1
|
Tang Y, Luo J, Qin L, Tang C, Qiu C, Li J, Qin L. Network Pharmacology and Molecular Docking-Based Screening of Immunotherapeutic Targets for HuaChanSu Against Breast Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01305-4. [PMID: 39565543 DOI: 10.1007/s12033-024-01305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/10/2024] [Indexed: 11/21/2024]
Abstract
Breast cancer has emerged as the primary cause of mortality stemming from malignancies among women. HuaChanSu has demonstrated efficacy in suppressing the progression of various malignancies. However, the specific immune targets and pathways influenced by HuaChanSu within mammary tumors remain elusive. This study is designed to uncover potent monomers and pivotal targets associated with HuaChanSu's anti-breast cancer Immunotherapy. The genes pertinent to HuaChanSu and breast cancer were acquired individually from publicly available databases. Interaction analysis using Cytoscape was conducted on common genes to determine the most suitable targets and crucial constituents of HuaChanSu's Immunotherapy against breast cancer. Following this, molecular docking was employed to validate ligand and receptor binding interactions. Lastly, the identified core genes underwent assessment of immune infiltration. The intersection of HuaChanSu and BC targets yielded a total of 49 differentially expressed genes. Bufalin emerged as the most potent constituent in Immunotherapy. Immunoassay data demonstrated significant correlations (r > 0.03, p < 0.05) between S100B, MMP9, FOS, EGFR, KIT, MME, and immune infiltration within BC. Molecular docking further corroborated the effective binding of Bufalin with immune-related genes. Through network pharmacological validation, we propose the extraction of Bufalin, a monomeric constituent of Huachansu, to exert immunomodulatory effects aimed at inhibiting the progression of breast cancer. Most of the target genes (S100B, BIRC5, MMP9, FOS, EGFR, KIT, and MME) are common targets for immunotherapy.
Collapse
Affiliation(s)
- Yujun Tang
- Guangxi Medical University, Nanning, China
| | - Jie Luo
- Guangxi Medical University, Nanning, China
- HengyangMedicaSchool, University of South China, HengYang, China
| | | | | | - Caixin Qiu
- Guangxi Medical University, Nanning, China
| | - Jiehua Li
- Guangxi Medical University, Nanning, China.
| | | |
Collapse
|
2
|
AmeliMojarad M, AmeliMojarad M, Wang J, Tavakolpour V, Shariati P. A pan-cancer study of ADAM9's immunological function and prognostic value particularly in liver cancer. Sci Rep 2024; 14:26862. [PMID: 39505907 PMCID: PMC11541887 DOI: 10.1038/s41598-024-76049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
A pan-cancer analysis summarizing the overall changes in mRNA and protein stability of ADM9, as well as its oncogenic function on immune cell line modulation and checkpoints within the tumor microenvironment (TME), is lacking, despite the fact that ADM9 up-regulation is correlated with the progression of many cancers. Therefore, in this study, we comprehensively analyzed the role of ADAM9 expression and its prognostic value in different cancers to fill this gap. Multiple bioinformatics databases such as Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Clinical Proteomic Tumor Analysis Consortium (CPTAC) were used to evaluate the ADAM9 genetic alternation, phosphorylation, and methylation, and indicated highly positive correlated genes that might play a critical interaction with ADAM9 and their molecular function with GO analysis. We also evaluate the effect of higher ADAM9 with prominent immune modulatory genes and immune infiltration especially in liver cancer pathogenesis stimulates lower NK cell effector functions based on its role in MICA shedding and increasing the Tregs infiltration. Immunohistochemistry (IHC) staining from 90 pathologically verified samples proved the positive correlation between ADAM9 and tumor stages and proved the higher expression of ADAM9 correlated genes (SNX9, APP, TNF, CDH1, ITGAV, MAD2L2) in HCC pathogenesis. In conclusion, this pan-cancer study provides a comprehensive understanding of the prognostic value of ADAM9 in various tumors emphasizing its importance to be considered as an innovative treatment approach, especially in tumor immunity shortly.
