1
|
Yang Y, Bai D, Jiang L, Chen Y, Wang M, Wang W, Wang H, He Q, Bu G, Long J, Yuan D. Stilbene glycosides alleviate atherosclerosis partly by promoting lipophagy of dendritic cells. Int Immunopharmacol 2024; 143:113223. [PMID: 39357204 DOI: 10.1016/j.intimp.2024.113223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease resulting from lipid metabolism disorders and immune imbalances. Dendritic cells (DCs) are key cells that regulate adaptive and adaptive immunity. When DCs engulf excessive amounts lipids, their function is altered, thereby, accelerating the inflammatory process of AS. Cellular lipophagy serves to reduce lipid accumulation and maintain cellular lipid metabolism balance. In this study, we investigated the effectiveness of 2,3,5,4'-tetrahydroxystilbene 2-O-β-D-glucoside (TSG) in intervening in the promotion of DCs lipid accumulation by ox-LDL, as well as its role in downregulating lipophagy. Our findings indicate that TSG reduces the maturity of DCs and promotes the differentiation of T cells towards Treg, thereby correcting the imbalanced Treg/Th17. These effects of TSG are closely associated with its inhibition of the PI3K-AKT-mTOR signaling pathway. After administering TSG to ApoE-/- mice that were fed a high-fat diet, there was a noticeable decrease in harmful blood lipids found in the serum. Additionally, the imbalanced Treg/Th17 levels in the spleen were restored, and the levels of pro-inflammatory factor IL-6 and IL-17A in the serum decreased, while the level of anti-inflammatory factor IL-10 increased. Furthermore, the arterial DCs showed a decrease in P62 content. Ultimately, these changes resulted in a reduction in plaque area. It is worth noting that the autophagy inhibitor chloroquine significantly altered the effects of TSG on ApoE-/- mice. In conclusion, this study reveals that TSG can alleviate AS. This is partly achieved through the activation of autophagy in DCs. By intervening in the lipophagy of DCs, it is possible to regulate the immune function of these cells, which in turn helps control the inflammation associated with AS. This presents a potential method for intervening in AS.
Collapse
Affiliation(s)
- Yunjun Yang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China
| | - Dandan Bai
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China
| | - Linhong Jiang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China
| | - Yanran Chen
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China
| | - Mengyuan Wang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China
| | - Wenxin Wang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China
| | - Haixia Wang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China
| | - Qiongshan He
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China
| | - Guirong Bu
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China; Department of Pharmacy, Wuxi Huishan Traditional Chinese Medicine Hospital, Huijing Road 188, Wuxi 214100, Jiangsu, PR China
| | - Jun Long
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China.
| | - Dongping Yuan
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
2
|
Zhang T, Pang C, Xu M, Zhao Q, Hu Z, Jiang X, Guo M. The role of immune system in atherosclerosis: Molecular mechanisms, controversies, and future possibilities. Hum Immunol 2024; 85:110765. [PMID: 38369442 DOI: 10.1016/j.humimm.2024.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Numerous cardiovascular disorders have atherosclerosis as their pathological underpinning. Numerous studies have demonstrated that, with the aid of pattern recognition receptors, cytokines, and immunoglobulins, innate immunity, represented by monocytes/macrophages, and adaptive immunity, primarily T/B cells, play a critical role in controlling inflammation and abnormal lipid metabolism in atherosclerosis. Additionally, the finding of numerous complement components in atherosclerotic plaques suggests yet again how heavily the immune system controls atherosclerosis. Therefore, it is essential to have a thorough grasp of how the immune system contributes to atherosclerosis. The specific molecular mechanisms involved in the activation of immune cells and immune molecules in atherosclerosis, the controversy surrounding some immune cells in atherosclerosis, and the limitations of extrapolating from relevant animal models to humans were all carefully reviewed in this review from the three perspectives of innate immunity, adaptive immunity, and complement system. This could provide fresh possibilities for atherosclerosis research and treatment in the future.
