1
|
Liu X, Fang Y, Huang M, Tu S, Zheng B, Yuan H, Yu P, Lan M, Luo W, Zhou Y, Chen G, Shen Z, Wang Y, Liang G. Deubiquitinase JOSD2 alleviates colitis by inhibiting inflammation via deubiquitination of IMPDH2 in macrophages. Acta Pharm Sin B 2025; 15:1039-1055. [PMID: 40177575 PMCID: PMC11959961 DOI: 10.1016/j.apsb.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/17/2024] [Accepted: 10/22/2024] [Indexed: 04/05/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract, which increases the incidence of colorectal cancer (CRC). In the pathophysiology of IBD, ubiquitination/deubiquitination plays a critical regulatory function. Josephin domain containing 2 (JOSD2), a deubiquitinating enzyme, controls cell proliferation and carcinogenesis. However, its role in IBD remains unknown. Colitis mice model developed by dextran sodium sulfate (DSS) or colon tissues from individuals with ulcerative colitis and Crohn's disease showed a significant upregulation of JOSD2 expression in the macrophages. JOSD2 deficiency exacerbated the phenotypes of DSS-induced colitis by enhancing colon inflammation. DSS-challenged mice with myeloid-specific JOSD2 deletion developed severe colitis after bone marrow transplantation. Mechanistically, JOSD2 binds to the C-terminal of inosine-5'-monophosphate dehydrogenase 2 (IMPDH2) and preferentially cleaves K63-linked polyubiquitin chains at the K134 site, suppressing IMPDH2 activity and preventing activation of nuclear factor kappa B (NF-κB) and inflammation in macrophages. It was also shown that JOSD2 knockout significantly exacerbated increased azoxymethane (AOM)/DSS-induced CRC, and AAV6-mediated JOSD2 overexpression in macrophages prevented the development of colitis in mice. These outcomes reveal a novel role for JOSD2 in colitis through deubiquitinating IMPDH2, suggesting that targeting JOSD2 is a potential strategy for treating IBD.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yi Fang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Mincong Huang
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 311399, China
| | - Shiliang Tu
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Boan Zheng
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Hang Yuan
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Peng Yu
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Mengyao Lan
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 311399, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yongqiang Zhou
- Department of Radiation and Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Guorong Chen
- Department of Pathology, the Affiliated Quzhou Hospital of Wenzhou Medical University, Quzhou 32400, China
| | - Zhe Shen
- The Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 311399, China
| |
Collapse
|
2
|
Shen J, Lou L, Du X, Zhou B, Xu Y, Mei F, Wu L, Li J, Waisman A, Ruan J, Wang X. YOD1 sustains NOD2-mediated protective signaling in colitis by stabilizing RIPK2. EMBO Rep 2024; 25:4827-4845. [PMID: 39333628 PMCID: PMC11549337 DOI: 10.1038/s44319-024-00276-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a disorder causing chronic inflammation in the gastrointestinal tract, and its pathophysiological mechanisms are still under investigation. Here, we find that mice deficient of YOD1, a deubiquitinating enzyme, are highly susceptible to dextran sulfate sodium (DSS)-induced colitis. The bone marrow transplantation experiment reveals that YOD1 derived from hematopoietic cells inhibits DSS colitis. Moreover, YOD1 exerts its protective role by promoting nucleotide-binding oligomerization domain 2 (NOD2)-mediated physiological inflammation in macrophages. Mechanistically, YOD1 inhibits the proteasomal degradation of receptor-interacting serine/threonine kinase 2 (RIPK2) by reducing its K48 polyubiquitination, thereby increasing RIPK2 abundance to enhance NOD2 signaling. Consistently, the protective function of muramyldipeptide, a NOD2 ligand, in experimental colitis is abolished in mice deficient of YOD1. Importantly, YOD1 is upregulated in colon-infiltrating macrophages in patients with colitis. Collectively, this study identifies YOD1 as a novel regulator of colitis.