Collapse
Affiliation(s)
- Mandana AmeliMojarad
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Melika AmeliMojarad
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Jiang Wang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Vahid Tavakolpour
- Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnolog, Tehran, Iran
- Stem cell Technology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Parvin Shariati
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
3
|
Shang J, Xia Q, Sun Y, Wang H, Chen J, Li Y, Gao F, Yin P, Yuan Z. Bufalin-Loaded Multifunctional Photothermal Nanoparticles Inhibit the Anaerobic Glycolysis by Targeting SRC-3/HIF-1α Pathway for Improved Mild Photothermal Therapy in CRC. Int J Nanomedicine 2024; 19:7831-7850. [PMID: 39105099 PMCID: PMC11299722 DOI: 10.2147/ijn.s470005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Purpose Compared with traditional photothermal therapy (PTT, >50°C), mild PTT (≤45°C) is a promising strategy for tumor therapy with fewer adverse effects. Unfortunately, its anti-tumor efficacy is hampered by thermoresistance induced by overexpression of heat shock proteins (HSPs). In our previous study, we found bufalin (BU) is a glycolysis inhibitor that depletes HSPs, which is expected to overcome thermotolerance of tumor cells. In this study, BU-loaded multifunctional nanoparticles (NPs) were developed for enhancing the mild PTT of colorectal cancer (CRC). Methods Fe3O4 NPs coated with the polydopamine (PDA) shell modified with polyethylene glycol (PEG) and cyclic arginine-glycyl-aspartic peptide (cRGD) for loading BU (Fe3O4@PDA-PEG-cRGD/BU NPs) were developed. The thermal variations in Fe3O4@PDA-PEG-cRGD/BU NPs solution under different conditions were measured. Glycolysis inhibition was evaluated by measuring the glucose uptake, extracellular lactate, and intracellular adenosine triphosphate (ATP) levels. The cellular cytotoxicity of Fe3O4@PDA-PEG-cRGD/BU NPs was analyzed using a cell counting kit-8 assay, Calcein-AM/PI double staining, and flow cytometry in HCT116 cells. The magnetic resonance imaging (MRI) performance and anti-tumor therapeutic efficacy of Fe3O4@PDA-PEG-cRGD/BU NPs were evaluated in HCT116-tumor bearing mice. Results Fe3O4@PDA-PEG-cRGD/BU NPs had an average diameter of 260.4±3.5 nm, the zeta potential of -23.8±1.6 mV, the drug loading rate of 1.1%, which had good thermal stability, photothermal conversion efficiencies and MRI performance. In addition, the released BU not only killed tumor cells but also interfered with glycolysis by targeting the steroid receptor coactivator 3 (SRC-3)/HIF-1α pathway, preventing intracellular ATP synthesis, and combating HSP-dependent tumor thermoresistance, ultimately strengthening the thermal sensitivity toward mild PTT both in vitro and in vivo. Conclusion This study provides a highly effective strategy for enhancing the therapeutic effects of mild PTT toward tumors.
Collapse
Affiliation(s)
- Jing Shang
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
| | - Qi Xia
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
| | - Yuji Sun
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
| | - Hongtao Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
| | - Jia Chen
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
| | - Yue Li
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
| | - Feng Gao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, People’s Republic of China
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, People’s Republic of China
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| |
Collapse
|
4
|
Kaur G, Devi S, Sharma A, Sood P. Pharmacological insights and role of bufalin (bufadienolides) in inflammation modulation: a narrative review. Inflammopharmacology 2024:10.1007/s10787-024-01517-9. [PMID: 39012431 DOI: 10.1007/s10787-024-01517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Bufadienolides, specifically bufalin, have garnered attention for their potential therapeutic application in modulating inflammatory pathways. Bufalin is derived from toad venom and exhibits promising anti-inflammatory properties. Its anti-inflammatory effects have been demonstrated by influencing crucial signaling pathways like NF-B, MAPK, and JAK-STAT, resulting in the inhibition of pro-inflammatory substances like cytokines, chemokines, and adhesion molecules. Bufalin blocks inflammasome activation and reduces oxidative stress, hence increasing its anti-inflammatory properties. Bufalin has shown effectiveness in reducing inflammation-related diseases such as cancer, cardiovascular problems, and autoimmune ailments in preclinical investigations. Furthermore, producing new approaches of medication delivery and combining therapies with bufalin shows potential for improving its effectiveness and reducing adverse effects. This review explores the pharmacological effects and mechanistic approaches of bufalin as an anti-inflammatory agent, which further highlights its potential for therapy and offers the basis for further study on its therapeutic application in inflammation-related disorders.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Chitkara University School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Akhil Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Parul Sood
- Chitkara University School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| |
Collapse
|
5
|