Collapse
Affiliation(s)
- Tianle Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Chenxu Pang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mengxin Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Qianqian Zhao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhijie Hu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
3
|
Britsch S, Langer H, Duerschmied D, Becher T. The Evolving Role of Dendritic Cells in Atherosclerosis. Int J Mol Sci 2024; 25:2450. [PMID: 38397127 PMCID: PMC10888834 DOI: 10.3390/ijms25042450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Atherosclerosis, a major contributor to cardiovascular morbidity and mortality, is characterized by chronic inflammation of the arterial wall. This inflammatory process is initiated and maintained by both innate and adaptive immunity. Dendritic cells (DCs), which are antigen-presenting cells, play a crucial role in the development of atherosclerosis and consist of various subtypes with distinct functional abilities. Following the recognition and binding of antigens, DCs become potent activators of cellular responses, bridging the innate and adaptive immune systems. The modulation of specific DC subpopulations can have either pro-atherogenic or atheroprotective effects, highlighting the dual pro-inflammatory or tolerogenic roles of DCs. In this work, we provide a comprehensive overview of the evolving roles of DCs and their subtypes in the promotion or limitation of atherosclerosis development. Additionally, we explore antigen pulsing and pharmacological approaches to modulate the function of DCs in the context of atherosclerosis.
Collapse
Affiliation(s)
- Simone Britsch
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 13092 Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Harald Langer
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 13092 Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Daniel Duerschmied
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 13092 Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Tobias Becher
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
| |
Collapse
|
4
|
Nam KH, Im DS. Alisol B 23-Acetate Ameliorates Ovalbumin-Induced Allergic Asthma during Sensitization and Challenge Periods. Biomol Ther (Seoul) 2023; 31:611-618. [PMID: 37317820 PMCID: PMC10616516 DOI: 10.4062/biomolther.2023.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 06/16/2023] Open
Abstract
Rhizome of Alisma orientale has been used as a traditional medicine for treating kidney diseases in East Asian countries. Its inhibitory effects on hypersensitivity responses have been reported for methanol extracts, with alisol B 23-acetate (AB23Ac) being the most active constituent among six terpenes in inhibiting the direct passive Arthus reaction. However, whether AB23Ac has efficacy against allergic asthma has not been tested to date. The in vivo efficacy of AB23Ac in an ovalbumin (OVA)-induced allergic asthma mouse model was evaluated by administrating AB23Ac before OVA sensitization or OVA challenge in BALB/c mice. AB23Ac suppressed antigen-induced degranulation of RBL-2H3 mast cells in a concentration-dependent manner. The administration of AB23Ac both before OVA sensitization and OVA challenge greatly lowered pulmonary resistance and the increase in immune cell counts and inflammatory responses around the peribronchial and perivascular regions. In addition, the inflammatory cytokine levels of Th1/Th2/Th17 cells in the bronchoalveolar lavage fluid decreased in the AB23Ac-treated groups. AB23Ac reduced the number of PAS-stained cells in the lungs. Furthermore, a computer modeling study indicated that AB23Ac can bind tightly to spleen tyrosine kinase (Syk). These results suggest that AB23Ac may ameliorate allergic asthma by suppressing immune responses in dendritic cells during sensitization and in mast cells during challenge periods.
