1
|
Zhang Q, Zhang X, He Q, Tian Y, Liu Z. Cimifugin Alleviates Chronic Constriction Injury of the Sciatic Nerve by Suppressing Inflammatory Response and Schwann Cell Apoptosis. Cell Biochem Biophys 2024:10.1007/s12013-024-01513-4. [PMID: 39392551 DOI: 10.1007/s12013-024-01513-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/12/2024]
Abstract
Inflammation and Schwann cell apoptosis play critical roles in neuropathic pain after sciatic nerve injury. This study aimed to explore the function and mechanism of cimifugin in lipopolysaccharide (LPS)-stimulated rat Schwann cells and sciatic nerves of rats treated with chronic constriction injury (CCI). Thermal, mechanical and cold hyperalgesia of rats in response to cimifugin or mecobalamin (the positive drug control) treatment were evaluated through behavioral tests. H&E staining of sciatic nerves was performed for pathological observation. ELISA was conducted to assess concentrations of inflammatory cytokines in rat serum and sciatic nerves. The intensity of S100β in sciatic nerves was determined using immunohistochemistry. Flow cytometry analysis was conducted for detection of Schwann cell apoptosis. RT-qPCR was performed to measure mRNA levels of inflammatory factors in Schwann cells. Immunofluorescence staining was performed to detect cellular p65/NF-κB activity. Western blotting was performed to quantify protein levels of apoptotic markers and factors associated with the NF-κB and MAPK pathways in rat nerves and Schwann cells. As shown by experimental data, cimifugin mitigated thermal, mechanical and cold hyperalgesia of CCI rats. Cimifugin repressed inflammatory cell infiltration, reduced proinflammatory cytokine levels while increasing anti-inflammatory factor (IL-10) level in serum or sciatic nerves of CCI rats. Cimifugin enhanced S100β expression and downregulated apoptotic markers in vivo. The anti-inflammatory and anti-apoptotic properties of cimifugin were verified in the LPS-stimulated Schwann cells. Moreover, cimifugin suppressed nuclear translocation of p65 NF-κB in vitro and repressed the phosphorylation of IκB, p65 NF-κB, p38 MAPK, ERK1/2, as well as JNK in CCI rats. In conclusion, cimifugin alleviates neuropathic pain after sciatica by suppressing inflammatory response and Schwann cell apoptosis via inactivation of NF-κB and MAPK pathways.
Collapse
Affiliation(s)
- Qijuan Zhang
- Department of rehabilitation medicine, Wuhan Orthopaedic Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Wuhan Sports University), Wuhan, 430070, China.
| | - Xiaoli Zhang
- Wuhan Fiberhome technical service Co. Ltd, Wuhan, 430000, China
| | - Qing He
- Department of rehabilitation medicine, Wuhan Orthopaedic Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Wuhan Sports University), Wuhan, 430070, China
| | - Yu Tian
- Department of rehabilitation medicine, Wuhan Orthopaedic Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Wuhan Sports University), Wuhan, 430070, China
| | - Zhengmao Liu
- Department of rehabilitation medicine, Wuhan Orthopaedic Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Wuhan Sports University), Wuhan, 430070, China
| |
Collapse
|
2
|
Liu L, Liu M, Song Z, Zhang H. Silencing of FTO inhibits oxidative stress to relieve neuropathic pain by m6A modification of GPR177. Immun Inflamm Dis 2024; 12:e1345. [PMID: 39023405 PMCID: PMC11256881 DOI: 10.1002/iid3.1345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/20/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Neuropathic pain (NP) is a challenging health condition owing to its complex nature and associated multiple etiologies. The occurrence of NP involves the abnormal activity of neurons mediated by oxidative stress (OS). Previous research has demonstrated that m6A methylation plays a role in the regulatory pathway of NP. This study aimed to investigate the specific molecular pathways through which m6A methylation modifiers alleviate NP. METHODS For this purpose, an NO rat model was developed via spared nerve injury (SNI), followed by quantifying the animal's pain assessment via paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). The OS in SNI rats was evaluated by measuring reactive oxygen species, superoxide dismutase, and catalase (CAT) in spinal cord tissues. Moreover, quantitative-real-time polymerase chain reaction and western blot analysis were employed for detecting fat mass and obesity-associated (FTO) and GPR177 levels, while m6A levels of GPR117 were analyzed via MeRIP. RESULTS The results indicated an enhanced OS with highly expressed FTO in spinal cord tissue samples, where knocking down Fto effectively relieved NP and OS in SNI rats. Mechanistic investigations revealed that Fto-mediated reduction of Grp177 m6A modification was involved in the WNT5a/TRPV1 axis-mediated OS remission of NP. Moreover, in vitro experiment results indicated that YTHDF2 was an important m6A methylated reading protein for this process. CONCLUSIONS Fto silencing leads to increased m6A methylation of Grp177 through a YTHDF2-dependent mechanism, resulting in decreased Grp177 stability and ultimately reducing NP in rats by OS suppression.