Collapse
Affiliation(s)
- Jiangyun Shen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Liyan Lou
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Xue Du
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Bincheng Zhou
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Yanqi Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Fuqi Mei
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Liangrong Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
- Department of Pharmacy, Yiwu Central Hospital, 322099, Yiwu, China
| | - Jianmin Li
- Department of Pathology, The First Affiliated Hospital, Wenzhou Medical University, 325000, Wenzhou, China
| | - Ari Waisman
- Institute for Molecular Medicine, Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Jing Ruan
- Department of Pathology, The First Affiliated Hospital, Wenzhou Medical University, 325000, Wenzhou, China.
| | - Xu Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China.
| |
Collapse
|
3
|
Du X, Xu J, Mei F, Shen J, Zhou B, Zhu Z, Li Z, Su X, Li J, Schlüter D, Ruan J, Wang X. Deubiquitination of RIPK2 by OTUB2 augments NOD2 signalling and protective effects in intestinal inflammation. Clin Transl Med 2024; 14:e70038. [PMID: 39358938 PMCID: PMC11446981 DOI: 10.1002/ctm2.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract, but the molecular mechanisms underlying IBD are incompletely understood. In this study, we explored the role and regulating mechanism of otubain 2 (OTUB2), a deubiquitinating enzyme, in IBD. METHODS To study the function of OTUB2 in IBD, we generated Otub2-/- mice and treated them with dextran sulfate sodium (DSS) to induce experimental colitis. Bone marrow transplantation was performed to identify the cell populations that were affected by OTUB2 in colitis. The molecular mechanism of OTUB2 in signal transduction was studied by various biochemical methods. RESULTS OTUB2 was highly expressed in colon-infiltrating macrophages in both humans with IBD and mice with DSS-induced experimental colitis. Colitis was significantly aggravated in Otub2-/- mice and bone marrow chimeric mice receiving Otub2-/- bone marrow. OTUB2-deficiency impaired the production of cytokines and chemokines in macrophages in response to the NOD2 agonist muramyl dipeptide (MDP). Upon MDP stimulation, OTUB2 promoted NOD2 signaling by stabilizing RIPK2. Mechanistically, OTUB2 inhibited the proteasomal degradation of RIPK2 by removing K48-linked polyubiquitination on RIPK2, which was mediated by the active C51 residue in OTUB2. In mice, OTUB2 ablation abolished the protective effects of MDP administration in colitis. CONCLUSION This study identified OTUB2 as a novel regulator of intestinal inflammation.
Collapse
Affiliation(s)
- Xue Du
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| | - Jun Xu
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| | - Fuqi Mei
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| | - Jiangyun Shen
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| | - Bincheng Zhou
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| | - Zhenhu Zhu
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| | - Zhongding Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| | - Xian Su
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| | - Jianmin Li
- Department of PathologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Dirk Schlüter
- Hannover Medical SchoolInstitute of Medical Microbiology and Hospital EpidemiologyHannoverGermany
| | - Jing Ruan
- Department of PathologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xu Wang
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| |
Collapse
|
4
|
Kommer A, Meineck M, Classen P, Weinmann-Menke J. A20 in Kidney Transplantation and Autoimmunity. Int J Mol Sci 2024; 25:6628. [PMID: 38928333 PMCID: PMC11203976 DOI: 10.3390/ijms25126628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
A20, the central inhibitor of NFκB, has multiple anti-inflammatory properties, making it an interesting target in kidney autoimmune disease and transplant biology. It has been shown to be able to inhibit inflammatory functions in macrophages, dendritic cells, T cells, and B cells in various ways, leading to less tissue damage and better graft outcomes. In this review, we will discuss the current literature regarding A20 in kidney transplantation and autoimmunity. Future investigations on animal models and in existing immunosuppressive therapies are needed to establish A20 as a therapeutic target in kidney transplantation and autoimmunity. Cell-based therapies, modified viruses or RNA-based therapies could provide a way for A20 to be utilized as a promising mediator of inflammation and tissue damage.
Collapse
Affiliation(s)
- Andreas Kommer
- Department of Nephrology, I. Department of Medicine, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany; (M.M.); (P.C.)