Collapse
Affiliation(s)
- Ki-Hyuk Nam
- Department of Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02446, Republic of Korea
| | - Dong-Soon Im
- Department of Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02446, Republic of Korea
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea
| |
Collapse
|
5
|
Yang L, Li L, Lu Q, Li L, Xie C, Jiang F, Li H, Zhao A, Wang Q, Xiong W. Alisol B blocks the development of HFD-induced obesity by triggering the LKB1-AMPK signaling in subcutaneous adipose tissue. Eur J Pharmacol 2023; 956:175942. [PMID: 37536624 DOI: 10.1016/j.ejphar.2023.175942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/05/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
As a global epidemic disease, obesity causes dysfunction of glucose and lipid metabolism leading to persistently high morbidity and mortality. Given the difficulty to achieve and maintain weight loss through controlling diet and physical exercise, pharmacotherapy is considered an effective treatment for obesity. This investigation revealed that alisol B, a triterpene monomer isolated from the classical Chinese medicine Alisma orientale (Sam.) Juzep, functioned in suppressing adipogenesis and reducing the mass of subcutaneous adipose tissue, resulting in the reduction of weight gain, and improvements of hyperglycemia, hyperlipidemia, and insulin resistance in HFD-induced obese mice. In consistent to the results, alisol B also significantly inhibited adipocyte differentiation and maturation in vitro. Furthermore, our data revealed that the effects of alisol B on adipogenesis were mediated by LKB1-AMPK signaling pathway. In total, alisol B could be a potential lead compound which contributes to the improvement of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Ling Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, PR China
| | - Linzi Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, PR China
| | - Qian Lu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, PR China
| | - Lingfeng Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, PR China
| | - Chun Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, PR China
| | - Fakun Jiang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, PR China
| | - Hongbing Li
- Herb Biotechnology (Yunnan) Co. LTD, Kunming 650500, PR China
| | - Ai Zhao
- Sanqi Medical College, Wenshan University, Wenshan 663099, PR China.
| | - Qian Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, PR China.
| | - Wenyong Xiong
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, PR China.
| |
Collapse
|
6
|
Zhang L, Lin W, Cai Y, Huang Z, Zhao R, Yan T, Xu H, Liu Z. Farnesoid X receptor activation is required for the anti-inflammatory and anti-oxidative stress effects of Alisol B 23-acetate in carbon tetrachloride-induced liver fibrosis in mice. Int Immunopharmacol 2023; 123:110768. [PMID: 37573684 DOI: 10.1016/j.intimp.2023.110768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/23/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
Previous studies have shown that Alisol B 23-acetate (23ABA) had potent liver-protection effects, however, its roles and potential mechanisms in carbon tetrachloride (CCl4)-induced liver fibrosis remain to be determined. The present study aimed to investigate the effects of 23ABA on CCl4-induced liver fibrosis and tried to elucidate the underlying mechanisms by focusing on regulating of farnesoid X receptor (FXR). In vivo study found that 23ABA alleviated the CCl4-induced liver injury, and showed no obvious systemic toxicity on mice. 23ABA inhibited the collagen production, decreased sera levels of hyaluronic acid (HA) and procollagen type III (PC-III), lowered mRNA expression of α-smooth muscle actin (α-SMA), fibronectin, collagen I and collagen III in livers of mice. 23ABA inhibited the mRNA expressions and the sera levels of interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α), as well as decreased the expression of cyclooxygenase 2 (COX-2) in fibrotic livers of mice. Besides, 23ABA decreased levels of reactive oxygen species (ROS) and malondialdehyde (MDA), increased glutathione (GSH) level, enhanced activities of superoxide dismutase (SOD) and glutathione reductase (GR) as well as increased mRNA expression of nuclear factor-E2-related factor 2 (Nrf2), glutamate-cysteine ligase, catalytic subunit (GCLC) and glutamate-cysteine ligase, modifier subunit (GCLM). Further study showed that the anti-liver injury and anti-fibrotic effects of 23ABA were abrogated by FXR antagonist guggulsterone (GS) in vivo. In addition, the inhibition effects of 23ABA on liver inflammation and oxidative stress were also weakened by treatment with GS in CCl4-induced fibrotic mice livers. In conclusion, the protective effects of 23ABA against CCl4-induced liver injury and fibrosis, due to FXR-mediated regulation of liver inflammation and oxidative stress.