Collapse
Affiliation(s)
- Li Liu
- Department of OncologyJiangxi Provincial People's HospitalNanchangChina
| | - Mei Liu
- Department of AnesthesiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Zhiping Song
- Department of AnesthesiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Huaigen Zhang
- Department of AnesthesiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
3
|
Lin K, Zhang Y, Shen Y, Xu Y, Huang M, Liu X. Hydrogen Sulfide can Scavenge Free Radicals to Improve Spinal Cord Injury by Inhibiting the p38MAPK/mTOR/NF-κB Signaling Pathway. Neuromolecular Med 2024; 26:26. [PMID: 38907170 DOI: 10.1007/s12017-024-08794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Spinal cord injury (SCI) causes irreversible cell loss and neurological dysfunctions. Presently, there is no an effective clinical treatment for SCI. It can be the only intervention measure by relieving the symptoms of patients such as pain and fever. Free radical-induced damage is one of the validated mechanisms in the complex secondary injury following primary SCI. Hydrogen sulfide (H2S) as an antioxidant can effectively scavenge free radicals, protect neurons, and improve SCI by inhibiting the p38MAPK/mTOR/NF-κB signaling pathway. In this report, we analyze the pathological mechanism of SCI, the role of free radical-mediated the p38MAPK/mTOR/NF-κB signaling pathway in SCI, and the role of H2S in scavenging free radicals and improving SCI.
Collapse
Affiliation(s)
- Kexin Lin
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Yanyang Shen
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Yiqin Xu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China.
| |
Collapse
|
4
|
Kong Q, Li F, Sun K, Sun X, Ma J. Valproic acid ameliorates cauda equina injury by suppressing HDAC2-mediated ferroptosis. CNS Neurosci Ther 2024; 30:e14524. [PMID: 38105511 PMCID: PMC11017456 DOI: 10.1111/cns.14524] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 12/19/2023] Open
Abstract
INTRODUCTION Persistent neuroinflammatory response after cauda equina injury (CEI) lowers nociceptor firing thresholds, accompanied by pathological pain and decreasing extremity dysfunction. Histone deacetylation has been considered a key regulator of immunity, inflammation, and neurological dysfunction. Our previous study suggested that valproic acid (VPA), a histone deacetylase inhibitor, exhibited neuroprotective effects in rat models of CEI, although the underlying mechanism remains elusive. METHODS The cauda equina compression surgery was performed to establish the CEI model. The Basso, Beattie, Bresnahan score, and the von Frey filament test were carried out to measure the animal behavior. Immunofluorescence staining of myelin basic protein and GPX4 was carried out. In addition, transmission electron microscope analysis was used to assess the effect of VPA on the morphological changes of mitochondria. RNA-sequencing was conducted to clarify the underlying mechanism of VPA on CEI protection. RESULTS In this current study, we revealed that the expression level of HDAC1 and HDAC2 was elevated after cauda equina compression model but was reversed by VPA treatment. Meanwhile, HDAC2 knockdown resulted in the improvement of motor functions and pathologic pain, similar to treatment with VPA. Histology analysis also showed that knockdown of histone deacetylase (HDAC)-2, but not HDAC1, remarkably alleviated cauda equina injury and demyelinating lesions. The potential mechanism may be related to lowering oxidative stress and inflammatory response in the injured region. Notably, the transcriptome sequencing indicated that the therapeutic effect of VPA may depend on HDAC2-mediated ferroptosis. Ferroptosis-related genes were analyzed in vivo and DRG cells further validated the reliability of RNA-sequencing results, suggesting HDAC2-H4K12ac axis participated in epigenetic modulation of ferroptosis-related genes. CONCLUSION HDAC2 is critically involved in the ferroptosis and neuroinflammation in cauda equina injury, and VPA ameliorated cauda equina injury by suppressing HDAC2-mediated ferroptosis.