| | | | | | | |
Collapse
|
5
|
Liu X, Fang Y, Lv X, Hu C, Chen G, Zhang L, Jin B, Huang L, Luo W, Liang G, Wang Y. Deubiquitinase OTUD6A in macrophages promotes intestinal inflammation and colitis via deubiquitination of NLRP3. Cell Death Differ 2023; 30:1457-1471. [PMID: 36932155 PMCID: PMC10244424 DOI: 10.1038/s41418-023-01148-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract, which has been shown to increase the incidence of colorectal cancer. Recent studies have highlighted the role of ubiquitination, a post-translational modification, in the occurrence and development of colonic inflammation. Ovarian tumor deubiquitinase 6 A (OTUD6A) is a deubiquitinating enzyme, which regulates cell proliferation and tumorigenesis. In this study, we investigated the expression and role of OTUD6A in IBD. Wide-type or Otud6a-/- mice were used to develop dextran sodium sulfate (DSS)- or 2,6,4-trinitrobenzene sulfonic acid (TNBS)-induced colitis model, as well as azoxymethane (AOM)/DSS-induced colitis-associated cancer model. Bone marrow-derived macrophages (BMDMs) were isolated from wild-type and Otud6a-/- mice to dissect molecular mechanisms. Our data show that OTUD6A deficiency attenuated DSS or TNBS-induced colitis, as well as AOM/DSS-induced colitis-related colon cancer in vivo. Bone marrow transplantation experiments further revealed that OTUD6A in myeloid cells was responsible for exacerbation of DSS-induced colitis. Mechanistically, OTUD6A directly bound to NACHT domain of NLRP3 inflammasome and selectively cleaved K48-linked polyubiquitin chains from NLRP3 at K430 and K689 to enhance the stability of NLRP3, leading to increased IL-1β level and inflammation. Taken together, our research identifies a new function of OTUD6A in the pathogenesis of colitis by promoting NLRP3 inflammasome activation, suggesting that OTUD6A could be a potential target for the treatment of IBD.
Collapse
Affiliation(s)
- Xin Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi Fang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinting Lv
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chenghong Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guorong Chen
- Department of Pathology, the Affiliated Quzhou Hospital of Wenzhou Medical University, Quzhou, Zhejiang, China
| | - Lingxi Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bo Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijiang Huang
- Department of Gastroenterology, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Department of Gastroenterology, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China.
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Ruan J, Schlüter D, Naumann M, Waisman A, Wang X. Ubiquitin-modifying enzymes as regulators of colitis. Trends Mol Med 2022; 28:304-318. [PMID: 35177326 DOI: 10.1016/j.molmed.2022.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/18/2022]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a chronic inflammatory disorder of the gastrointestinal tract. Although the pathophysiology of IBD is multifaceted, ubiquitination, a post-translational modification, has been shown to have essential roles in its pathogenesis and development. Ubiquitin-modifying enzymes (UMEs) work in synergy to orchestrate the optimal ubiquitination of target proteins, thereby maintaining intestinal homeostasis. Genome-wide association studies (GWAS) have identified multiple UME genes as IBD susceptibility loci, implying the importance of UMEs in IBD. Furthermore, accumulative evidence demonstrates that UMEs affect intestinal inflammation by regulating various aspects, such as intestinal barrier functions and immune responses. Considering the significant functions of UMEs in IBD, targeting UMEs could become a favorable therapeutic approach for IBD.
Collapse
Affiliation(s)
- Jing Ruan
- Department of Pathology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Xu Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China; Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
7
|
Zou M, Zeng QS, Nie J, Yang JH, Luo ZY, Gan HT. The Role of E3 Ubiquitin Ligases and Deubiquitinases in Inflammatory Bowel Disease: Friend or Foe? Front Immunol 2021; 12:769167. [PMID: 34956195 PMCID: PMC8692584 DOI: 10.3389/fimmu.2021.769167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel disease (IBD), which include Crohn’s disease (CD) and ulcerative colitis (UC), exhibits a complex multifactorial pathogenesis involving genetic susceptibility, imbalance of gut microbiota, mucosal immune disorder and environmental factors. Recent studies reported associations between ubiquitination and deubiquitination and the occurrence and development of inflammatory bowel disease. Ubiquitination modification, one of the most important types of post-translational modifications, is a multi-step enzymatic process involved in the regulation of various physiological processes of cells, including cell cycle progression, cell differentiation, apoptosis, and innate and adaptive immune responses. Alterations in ubiquitination and deubiquitination can lead to various diseases, including IBD. Here, we review the role of E3 ubiquitin ligases and deubiquitinases (DUBs) and their mediated ubiquitination and deubiquitination modifications in the pathogenesis of IBD. We highlight the importance of this type of posttranslational modification in the development of inflammation, and provide guidance for the future development of targeted therapeutics in IBD.
Collapse
Affiliation(s)
- Min Zou
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Qi-Shan Zeng
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Nie
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Hui Yang
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen-Yi Luo
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Hua-Tian Gan
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|