Collapse
Affiliation(s)
- Libei Zhang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Weiling Lin
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Yunqing Cai
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Ziyou Huang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Rui Zhao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Tingdong Yan
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Hongtao Xu
- Teaching and Research Section of Clinical Medicine, Jiangsu Vocational College of Medicine, Yancheng 224005, China.
| | - Zhaoguo Liu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
7
|
Tian Y, Zhang Z, Yan A. Discovering the Active Ingredients of Medicine and Food Homologous Substances for Inhibiting the Cyclooxygenase-2 Metabolic Pathway by Machine Learning Algorithms. Molecules 2023; 28:6782. [PMID: 37836625 PMCID: PMC10574661 DOI: 10.3390/molecules28196782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase (mPGES-1) are two key targets in anti-inflammatory therapy. Medicine and food homology (MFH) substances have both edible and medicinal properties, providing a valuable resource for the development of novel, safe, and efficient COX-2 and mPGES-1 inhibitors. In this study, we collected active ingredients from 503 MFH substances and constructed the first comprehensive MFH database containing 27,319 molecules. Subsequently, we performed Murcko scaffold analysis and K-means clustering to deeply analyze the composition of the constructed database and evaluate its structural diversity. Furthermore, we employed four supervised machine learning algorithms, including support vector machine (SVM), random forest (RF), deep neural networks (DNNs), and eXtreme Gradient Boosting (XGBoost), as well as ensemble learning, to establish 640 classification models and 160 regression models for COX-2 and mPGES-1 inhibitors. Among them, ModelA_ensemble_RF_1 emerged as the optimal classification model for COX-2 inhibitors, achieving predicted Matthews correlation coefficient (MCC) values of 0.802 and 0.603 on the test set and external validation set, respectively. ModelC_RDKIT_SVM_2 was identified as the best regression model based on COX-2 inhibitors, with root mean squared error (RMSE) values of 0.419 and 0.513 on the test set and external validation set, respectively. ModelD_ECFP_SVM_4 stood out as the top classification model for mPGES-1 inhibitors, attaining MCC values of 0.832 and 0.584 on the test set and external validation set, respectively. The optimal regression model for mPGES-1 inhibitors, ModelF_3D_SVM_1, exhibited predictive RMSE values of 0.253 and 0.35 on the test set and external validation set, respectively. Finally, we proposed a ligand-based cascade virtual screening strategy, which integrated the well-performing supervised machine learning models with unsupervised learning: the self-organized map (SOM) and molecular scaffold analysis. Using this virtual screening workflow, we discovered 10 potential COX-2 inhibitors and 15 potential mPGES-1 inhibitors from the MFH database. We further verified candidates by molecular docking, investigated the interaction of the candidate molecules upon binding to COX-2 or mPGES-1. The constructed comprehensive MFH database has laid a solid foundation for the further research and utilization of the MFH substances. The series of well-performing machine learning models can be employed to predict the COX-2 and mPGES-1 inhibitory capabilities of unknown compounds, thereby aiding in the discovery of anti-inflammatory medications. The COX-2 and mPGES-1 potential inhibitor molecules identified through the cascade virtual screening approach provide insights and references for the design of highly effective and safe novel anti-inflammatory drugs.
Collapse
Affiliation(s)
- Yujia Tian
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Beijing 100029, China; (Y.T.); (Z.Z.)
| | - Zhixing Zhang
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Beijing 100029, China; (Y.T.); (Z.Z.)