Collapse
Affiliation(s)
- Qingjie Kong
- Department of OrthopedicsShanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- National Key Laboratory of Medical Immunology & Institute of ImmunologySecond Military Medical UniversityShanghaiChina
| | - Fudong Li
- Department of Orthopedic SurgerySpine Center, Shanghai Changzheng Hospital, Second Military Medical UniversityShanghaiChina
| | - Kaiqiang Sun
- Department of Orthopedic SurgerySpine Center, Shanghai Changzheng Hospital, Second Military Medical UniversityShanghaiChina
| | - Xiaofei Sun
- Department of Orthopedic SurgerySpine Center, Shanghai Changzheng Hospital, Second Military Medical UniversityShanghaiChina
| | - Jun Ma
- Department of OrthopedicsShanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
5
|
Liang F, Yang Y, Chen Y, Xie J, Liu S, Tan Z, Tian L, Yu Z, Shi Z, Xie P, Ding H, Yang Q. Ropivacaine microsphere-loaded electroconductive nerve dressings for long-acting analgesia and functional recovery following diabetic peripheral nerve injury. Mater Today Bio 2023; 21:100712. [PMID: 37448664 PMCID: PMC10336588 DOI: 10.1016/j.mtbio.2023.100712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
In recent years, electroconductive hydrogels (ECHs) have shown great potential in promoting nerve regeneration and motor function recovery following diabetic peripheral nerve injury (PNI), attributed to their similar electrical and mechanical characteristics to innate nervous tissue. It is well-established that PNI causes motor deficits and pain, especially in diabetics. Current evidence suggests that ropivacaine (ROP) encapsulated in poly lactic-co-glycolic acid (PLGA) microspheres (MSs) yield a sustained analgesic effect. In this study, an ECH electroconductive network loaded with MS/ROP (ECH-MS/ROP) was designed as a promising therapeutic approach for diabetic PNI to exert lasting analgesia and functional recovery. This dual delivery system allowed ROP's slow and sequential release, achieving sustained analgesia as demonstrated by our in vivo experiments. Meanwhile, this system was designed like a lamellar dressing, with desirable adhesive and self-curling properties, convenient for treating injured nerve tissues via automatically wrapping tube-like structures, facilitating the process of implantation. Our in vitro assays verified that ECH-MS/ROP was able to enhance the adhesion and motility of Schwann cells. Besides, both in vitro and in vivo studies substantiated that ECH-MS/ROP stimulated myelinated axon regeneration through the MEK/ERK signaling pathway, thereby improving muscular denervation atrophy and facilitating functional recovery. Therefore, this study suggests that the ECH-MS/ROP dressing provides a promising strategy for treating diabetic PNI to facilitate nerve regeneration, functional recovery and pain relief.