Rahman MA, Rakib-Uz-Zaman SM, Chakraborti S, Bhajan SK, Gupta RD, Jalouli M, Parvez MAK, Shaikh MH, Hoque Apu E, Harrath AH, Moon S, Kim B. Advancements in Utilizing Natural Compounds for Modulating Autophagy in Liver Cancer: Molecular Mechanisms and Therapeutic Targets. Cells 2024; 13:1186. [PMID: 39056768 PMCID: PMC11274515 DOI: 10.3390/cells13141186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Autophagy, an intrinsic catabolic mechanism that eliminates misfolded proteins, dysfunctional organelles, and lipid droplets, plays a vital function in energy balance and cytoplasmic quality control, in addition to maintaining cellular homeostasis. Liver cancer such as hepatocellular carcinoma (HCC) is one of the most common causes of cancer deaths globally and shows resistance to several anticancer drugs. Despite the rising incidence and poor prognosis of malignant HCC, the underlying molecular mechanisms driving this aggressive cancer remain unclear. Several natural compounds, such as phytochemicals of dietary and non-dietary origin, affect hepatocarcinogenesis signaling pathways in vitro and in vivo, which may help prevent and treat HCC cells. Current HCC cells treatments include chemotherapy, radiation, and surgery. However, these standard therapies have substantial side effects, and combination therapy enhances side effects for an acceptable therapeutic benefit. Therefore, there is a need to develop treatment strategies for HCC cells that are more efficacious and have fewer adverse effects. Multiple genetic and epigenetic factors are responsible for the HCC cells to become resistant to standard treatment. Autophagy contributes to maintain cellular homeostasis, which activates autophagy for biosynthesis and mitochondrial regulation and recycling. Therefore, modifying autophagic signaling would present a promising opportunity to identify novel therapies to treat HCC cells resistant to current standard treatments. This comprehensive review illustrates how natural compounds demonstrate their anti-hepatocellular carcinoma function through autophagy.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - S M Rakib-Uz-Zaman
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (S.M.R.-U.-Z.); (S.C.)
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka 1212, Bangladesh
| | - Somdeepa Chakraborti
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (S.M.R.-U.-Z.); (S.C.)
| | - Sujay Kumar Bhajan
- Department of Biotechnology & Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj 8100, Bangladesh;
| | - Rajat Das Gupta
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA;
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | | | - Mushfiq H. Shaikh
- Department of Otolaryngology-Head & Neck Surgery, Western University, London, ON N6A 4V2, Canada;
| | - Ehsanul Hoque Apu
- Department of Biomedical Sciences, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA;
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
- Division of Hematology and Oncology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abdel Halim Harrath
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Seungjoon Moon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1–5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea;
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1–5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Liu Y, Fang C, Luo J, Gong C, Wang L, Zhu S. Traditional Chinese Medicine for Cancer Treatment. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:583-604. [PMID: 38716616 DOI: 10.1142/s0192415x24500253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
In recent years, due to advancements in medical conditions and the development of scientific research, the fundamental research of TCM antitumor treatments has progressed from the cellular level to the molecular and genetic levels. Previous studies have demonstrated the significant role of traditional Chinese medicine (TCM) in antitumor therapy through various mechanisms and pathways. Its mechanism of action is closely associated with cancer biology across different stages. This includes inhibiting tumor cell proliferation, blocking invasion and metastasis to surrounding tissues, inducing tumor cell apoptosis, inhibiting tumor angiogenesis, regulating immune function, maintaining genome stability, preventing mutation, and regulating cell energy metabolism. The use of TCM for eliciting antitumor effects not only has a good therapeutic effect and low side effects, it also provides a solid theoretical basis for clinical treatment and medication. This paper reviews the mechanism of the antitumor effects of TCM based on tumor characteristics. Through our review, we found that TCM not only directly inhibits tumors, but also enhances the body's immunity, thereby indirectly inducing an antitumor effect. This function aligns with the TCM theory of "strengthening the body's resistance to eliminate pathogenic factors". Furthermore, TCM will play a significant role in tumor treatment in clinical settings.
Collapse
Affiliation(s)
- Yangli Liu
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Cheng Fang
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Jiaojiao Luo
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Chenyuan Gong
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Lixin Wang
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Shiguo Zhu
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| |
Collapse
|
7
|
Zuo Q, Xu DQ, Yue SJ, Fu RJ, Tang YP. Chemical Composition, Pharmacological Effects and Clinical Applications of Cinobufacini. Chin J Integr Med 2024; 30:366-378. [PMID: 38212503 DOI: 10.1007/s11655-024-3708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 01/13/2024]
Abstract
Chinese medicine cinobufacini is an extract from the dried skin of Bufo bufo gargarizans Cantor, with active ingredients of bufadienolides and indole alkaloids. With further research and clinical applications, it is found that cinobufacini alone or in combination with other therapeutic methods can play an anti-tumor role by controlling proliferation of tumor cells, promoting apoptosis, inhibiting formation of tumor neovascularization, reversing multidrug resistance, and regulating immune response; it also has the functions of relieving cancer pain and regulating immune function. In this paper, the chemical composition, pharmacological effects, clinical applications, and adverse reactions of cinobufacini are summarized. However, the extraction of monomer components of cinobufacini, the relationship between different mechanisms, and the causes of adverse reactions need to be further studied. Also, high-quality clinical studies should be conducted.