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Aixia Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Beijing 100029, China; (Y.T.); (Z.Z.)
| |
Collapse
|
8
|
Abstract
Dendritic cells (DCs) are innate immune cells that detect and process environmental signals and communicate them with T cells to bridge innate and adaptive immunity. Immune signals and microenvironmental cues shape the function of DC subsets in different contexts, which is associated with reprogramming of cellular metabolic pathways. In addition to integrating these extracellular cues to meet bioenergetic and biosynthetic demands, cellular metabolism interplays with immune signaling to shape DC-dependent immune responses. Emerging evidence indicates that lipid metabolism serves as a key regulator of DC responses. Here, we summarize the roles of fatty acid and cholesterol metabolism, as well as selective metabolites, in orchestrating the functions of DCs. Specifically, we highlight how different lipid metabolic programs, including de novo fatty acid synthesis, fatty acid β oxidation, lipid storage, and cholesterol efflux, influence DC function in different contexts. Further, we discuss how dysregulation of lipid metabolism shapes DC intracellular signaling and contributes to the impaired DC function in the tumor microenvironment. Finally, we conclude with a discussion on key future directions for the regulation of DC biology by lipid metabolism. Insights into the connections between lipid metabolism and DC functional specialization may facilitate the development of new therapeutic strategies for human diseases.
Collapse
Affiliation(s)
- Zhiyuan You
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
9
|
Zhang T, Zhang F, Zhang Y, Li H, Zhu G, Weng T, Huang C, Wang P, He Y, Hu J, Ge G. The roles of serine hydrolases and serum albumin in alisol B 23-acetate hydrolysis in humans. Front Pharmacol 2023; 14:1160665. [PMID: 37089921 PMCID: PMC10117764 DOI: 10.3389/fphar.2023.1160665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction: Alisol B 23-acetate (AB23A), a major bioactive constituent in the Chinese herb Zexie (Rhizoma Alismatis), has been found with multiple pharmacological activities. AB23A can be readily hydrolyzed to alisol B in mammals, but the hydrolytic pathways of AB23A in humans and the key enzymes responsible for AB23A hydrolysis are still unrevealed. This study aims to reveal the metabolic organs and the crucial enzymes responsible for AB23A hydrolysis in human biological systems, as well as to decipher the impact of AB23A hydrolysis on its biological effects. Methods: The hydrolytic pathways of AB23A in human plasma and tissue preparations were carefully investigated by using Q-Exactive quadrupole-Orbitrap mass spectrometer and LC-UV, while the key enzymes responsible for AB23A hydrolysis were studied via performing a set of assays including reaction phenotyping assays, chemical inhibition assays, and enzyme kinetics analyses. Finally, the agonist effects of both AB23A and its hydrolytic metabolite(s) on FXR were tested at the cellular level. Results: AB23A could be readily hydrolyzed to form alisol B in human plasma, intestinal and hepatic preparations, while human butyrylcholinesterase (hBchE) and human carboxylesterases played key roles in AB23A hydrolysis in human plasma and tissue preparations, respectively. It was also found that human serum albumin (hSA) could catalyze AB23A hydrolysis, while multiple lysine residues of hSA were covalently modified by AB23A, suggesting that hSA catalyzed AB23A hydrolysis via its pseudo-esterase activity. Biological tests revealed that both AB23A and alisol B exhibited similar FXR agonist effects, indicating AB23A hydrolysis did not affect its FXR agonist effect. Discussion: This study deciphers the hydrolytic pathways of AB23A in human biological systems, which is very helpful for deep understanding of the metabolic rates of AB23A in humans, and useful for developing novel prodrugs of alisol B with desirable pharmacokinetic behaviors.