Collapse
Affiliation(s)
- Fangguo Liang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yusheng Yang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yuyong Chen
- Department of Orthopedics, Southern University of Science and Technology Hospital, Shenzhen, Guangdong Province, 510800, China
| | - Jiajun Xie
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Shencai Liu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Zilin Tan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Liangjie Tian
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Zhiqiang Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhanjun Shi
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Peigen Xie
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen, University, Guangzhou, Guangdong Province, 510600, China
| | - Hong Ding
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Qinfeng Yang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| |
Collapse
|
6
|
Yang Q, Su S, Liu S, Yang S, Xu J, Zhong Y, Yang Y, Tian L, Tan Z, Wang J, Yu Z, Shi Z, Liang F. Exosomes-loaded electroconductive nerve dressing for nerve regeneration and pain relief against diabetic peripheral nerve injury. Bioact Mater 2023; 26:194-215. [PMID: 36923267 PMCID: PMC10008840 DOI: 10.1016/j.bioactmat.2023.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Over the years, electroconductive hydrogels (ECHs) have been extensively applied for stimulating nerve regeneration and restoring locomotor function after peripheral nerve injury (PNI) with diabetes, given their favorable mechanical and electrical properties identical to endogenous nerve tissue. Nevertheless, PNI causes the loss of locomotor function and inflammatory pain, especially in diabetic patients. It has been established that bone marrow stem cells-derived exosomes (BMSCs-Exos) have analgesic, anti-inflammatory and tissue regeneration properties. Herein, we designed an ECH loaded with BMSCs-Exos (ECH-Exos) electroconductive nerve dressing to treat diabetic PNI to achieve functional recovery and pain relief. Given its potent adhesive and self-healing properties, this laminar dressing is convenient for the treatment of damaged nerve fibers by automatically wrapping around them to form a size-matched tube-like structure, avoiding the cumbersome implantation process. Our in vitro studies showed that ECH-Exos could facilitate the attachment and migration of Schwann cells. Meanwhile, Exos in this system could modulate M2 macrophage polarization via the NF-κB pathway, thereby attenuating inflammatory pain in diabetic PNI. Additionally, ECH-Exos enhanced myelinated axonal regeneration via the MEK/ERK pathway in vitro and in vivo, consequently ameliorating muscle denervation atrophy and further promoting functional restoration. Our findings suggest that the ECH-Exos system has huge prospects for nerve regeneration, functional restoration and pain relief in patients with diabetic PNI.
Collapse
Affiliation(s)
- Qinfeng Yang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shenghui Su
- Department of Orthopaedics, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, 352100, China
| | - Shencai Liu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Sheng Yang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jing Xu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yixiu Zhong
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Yusheng Yang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Liangjie Tian
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zilin Tan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jian Wang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhiqiang Yu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Corresponding author. Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Zhanjun Shi
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Corresponding author.
| | - Fangguo Liang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Corresponding author.