Collapse
Affiliation(s)
- Qian Zuo
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| |
Collapse
|
8
|
Shang Q, Liu W, Leslie F, Yang J, Guo M, Sun M, Zhang G, Zhang Q, Wang F. Nano-formulated delivery of active ingredients from traditional Chinese herbal medicines for cancer immunotherapy. Acta Pharm Sin B 2024; 14:1525-1541. [PMID: 38572106 PMCID: PMC10985040 DOI: 10.1016/j.apsb.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/15/2023] [Accepted: 12/12/2023] [Indexed: 04/05/2024] Open
Abstract
Cancer immunotherapy has garnered promise in tumor progression, invasion, and metastasis through establishing durable and memorable immunological activity. However, low response rates, adverse side effects, and high costs compromise the additional benefits for patients treated with current chemical and biological agents. Chinese herbal medicines (CHMs) are a potential treasure trove of natural medicines and are gaining momentum in cancer immunomodulation with multi-component, multi-target, and multi-pathway characteristics. The active ingredient extracted from CHMs benefit generalized patients through modulating immune response mechanisms. Additionally, the introduction of nanotechnology has greatly improved the pharmacological qualities of active ingredients through increasing the hydrophilicity, stability, permeability, and targeting characteristics, further enhancing anti-cancer immunity. In this review, we summarize the mechanism of active ingredients for cancer immunomodulation, highlight nano-formulated deliveries of active ingredients for cancer immunotherapy, and provide insights into the future applications in the emerging field of nano-formulated active ingredients of CHMs.
Collapse
Affiliation(s)
- Qi Shang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wandong Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou 310053, China
| | - Faith Leslie
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, the Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jiapei Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingmei Guo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingjiao Sun
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, the Johns Hopkins University, Baltimore, MD 21218, USA
| | - Guangji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou 310053, China
- Traditional Chinese Medicine “Preventing Disease” Wisdom Health Project Research Center of Zhejiang, Hangzhou 310053, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Feihu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Zhang H, Wei S, Hu Y, Zhang Y, Yao H, Qi G, Adu-Frimpong M, Sun C. Influence of Different Ratios of DSPE-PEG2k on Ester Prodrug Self-Assembly Nanoparticles for Cell Migration and Proliferation Suppression. Int J Nanomedicine 2024; 19:2807-2821. [PMID: 38525014 PMCID: PMC10959298 DOI: 10.2147/ijn.s446741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
Background Bufalin (BFL, an active anti-tumor compound derived from toad venom) is limited in its application due to high toxicity and rapid metabolism of the cardiotonic steroid. Ester prodrug self-assembly nanoparticles have shown significant improved effects in addressing the above-mentioned issues. Methods An ester bond was formed between linoleic acid and bufalin to synthesize linoleic acid-bufalin prodrug (LeB). The self-assembly nanoparticles (LeB-PSNs) containing different mass ratios of DSPE-PEG2k and prodrug (6:4, 7:3, 8:2, 9:1 and 10:0) were prepared via co-precipitation method and defined as 6:4-PSNs, 7:3-PSNs, 8:2-PSNs, 9:1-PSNs and LeB-PSNs, respectively. Further, the characterization (particle size, zeta potential, surface morphology and stability) of the nanoparticles was carried out. Finally, we evaluated the impact of different ratios of DSPE-PEG2k on the hydrolysis rate, cytotoxicity, cellular uptake, cell migration and proliferation suppression potential of the prodrug nanoparticles. Results The linoleic acid-bufalin prodrug (LeB) was successfully synthesized. Upon the addition of DSPE-PEG2k at different weight ratios, both particle size and polydispersity index (PDI) significantly decreased, while the zeta potential increased remarkably. No significant differences in particle size, PDI and Zeta potential were observed among the 9:1, 8:2 and 7:3 PSNs. Notably, the 8:2 (w/w) DSPE-PEG2k nanoparticles exhibited superior stability, hydrolysis and cellular uptake rates, along with efficient cell cytotoxicity, cell migration and proliferation suppression. Conclusion These findings indicate that DSPE-PEG2k could improve the performance of BFL prodrug nanoparticles, namely enhancing stability and achieving adaptive drug release by modulating the hydrolysis rate of esterase. This study therefore provides more opportunities for the development of BFL application.
