed Sina Hejazian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran (S.S.H.)
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| | - Tahereh Mikaeili Galeh
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy 53464-58167, Iran
| | - Hadi Hassannia
- Immunogenetic Research Center, Faculty of Medicine and Amol Faculty of Paramedical Sciences, Mazandaran, University of Medical Sciences, Sari 48175-866, Iran
| | - Maryam Sahlolbei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran (S.S.H.)
| | - Abdol Sattar Pagheh
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand 14619-65381, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran (S.S.H.)
| |
Collapse
|
2
|
Chayé MAM, Gasan TA, Ozir-Fazalalikhan A, Scheenstra MR, Zawistowska-Deniziak A, van Hengel ORJ, Gentenaar M, Manurung MD, Harvey MR, Codée JDC, Chiodo F, Heijke AM, Kalinowska A, van Diepen A, Hensbergen PJ, Yazdanbakhsh M, Guigas B, Hokke CH, Smits HH. Schistosoma mansoni egg-derived thioredoxin and Sm14 drive the development of IL-10 producing regulatory B cells. PLoS Negl Trop Dis 2023; 17:e0011344. [PMID: 37363916 DOI: 10.1371/journal.pntd.0011344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/02/2023] [Indexed: 06/28/2023] Open
Abstract
During chronic schistosome infections, a complex regulatory network is induced to regulate the host immune system, in which IL-10-producing regulatory B (Breg) cells play a significant role. Schistosoma mansoni soluble egg antigens (SEA) are bound and internalized by B cells and induce both human and mouse IL-10 producing Breg cells. To identify Breg-inducing proteins in SEA, we fractionated SEA by size exclusion chromatography and found 6 fractions able to induce IL-10 production by B cells (out of 18) in the high, medium and low molecular weight (MW) range. The high MW fractions were rich in heavily glycosylated molecules, including multi-fucosylated proteins. Using SEA glycoproteins purified by affinity chromatography and synthetic glycans coupled to gold nanoparticles, we investigated the role of these glycan structures in inducing IL-10 production by B cells. Then, we performed proteomics analysis on active low MW fractions and identified a number of proteins with putative immunomodulatory properties, notably thioredoxin (SmTrx1) and the fatty acid binding protein Sm14. Subsequent splenic murine B cell stimulations and hock immunizations with recombinant SmTrx1 and Sm14 showed their ability to dose-dependently induce IL-10 production by B cells both in vitro and in vivo. Identification of unique Breg cells-inducing molecules may pave the way to innovative therapeutic strategies for inflammatory and auto-immune diseases.
Collapse
Affiliation(s)
- Mathilde A M Chayé
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas A Gasan
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Maaike R Scheenstra
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anna Zawistowska-Deniziak
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Parasitology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Oscar R J van Hengel
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Max Gentenaar
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mikhael D Manurung
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael R Harvey
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Fabrizio Chiodo
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Italian National Research Council, Institute of Biomolecular Chemistry, Pozzuoli, Italy
| | - Anouk M Heijke
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alicja Kalinowska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul J Hensbergen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Wang C, Mu T, Feng X, Zhang J, Gu Y. Study on fatty acid binding protein in lipid metabolism of livestock and poultry. Res Vet Sci 2023; 158:185-195. [PMID: 37030094 DOI: 10.1016/j.rvsc.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Fatty acid binding proteins (FABPs) are key proteins in lipid transport, and 12 family members have been documented in the literature. In recent years, new insights have been gained into the structure and function of FABPs, which are important regulators of lipid metabolic processes in the body and play a central role in coordinating lipid transport and metabolism in various tissues and organs across species. This paper provides a brief overview of the structure and biological functions of FABPs and reviews related studies on lipid metabolism in livestock and poultry to lay the foundation for research on the mechanism underlying the regulatory effect of FABPs on lipid metabolism in livestock and poultry and for the genetic improvement of livestock and poultry.
Collapse
Affiliation(s)
- Chuanchuan Wang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Tong Mu
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Xiaofang Feng
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Juan Zhang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Yaling Gu
- School of Agriculture, Ningxia University, 750021, Yinchuan, China.
| |
Collapse
|