| |
Collapse
|
7
|
Wang Y, Wang P, Yu Y, Huang E, Yao Y, Guo D, Peng H, Tian B, Zheng Q, Jia M, Wang J, Wu X, Cheng J, Liu H, Wang QK, Xu C. Hepatocyte Ninjurin2 promotes hepatic stellate cell activation and liver fibrosis through the IGF1R/EGR1/PDGF-BB signaling pathway. Metabolism 2023; 140:155380. [PMID: 36549436 DOI: 10.1016/j.metabol.2022.155380] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/25/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Liver fibrogenesis is orchestrated by the paracrine signaling interaction between several resident cell types regulating the activation of hepatic stellate cells (HSCs). However, the molecular mechanisms underlying paracrine regulation are largely unknown. The aim of this study is to elucidate the role of Ninjurin2 in the crosstalk between hepatocytes and HSCs and better understand the implications of Ninjurin2 in liver fibrosis. METHODS Ninj2 knockout mice (Ninj2-/-) and hepatocyte-specific Ninj2 overexpression mice (Ninj2Hep-tg) were constructed and followed by the induction of liver fibrosis using methionine- and choline-deficient (MCD) diet. The relationship between Ninjurin2 and liver fibrosis phenotype was evaluated in vivo by measurement of fibrotic markers and related genes. We used an in vitro transwell cell co-culture model to examine the impact of Ninjurin2 in hepatocytes on the crosstalk to HSCs. The interaction of Ninjurin2 and IGF1R and the regulation of PI3K-AKT-EGR1 were analyzed in vivo and in vitro. Finally, an inhibitory Ninjurin2 peptide was injected intravenously via the tail vein to investigate whether inhibiting of Ninjurin2 cascade can attenuate MCD diet-induced liver fibrosis in mice. RESULTS We found that hepatic Ninjurin2 expression was significantly increased in fibrotic human liver and MCD diet-induced liver injury mouse models. In the mouse model, hepatocyte-specific overexpression of Ninj2 exacerbates MCD-induced liver fibrosis, while global Ninj2 knockout reverses the phenotype. To mimic hepatocyte-HSC crosstalk during liver fibrosis, we used co-culture systems containing hepatocytes and HSCs and determined that Ninjurin2 overexpression in hepatocytes directly activates HSCs in vitro. Mechanistically, Ninjurin2 directly interacts with insulin-like growth factor 1 receptor (IGF1R) and increases the hepatocyte secretion of the fibrogenic cytokine, platelet-derived growth factor-BB (PDGF-BB) through IGF1R-PI3K-AKT-EGR1 cascade. Inhibition of PDGFRB signaling in HSCs can abolish the profibrogenic effect of Ninjurin2. In addition, we demonstrated that a specific inhibitory Ninjurin2 peptide containing an N-terminal adhesion motif mitigates liver fibrosis and improves hepatic function in the mouse models by negatively regulating the sensitivity of IGF1R to IGF1 in hepatocytes. CONCLUSION Hepatic Ninjurin2 plays a key role in liver fibrosis through paracrine regulation of PDGF-BB/PDGFRB signaling in HSCs, and the results suggesting Ninjurin2 may be a potential therapeutic target.
Collapse
Affiliation(s)
- Yifan Wang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Pengyun Wang
- Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Yubing Yu
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Erwen Huang
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yufeng Yao
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Di Guo
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Huixin Peng
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Beijia Tian
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qian Zheng
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Mengru Jia
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jing Wang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xinna Wu
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jianding Cheng
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Huiying Liu
- College of Pulmonary and Critical Medicine, Chinese PLA General Hospital, Beijing, China
| | - Qing K Wang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Chengqi Xu
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
8
|
Raza Z, Hussain SF, Foster VS, Wall J, Coffey PJ, Martin JF, Gomes RSM. Exposure to war and conflict: The individual and inherited epigenetic effects on health, with a focus on post-traumatic stress disorder. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1066158. [PMID: 38455905 PMCID: PMC10910933 DOI: 10.3389/fepid.2023.1066158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/03/2023] [Indexed: 03/09/2024]
Abstract
War and conflict are global phenomena, identified as stress-inducing triggers for epigenetic modifications. In this state-of-the-science narrative review based on systematic principles, we summarise existing data to explore the outcomes of these exposures especially in veterans and show that they may result in an increased likelihood of developing gastrointestinal, auditory, metabolic and circadian issues, as well as post-traumatic stress disorder (PTSD). We also note that, despite a potential "healthy soldier effect", both veterans and civilians with PTSD exhibit the altered DNA methylation status in hypothalamic-pituitary-adrenal (HPA) axis regulatory genes such as NR3C1. Genes associated with sleep (PAX8; LHX1) are seen to be differentially methylated in veterans. A limited number of studies also revealed hereditary effects of war exposure across groups: decreased cortisol levels and a heightened (sex-linked) mortality risk in offspring. Future large-scale studies further identifying the heritable risks of war, as well as any potential differences between military and civilian populations, would be valuable to inform future healthcare directives.