Collapse
Affiliation(s)
- Huiyun Zhang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224003, People’s Republic of China
| | - Shunru Wei
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224003, People’s Republic of China
| | - Yunfei Hu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224003, People’s Republic of China
| | - Yu Zhang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224003, People’s Republic of China
| | - Hao Yao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224003, People’s Republic of China
| | - Gang Qi
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224003, People’s Republic of China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, UK-0215-5321, Ghana
| | - Congyong Sun
- Department of Central Laboratory, The Affiliated Huaian No.1 People’s Hospital, Nanjing Medical University, Huai’an, Jiangsu, 223300, People’s Republic of China
| |
Collapse
|
10
|
Long J, Wang W, Chu J, Li Y, Wang M, Su J, Yang Y, Wang G, Li Q, Cheng H. Overexpression of Nrf2 reverses ferroptosis induced by Arenobufagin in gastric cancer. Toxicol Appl Pharmacol 2024; 484:116842. [PMID: 38307257 DOI: 10.1016/j.taap.2024.116842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Arenobufagin (ArBu) is a natural monomer extracted and isolated from the secretion of the Chinese toad, also known as toad venom. This compound exerts anti-tumor effects by promoting apoptosis in tumor cells, inhibiting tumor angiogenesis, and preventing the invasion and migration of tumor cells. However, their impact on ferroptosis in tumor cells has yet to be fully confirmed. In this study, we established a subcutaneous transplant tumor model in nude mice to investigate the inhibitory effect of ArBu on gastric cancer cells (MGC-803) and the safety of drug delivery. in vitro experiments, we screened the most sensitive cancer cell lines using the MTT method and determined the response of ArBu to cell death. Use flow cytometry to measure cytoplasmic and lipid reactive oxygen species (ROS) levels. Determine the expression levels of ferritin-related proteins through Western blot experiments. In addition, a MGC-803 cell model overexpressing Nrf2 was created using lentiviral transfection to investigate the role of ArBu in inducing ferroptosis in cancer cells. Our research findings indicate that ArBu inhibits the proliferation of MGC-803 cells and is linked to ferroptosis. In summary, our research findings indicate that ArBu is a potential anti-gastric cancer drug that can induce ferroptosis in human cancer cells through the Nrf2/SLC7A11/GPX4 pathway.
Collapse
Affiliation(s)
- Jiao Long
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei 230038, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wenjun Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei 230038, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jing Chu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei 230038, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yueyue Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei 230038, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Meng Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei 230038, China
| | - Jingjing Su
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei 230038, China
| | - Yuting Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei 230038, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - GuoKai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Qinglin Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei 230038, China.
| | - Hui Cheng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei 230038, China.
| |
Collapse
|
11
|
Wu Q, Ge XL, Geng ZK, Wu H, Yang JY, Cao SR, Yang AL. HuaChanSu suppresses the growth of hepatocellular carcinoma cells by interfering with pentose phosphate pathway through down-regulation of G6PD enzyme activity and expression. Heliyon 2024; 10:e25144. [PMID: 38322888 PMCID: PMC10844274 DOI: 10.1016/j.heliyon.2024.e25144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
HuaChanSu is active water extracts from the skin of Bufo bufo gargarizans Cantor. It has been already used to treat clinical cancers including HCC (Hepatocellular carcinoma, HCC), however, the molecular mechanisms under HuaChanSu's anti-cancer effects remain unclear. PPP (Pentose phosphate pathway, PPP), the major source of ribose and NADPH (Nicotinamide adenine dinucleotide phosphate, NADPH), is always over-activated and particularly critical for tumor cells growth. In this study, firstly, we illustrate that HuaChanSu restrains the growth of human hepatoma cells. More importantly, we demonstrate that the expression of G6PD (Glucose-6-phosphate dehydrogenase, G6PD), the first rate-limiting enzyme of the PPP, is restrained in human hepatoma cells after treatment with HuaChanSu. Additionally, our results show that G6PD enzyme activity and dimer formation are inhibited by HuaChanSu. Furthermore, we find that HuaChanSu could inhibit NADPH production and nucleotide level. In addition, we identify that expression of PLK1 (Polo-like kinase 1, PLK1) is also reduced in response to HuaChanSu, and knockdown of PLK1 restrains enzyme activity and dimer formation of G6PD, but has no effect on G6PD protein level. Subsequently, we demonstrate that inhibition of G6PD could restrain the proliferation of tumor cells and enhance the inhibitory effect of HuaChanSu on cell proliferation of human hepatoma cells. In conclusion, for the first time, our study reveals that HuaChanSu interferes with PPP via suppression of G6PD expression and enzyme activity to restrain growth of tumor cells, and these results provide a novel insight for the anti-hepatoma mechanisms of HuaChanSu and promote the innovation of the research model of TCM. Moreover, the development of drugs targeting abnormal tumor metabolism is currently a hot topic, our works provide theoretical support for further drug development from HuaChanSu, meanwhile, the revelation of the new molecular mechanism also provides a new perspective for the study of the pathogenesis of liver cancer. Short abstract HuaChanSu suppresses expression of G6PD, the first rate-limiting enzyme of the PPP, restrains G6PD enzyme activity and dimer formation via inhibition of PLK1, knockdown of G6PD could impair the growth of human hepatoma cells and increase the blocking effect of HuaChanSu on cell proliferation of cancer cells. In addition, HuaChanSu restrains NADPH production and nucleotide level, implying the suppression of PPP flux. Our study suggests that HuaChanSu interferes with PPP via G6PD inhibition to exert anti-hepatoma effects.