Collapse
Affiliation(s)
- Tiantian Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Nephrology, The Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yani Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongxin Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guanghao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Taotao Weng
- Department of Nephrology, The Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jing Hu
- Department of Nephrology, The Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Guangbo Ge, ; Jing Hu,
| | - Guangbo Ge
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Guangbo Ge, ; Jing Hu,
| |
Collapse
|
10
|
Bailly C. Pharmacological Properties and Molecular Targets of Alisol Triterpenoids from Alismatis Rhizoma. Biomedicines 2022; 10:biomedicines10081945. [PMID: 36009492 PMCID: PMC9406200 DOI: 10.3390/biomedicines10081945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
More than 100 protostane triterpenoids have been isolated from the dried rhizomes of Alisma species, designated Alismatis rhizoma (AR), commonly used in Asian traditional medicine to treat inflammatory and vascular diseases. The main products are the alisols, with the lead compounds alisol-A/-B and their acetate derivatives being the most abundant products in the plant and the best-known bioactive products. The pharmacological effects of Ali-A, Ali-A 24-acetate, Ali-B, Ali-B 23-acetate, and derivatives have been analyzed to provide an overview of the medicinal properties, signaling pathways, and molecular targets at the origin of those activities. Diverse protein targets have been proposed for these natural products, including the farnesoid X receptor, soluble epoxide hydrolase, and other enzymes (AMPK, HCE-2) and functional proteins (YAP, LXR) at the origin of the anti-atherosclerosis, anti-inflammatory, antioxidant, anti-fibrotic, and anti-proliferative activities. Activities were classified in two groups. The lipid-lowering and anti-atherosclerosis effects benefit from robust in vitro and in vivo data (group 1). The anticancer effects of alisols have been largely reported, but, essentially, studies using tumor cell lines and solid in vivo data are lacking (group 2). The survey shed light on the pharmacological properties of alisol triterpenoids frequently found in traditional phytomedicines.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, 59290 Lille (Wasquehal), France
| |
Collapse
|
11
|
Cao Y, Shi J, Song L, Xu J, Lu H, Sun J, Hou J, Chen J, Wu W, Gong L. Multi-Omics Integration Analysis Identifies Lipid Disorder of a Non-Alcoholic Fatty Liver Disease (NAFLD) Mouse Model Improved by Zexie–Baizhu Decoction. Front Pharmacol 2022; 13:858795. [PMID: 35795562 PMCID: PMC9251488 DOI: 10.3389/fphar.2022.858795] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an increasingly epidemic metabolic disease with complex pathogenesis. Multi-target therapy may be an effective strategy for NAFLD treatment, and traditional Chinese medicine (TCM) characterized by multi-ingredients and multi-targets has unique advantages in long-term clinical practice. Zexie–Baizhu (ZXBZ) decoction is a Chinese classical formula to treat body fluid disorders initially. Although many bioactive monomers from Zexie and Baizhu had been discovered to improve lipid disorders, limited research studies were focused on the aqueous decoction of ZXBZ, the original clinical formulation. In the current study, we identified 94% chemical composition of ZXBZ decoction and first discovered its hepaprotective effect in a gubra-amylin NASH (GAN) diet-induced NAFLD mouse model. Based on metabolomics and transcriptomics analyses, we speculated that lipid and glucose metabolisms might be regulated by ZXBZ decoction, which was further confirmed by improved dyslipidemia and hepatic steatosis in ZXBZ groups. Consistently with cross-omics analysis, we discovered ZXBZ decoction could influence two energy sensors, Sirt1 and AMPK, and subsequently affect related proteins involved in lipid biosynthesis, catabolism, and transport. In conclusion, ZXBZ decoction regulated energy sensors, consequently impeded lipogenesis, and promoted fatty acid oxidation (FAO) to alleviate lipid disorders and protect the liver in NAFLD models, which suggested ZXBZ decoction might be a promising treatment for NAFLD.