Collapse
Affiliation(s)
- Zara Raza
- Research & Innovation, Blind Veterans UK, London, United Kingdom
- BRAVO VICTOR, Research & Innovation, London, United Kingdom
- Hull York Medical School, University of York, York, United Kingdom
| | - Syeda F Hussain
- Research & Innovation, Blind Veterans UK, London, United Kingdom
- BRAVO VICTOR, Research & Innovation, London, United Kingdom
| | - Victoria S Foster
- Research & Innovation, Blind Veterans UK, London, United Kingdom
- BRAVO VICTOR, Research & Innovation, London, United Kingdom
- St George's Hospital Medical School, London, United Kingdom
| | - Joseph Wall
- Hull York Medical School, University of York, York, United Kingdom
- Haxby Group Hull, General Practice Surgery, Hull, United Kingdom
| | - Peter J Coffey
- Development, Ageing and Disease, UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - John F Martin
- Centre for Cardiovascular Biology and Medicine, University College London, London, United Kingdom
| | - Renata S M Gomes
- Research & Innovation, Blind Veterans UK, London, United Kingdom
- BRAVO VICTOR, Research & Innovation, London, United Kingdom
- Northern Hub for Veterans and Military Families Research, Department of Nursing, Midwifery and Health, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
9
|
Hu S, Guo W, Shen Y. Potential link between the nerve injury-induced protein (Ninjurin) and the pathogenesis of endometriosis. Int Immunopharmacol 2023; 114:109452. [PMID: 36446236 DOI: 10.1016/j.intimp.2022.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/29/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022]
Abstract
Endometriosis remains a widespread but severe gynecological disease in women of reproductive age, with an unknown etiology and few treatment choices. The menstrual reflux theory is largely accepted as the underlying etiology but does not explain the morbidity or unpleasant pain sensations of endometriosis. The neurological and immune systems are both involved in pain mechanisms of endometriosis, and interlinked through a complex combination of cytokines and neurotransmitters. Numerous pieces of evidence suggest that the nerve injury-inducible protein, Ninjurin, is actively expressed in endometriosis lesions, which contributes to the etiology and development of endometriosis. It may be explored in the future as a novel therapeutic target. The aim of the present review was to elucidate the multifaceted role of Ninjurin. Furthermore, we summarize the association of Ninjurin with the pain mechanism of endometriosis and outline the future research directions. A novel therapeutic pathway can be discovered based on the potential pathogenic variables.
Collapse
Affiliation(s)
- Sijian Hu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weina Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi Shen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
10
|
Sorosina M, Peroni S, Mascia E, Santoro S, Osiceanu AM, Ferrè L, Clarelli F, Giordano A, Cannizzaro M, Martinelli Boneschi F, Filippi M, Esposito F. Involvement of NINJ2 Protein in Inflammation and Blood-Brain Barrier Transmigration of Monocytes in Multiple Sclerosis. Genes (Basel) 2022; 13:1946. [PMID: 36360183 PMCID: PMC9690398 DOI: 10.3390/genes13111946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 09/08/2024] Open
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disorder of the central nervous system (CNS). The migration of immune cells into the CNS is essential for its development, and plasma membrane molecules play an important role in triggering and maintaining the inflammation. We previously identified ninjurin2, a plasma membrane protein encoded by NINJ2 gene, as involved in the occurrence of relapse under Interferon-β treatment in MS patients. The aim of the present study was to investigate the involvement of NINJ2 in inflammatory conditions and in the migration of monocytes through the blood-brain barrier (BBB). We observed that NINJ2 is downregulated in monocytes and in THP-1 cells after stimulation with the pro-inflammatory cytokine LPS, while in hCMEC/D3 cells, which represent a surrogate of the BBB, LPS stimulation increases its expression. We set up a transmigration assay using an hCMEC/D3 transwell-based model, finding a higher transmigration rate of monocytes from MS subjects compared to healthy controls (HCs) in the case of an activated hCMEC/D3 monolayer. Moreover, a positive correlation between NINJ2 expression in monocytes and monocyte migration rate was observed. Overall, our results suggest that ninjurin2 could be involved in the transmigration of immune cells into the CNS in pro-inflammatory conditions. Further experiments are needed to elucidate the exact molecular mechanisms.