Collapse
Affiliation(s)
| | | | | | - Hao Wu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jing-yi Yang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Shi-rong Cao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Ai-lin Yang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
12
|
Ye Q, Zhou X, Ren H, Han F, Lin R, Li J. An overview of the past decade of bufalin in the treatment of refractory and drug-resistant cancers: current status, challenges, and future perspectives. Front Pharmacol 2023; 14:1274336. [PMID: 37860119 PMCID: PMC10582727 DOI: 10.3389/fphar.2023.1274336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Profound progress has been made in cancer treatment in the past three decades. However, drug resistance remains prevalent and a critical challenge. Drug resistance can be attributed to oncogenes mutations, activated defensive mechanisms, ATP-bind cassette transporters overexpression, cancer stem cells, etc. Chinese traditional medicine toad venom has been used for centuries for different diseases, including resistant cancers. Bufalin is one of the bufadienolides in toad venom that has been extensively studied for its potential in refractory and drug-resistant cancer treatments in vitro and in vivo. In this work, we would like to critically review the progress made in the past decade (2013-2022) of bufalin in overcoming drug resistance in cancers. Generally, bufalin shows high potential in killing certain refractory and resistant cancer cells via multiple mechanisms. More importantly, bufalin can work as a chemo-sensitizer that enhances the sensitivity of certain conventional and targeted therapies at low concentrations. In addition, the development of bufalin derivatives was also briefly summarized and discussed. We also analyzed the obstacles and challenges and provided possible solutions for future perspectives. We hope that the collective information may help evoke more effort for more in-depth studies and evaluation of bufalin in both lab and possible clinical trials.
Collapse
Affiliation(s)
- Qingmei Ye
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| | - Xin Zhou
- The Fifth People’s Hospital of Hainan Province & Affiliated Dermatology Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Han Ren
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Fangxuan Han
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Rong Lin
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Juan Li
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
13
|
Zhang Y, Xu H, Li Y, Sun Y, Peng X. Advances in the treatment of pancreatic cancer with traditional Chinese medicine. Front Pharmacol 2023; 14:1089245. [PMID: 37608897 PMCID: PMC10440824 DOI: 10.3389/fphar.2023.1089245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Pancreatic cancer is a common malignancy of the digestive system. With a high degree of malignancy and poor prognosis, it is called the "king of cancers." Currently, Western medicine treats pancreatic cancer mainly by surgical resection, radiotherapy, and chemotherapy. However, the curative effect is not satisfactory. The application of Traditional Chinese Medicine (TCM) in the treatment of pancreatic cancer has many advantages and is becoming an important facet of comprehensive clinical treatment. In this paper, we review current therapeutic approaches for pancreatic cancer. We also review the protective effects shown by TCM in different models and discuss the potential molecular mechanisms of these.