Collapse
Affiliation(s)
- Yuhan Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingying Shi
- University of Chinese Academy of Sciences, Beijing, China
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Luyao Song
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junjiu Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Henglei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jianhua Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jinjun Hou
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Likun Gong, ; Wanying Wu, ; Jing Chen, ; Jinjun Hou,
| | - Jing Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Likun Gong, ; Wanying Wu, ; Jing Chen, ; Jinjun Hou,
| | - Wanying Wu
- University of Chinese Academy of Sciences, Beijing, China
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Likun Gong, ; Wanying Wu, ; Jing Chen, ; Jinjun Hou,
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Likun Gong, ; Wanying Wu, ; Jing Chen, ; Jinjun Hou,
| |
Collapse
|
12
|
Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ, Han M. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther 2022; 7:131. [PMID: 35459215 PMCID: PMC9033871 DOI: 10.1038/s41392-022-00955-7] [Citation(s) in RCA: 336] [Impact Index Per Article: 168.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease driven by traditional and nontraditional risk factors. Genome-wide association combined with clonal lineage tracing and clinical trials have demonstrated that innate and adaptive immune responses can promote or quell atherosclerosis. Several signaling pathways, that are associated with the inflammatory response, have been implicated within atherosclerosis such as NLRP3 inflammasome, toll-like receptors, proprotein convertase subtilisin/kexin type 9, Notch and Wnt signaling pathways, which are of importance for atherosclerosis development and regression. Targeting inflammatory pathways, especially the NLRP3 inflammasome pathway and its regulated inflammatory cytokine interleukin-1β, could represent an attractive new route for the treatment of atherosclerotic diseases. Herein, we summarize the knowledge on cellular participants and key inflammatory signaling pathways in atherosclerosis, and discuss the preclinical studies targeting these key pathways for atherosclerosis, the clinical trials that are going to target some of these processes, and the effects of quelling inflammation and atherosclerosis in the clinic.
Collapse
Affiliation(s)
- Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Zi-Yang Cui
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xiao-Fu Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Dan-Dan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Rui-Juan Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China.
| |
Collapse
|
13
|
Qian Z, Yang H, Li H, Liu C, Yang L, Qu Z, Li X. The Cholinergic Anti-Inflammatory Pathway Attenuates the Development of Atherosclerosis in Apoe-/- Mice through Modulating Macrophage Functions. Biomedicines 2021; 9:biomedicines9091150. [PMID: 34572339 PMCID: PMC8464862 DOI: 10.3390/biomedicines9091150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
(1) Background: The cholinergic anti-inflammatory pathway (CAP) has been implicated in the regulation of various diseases, including chronic inflammatory cardiovascular disorders such as atherosclerosis (AS). This study aims to explore the underlying regulatory mechanisms of CAP activity in the progression of AS. (2) Methods: The Apoe-/- mice were subjected to sham, bilateral cervical vagotomy surgery (VGX), and VGX supplemented with Gainesville Tokushima scientists (GTS)-21 (4 mg/kg/d) and then fed with a high-fat diet for 10 weeks. Atherosclerotic lesion size and inflammation levels were investigated by histology and inflammatory cytokines analysis. The blood M1/M2 macrophages were analyzed by flow cytometry. Primary mouse bone marrow-derived macrophages (BMDM), peritoneal macrophages, and RAW264.7 cells were treated with CAP agonists acetylcholine (Ach) and GTS-21 to study their effects on macrophage functions. (3) Results: Compared with the sham group, inhibition of CAP by the VGX resulted in growing aortic lipid plaque area, deteriorated inflammatory levels, and aberrant quantity of M1/M2 macrophages in Apoe-/- mice. However, these detrimental effects of VGX were significantly ameliorated by the reactivation of CAP through GTS-21 treatment. The in vitro study using macrophages revealed that stimulation with CAP agonists suppressed M1, but promoted M2 macrophage polarization through the upregulation of TNFAIP3 and phosphorylation STAT3 levels, respectively. Moreover, the activation of CAP inhibited the formation of macrophage foam cells in the peritoneal cavity by regulating genes related to cholesterol metabolism. (4) Conclusions: This study provides novel evidence and mechanisms that the CAP plays an important role in the regulation of AS development by controlling macrophage functions, implying a potential use of CAP activation as a therapeutic strategy for AS treatment.
Collapse
Affiliation(s)
- Zhengjiang Qian
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
- Correspondence: (Z.Q.); (X.L.)
| | - Haiyang Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongchao Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
| | - Chunhua Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
| | - Liang Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
| | - Zehui Qu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
- Correspondence: (Z.Q.); (X.L.)
| |
Collapse
|