Collapse
Affiliation(s)
- Melissa Sorosina
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Peroni
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Elisabetta Mascia
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Santoro
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ana Maria Osiceanu
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Ferrè
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ferdinando Clarelli
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Antonino Giordano
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Miryam Cannizzaro
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Filippo Martinelli Boneschi
- Neurology Unit, IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Health Sciences, University of Milan, 20122 Milan, Italy
| | - Massimo Filippi
- Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Federica Esposito
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
11
|
Li Z, Bai H, Zhang R, Chen B, Wang J, Xue B, Ren X, Wang J, Jia Y, Zang W, Wang J, Chen X. Systematic analysis of critical genes and pathways identified a signature of neuropathic pain after spinal cord injury. Eur J Neurosci 2022; 56:3991-4008. [PMID: 35560852 DOI: 10.1111/ejn.15693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 11/28/2022]
Abstract
Spinal cord injury (SCI) damages sensory systems, producing chronic neuropathic pain that is resistant to medical treatment. The specific mechanisms underlying SCI-induced neuropathic pain (SCI-NP) remain unclear, and protein biomarkers have not yet been integrated into diagnostic screening. To better understand the host molecular pathways involved in SCI-NP, we used the bioinformatics method, the PubMed database, and bioinformatics methods to identify target genes and their associated pathways. We reviewed 2504 articles on the regulation of SCI-NP and used the text mining of PubMed database abstracts to determine associations among 12 pathways and networks. Based on this method, we identified two central genes in SCI-NP: interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Adult male Sprague-Dawley rats were used to build the SCI-NP models. The threshold for paw withdrawal was significantly reduced in the SCI group and TLR4 was activated in microglia after SCI. ELISA analysis of TNF-α and IL-6 levels was significantly higher in the SCI group than in the sham group. Western blot showed that expressions of the TLR4/MyD88/NF-κB inflammatory pathway protein increased dramatically in the SCI group. Using the TLR4 inhibitor TAK-242, the pain threshold and expressions of inflammatory factors and proteins of the proteins of the inflammatory signal pathway were reversed, TLR4 in microglia was suppressed, suggesting that SCI-NP was related to neuroinflammation mediated by the TLR4 signaling pathway. In conclusion, we found TNF-α and IL-6 were the neuroinflammation-related genes involved in SCI-NP that can be alleviated by inhibiting the inflammatory pathway upstream of the TLR4/MyD88/NF-κB inflammatory pathway.
Collapse
Affiliation(s)
- Zefu Li
- Department of Basic Medical College of Human Anatomy of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huiying Bai
- Outpatient Surgery, Zhengzhou University Hospital, Zhengzhou, Henan Province, China
| | - Ruoyu Zhang
- Department of Basic Medical College of Human Anatomy of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Bohan Chen
- Department of Basic Medical College of Human Anatomy of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Junmin Wang
- Department of Basic Medical College of Human Anatomy of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Bohan Xue
- Department of Basic Medical College of Human Anatomy of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiuhua Ren
- Department of Basic Medical College of Human Anatomy of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jiarui Wang
- The Johns Hopkins University, Baltimore, Maryland, USA
| | - Yanjie Jia
- Department of Neurology, the first affiliated Hospital Zhengzhou University, Zhengzhou, Henan Province, China
| | - Weidong Zang
- Department of Basic Medical College of Human Anatomy of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jian Wang
- Department of Basic Medical College of Human Anatomy of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xuemei Chen
- Department of Basic Medical College of Human Anatomy of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|