Collapse
Affiliation(s)
- Yanhua Zhang
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Hui Xu
- Department of Internal Medicine, Southern Medical University, Guangzhou, China
| | - Yue Li
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yang Sun
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
14
|
Bufalin-Mediated Regulation of Cell Signaling Pathways in Different Cancers: Spotlight on JAK/STAT, Wnt/β-Catenin, mTOR, TRAIL/TRAIL-R, and Non-Coding RNAs. Molecules 2023; 28:molecules28052231. [PMID: 36903477 PMCID: PMC10004807 DOI: 10.3390/molecules28052231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/04/2023] Open
Abstract
The renaissance of research into natural products has unequivocally and paradigmatically shifted our knowledge about the significant role of natural products in cancer chemoprevention. Bufalin is a pharmacologically active molecule isolated from the skin of the toad Bufo gargarizans or Bufo melanostictus. Bufalin has characteristically unique properties to regulate multiple molecular targets and can be used to harness multi-targeted therapeutic regimes against different cancers. There is burgeoning evidence related to functional roles of signaling cascades in carcinogenesis and metastasis. Bufalin has been reported to regulate pleiotropically a myriad of signal transduction cascades in various cancers. Importantly, bufalin mechanistically regulated JAK/STAT, Wnt/β-Catenin, mTOR, TRAIL/TRAIL-R, EGFR, and c-MET pathways. Furthermore, bufalin-mediated modulation of non-coding RNAs in different cancers has also started to gain tremendous momentum. Similarly, bufalin-mediated targeting of tumor microenvironments and tumor macrophages is an area of exciting research and we have only started to scratch the surface of the complicated nature of molecular oncology. Cell culture studies and animal models provide proof-of-concept for the impetus role of bufalin in the inhibition of carcinogenesis and metastasis. Bufalin-related clinical studies are insufficient and interdisciplinary researchers require detailed analysis of the existing knowledge gaps.
Collapse
|
15
|
Ding L, Yang Y, Lu Q, Qu D, Chandrakesan P, Feng H, Chen H, Chen X, Liao Z, Du J, Cao Z, Weygant N. Bufalin Inhibits Tumorigenesis, Stemness, and Epithelial-Mesenchymal Transition in Colorectal Cancer through a C-Kit/Slug Signaling Axis. Int J Mol Sci 2022; 23:13354. [PMID: 36362141 PMCID: PMC9656328 DOI: 10.3390/ijms232113354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 10/05/2023] Open
Abstract
Colorectal cancer (CRC) is a major source of morbidity and mortality, characterized by intratumoral heterogeneity and the presence of cancer stem cells (CSCs). Bufalin has potent activity against many tumors, but studies of its effect on CRC stemness are limited. We explored bufalin's function and mechanism using CRC patient-derived organoids (PDOs) and cell lines. In CRC cells, bufalin prevented nuclear translocation of β-catenin and down-regulated CSC markers (CD44, CD133, LGR5), pluripotency factors, and epithelial-mesenchymal transition (EMT) markers (N-Cadherin, Slug, ZEB1). Functionally, bufalin inhibited CRC spheroid formation, aldehyde dehydrogenase activity, migration, and invasion. Network analysis identified a C-Kit/Slug signaling axis accounting for bufalin's anti-stemness activity. Bufalin treatment significantly downregulated C-Kit, as predicted. Furthermore, overexpression of C-Kit induced Slug expression, spheroid formation, and bufalin resistance. Similarly, overexpression of Slug resulted in increased expression of C-Kit and identical functional effects, demonstrating a pro-stemness feedback loop. For further study, we established PDOs from diagnostic colonoscopy. Bufalin differentially inhibited PDO growth and proliferation, induced apoptosis, restored E-cadherin, and downregulated CSC markers CD133 and C-Myc, dependent on C-Kit/Slug. These findings suggest that the C-Kit/Slug axis plays a pivotal role in regulating CRC stemness, and reveal that targeting this axis can inhibit CRC growth and progression.
Collapse
Affiliation(s)
- Ling Ding
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Key Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yuning Yang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Key Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Qin Lu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Key Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Dongfeng Qu
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | - Hailan Feng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Key Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Hong Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Key Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xuzheng Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Key Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Zhuhui Liao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Key Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jian Du
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Key Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Zhiyun Cao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Key Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Nathaniel Weygant
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Key Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
16
|
Soumoy L, Ghanem GE, Saussez S, Journe F. Bufalin for an innovative therapeutic approach against cancer. Pharmacol Res 2022; 184:106442. [PMID: 36096424 DOI: 10.1016/j.phrs.2022.106442] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022]
Abstract
Bufalin is an endogenous cardiotonic steroid, first discovered in toad venom but also found in the plasma of healthy humans, with anti-tumour activities in different cancer types. The current review is focused on its mechanisms of action and highlights its very large spectrum of effects both in vitro and in vivo. All leads to the conclusion that bufalin mediates its effects by affecting all the hallmarks of cancer and seems restricted to cancer cells avoiding side effects. Bufalin decreases cancer cell proliferation by acting on the cell cycle and inducing different mechanisms of cell death including apoptosis, necroptosis, autophagy and senescence. Bufalin also moderates metastasis formation by blocking migration and invasion as well as angiogenesis and by inducing a phenotype switch towards differentiation and decreasing cancer cell stemness. Regarding its various mechanisms of action in cancer cells, bufalin blocks overactivated signalling pathways and modifies cell metabolism. Moreover, bufalin gained lately a huge interest in the field of drug resistance by both reversing various drug resistance mechanisms and affecting the immune microenvironment. Together, these data support bufalin as a quite promising new anti-cancer drug candidate.
Collapse
Affiliation(s)
- Laura Soumoy
- Laboratory of Human Anatomy & Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000 Mons, Belgium.
| | - Ghanem E Ghanem
- Laboratory of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium
| | - Sven Saussez
- Laboratory of Human Anatomy & Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000 Mons, Belgium
| | - Fabrice Journe
- Laboratory of Human Anatomy & Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000 Mons, Belgium; Laboratory of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium.
| |
Collapse
|
17
|
Sampath V, Horesh N, Sasi B, Zannadeh H, Pogodin I, Singh SV, Deutsch J, Lichtstein D. Synthesis and Biological Evaluation of Novel Bufalin Derivatives. Int J Mol Sci 2022; 23:ijms23074007. [PMID: 35409366 PMCID: PMC8999407 DOI: 10.3390/ijms23074007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022] Open
Abstract
Bufalin and other cardiac steroids (CS) have been used for centuries for the treatment of congestive heart failure, arrhythmias, and other maladies. However, toxicity and the small therapeutic window of this family of steroids limit their use. Therefore, attempts to synthesize a potent, but less toxic, CS are of major importance. In the present study, two novel bufalin derivatives were synthesized and some of their pharmacological properties were characterized. The reaction of bufalin with Ishikawa's reagent resulted in the production of two novel bufalin derivatives: bufalin 2,3-ene and bufalin 3,4-ene. The compounds were purified with TLC and HPLC and their structure was verified with UV, NMR, and MS analyses. The biological activities of these compounds were evaluated by testing their ability to inhibit the Na+, K+-ATPase activity of the brain microsomal fraction to induce cytotoxic activity against the NCI-60 human tumor cell line panel and non-cancer human cells, and to increase the force of contraction of quail embryonic heart muscle cells in culture. The two steroids exhibited biological activities similar to those of other CS in the tested experimental systems, but with reduced cytotoxicity, advocating their development as drugs for the treatment of heart failure and arrhythmias.
Collapse
Affiliation(s)
- VishnuPriya Sampath
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (V.S.); (N.H.); (B.S.); (H.Z.); (I.P.)
| | - Noa Horesh
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (V.S.); (N.H.); (B.S.); (H.Z.); (I.P.)
| | - Ben Sasi
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (V.S.); (N.H.); (B.S.); (H.Z.); (I.P.)
| | - Hiba Zannadeh
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (V.S.); (N.H.); (B.S.); (H.Z.); (I.P.)
| | - Ilana Pogodin
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (V.S.); (N.H.); (B.S.); (H.Z.); (I.P.)
| | - Shiv Vardan Singh
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India;
| | - Joseph Deutsch
- Department of Medicinal Chemistry, Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
- Correspondence: (J.D.); (D.L.)
| | - David Lichtstein
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (V.S.); (N.H.); (B.S.); (H.Z.); (I.P.)
- Correspondence: (J.D.); (D.L.)
| |
Collapse
|
18
|
Shao H, Li B, Li H, Gao L, Zhang C, Sheng H, Zhu L. Novel Strategies for Solubility and Bioavailability Enhancement of Bufadienolides. Molecules 2021; 27:51. [PMID: 35011278 PMCID: PMC8746454 DOI: 10.3390/molecules27010051] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Toad venom contains a large number of bufadienolides, which have a variety of pharmacological activities, including antitumor, cardiovascular, anti-inflammatory, analgesic and immunomodulatory effects. The strong antitumor effect of bufadienolides has attracted considerable attention in recent years, but the clinical application of bufadienolides is limited due to their low solubility and poor bioavailability. In order to overcome these shortcomings, many strategies have been explored, such as structural modification, solid dispersion, cyclodextrin inclusion, microemulsion and nanodrug delivery systems, etc. In this review, we have tried to summarize the pharmacological activities and structure-activity relationship of bufadienolides. Furthermore, the strategies for solubility and bioavailability enhancement of bufadienolides also are discussed. This review can provide a basis for further study on bufadienolides.
Collapse
Affiliation(s)
| | | | | | | | | | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China; (H.S.); (B.L.); (H.L.); (L.G.); (C.Z.)
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China; (H.S.); (B.L.); (H.L.); (L.G.); (C.Z.)
| |
Collapse
|