1
|
Wo Q, Shi L, Shi J, Mao Y, Xie L. The Mechanism by Which Hedgehog Interacting Protein (HHIP) in Cancer-Associated Fibroblasts Regulate the Secretion of Inflammatory Factors Through the JAK1/STAT3 Pathway Affecting Prostate Cancer Stemness. J Inflamm Res 2024; 17:8659-8680. [PMID: 39553307 PMCID: PMC11566605 DOI: 10.2147/jir.s472124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/26/2024] [Indexed: 11/19/2024] Open
Abstract
Purpose Prostate cancer (PCa) is seriously affecting men's health and quality of life. Existing studies indicate that PCa stem cells are responsible for promoting the growth and contributing to the high recurrence rate of PCa. Methods We retrieved and downloaded PCa-related datasets from both the GEO and TCGA database. These datasets were subsequently analyzed using single-cell analysis, difference analysis, WGCNA, and machine learning algorithms. WB was performed to detect the expression of Hedgehog interacting protein (HHIP), JAK1/STAT3 pathway-related protein, CD133 and CD44. Immunohistochemistry was conducted to assess the distribution of HHIP and Ki67. The levels of inflammatory factors were measured using ELISA. The tumor cell stemness was evaluated through spheroid formation assay and flow cytometry. Results Through bioinformatics analysis, we identified eight genes (ARHGAP24, HHIP, MITF, CBX7, PPP1R12B, PLEKHA1, ADGRA2, and PGR). Among these genes, we selected HHIP for follow-up experiments and confirmed its low expression in PCa tumor tissues. Primary cancer-associated fibroblasts (CAFs) were extracted, and to further explore the mechanism of HHIP, we overexpressed or knocked down HHIP in CAFs. Overexpression of HHIP was found to inhibit the JAK1/STAT3 pathway and the secretion of inflammatory factors, thus suppressing both the proliferation and stemness of PCa cells. Treatment of CAFs with the JAK1/STAT3 pathway inhibitor AG490 led to a decrease in inflammatory factor secretion, along with inhibition of PCa cell proliferation and stemness. On this basis, knockdown of HHIP partially reversed the inhibitory effects of AG490 on PCa cells. Finally, we constructed a mouse subcutaneous tumor model and found that HHIP inhibited tumor proliferation and densification. Conclusion In summary, HHIP in CAFs can regulate the JAK1/STAT3 pathway and affect the secretion of inflammatory factors, thus affecting the proliferation of PCa.
Collapse
Affiliation(s)
- Qijun Wo
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Lei Shi
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jun Shi
- Department of Urology,The Second People’s Hospital of Fuyang, Hangzhou, Zhejiang, People’s Republic of China
| | - Yeqing Mao
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Liping Xie
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
2
|
Lin Y, Jiang X, Zhao M, Li Y, Jin L, Xiang S, Pei R, Lu Y, Jiang L. Wogonin induces mitochondrial apoptosis and synergizes with venetoclax in diffuse large B-cell lymphoma. Toxicol Appl Pharmacol 2024; 492:117103. [PMID: 39278550 DOI: 10.1016/j.taap.2024.117103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is among the most aggressive hematological malignancies and patients are commonly treated with combinatorial immunochemotherapies such as R-CHOP. Till now, the prognoses are still variable and unsatisfactory, depending on the molecular subtype and the treatment response. Developing effective and tolerable new agents is always urgently needed, and compounds from a natural source have gained increasing attentions. Wogonin is an active flavonoid extracted from the traditional Chinese herbal medicine Scutellaria baicalensis Georgi and has shown extensive antitumor potentials. However, the therapeutic effect of wogonin on DLBCL remains unknown. Here, we found that treatment with wogonin dose- and time-dependently reduced the viability in a panel of established DLBCL cell lines. The cytotoxicity of wogonin was mediated through apoptosis induction, along with the loss of mitochondrial membrane potential and the downregulation of BCL-2, MCL-1, and BCL-xL. In terms of the mechanism, wogonin inhibited the PI3K and MAPK pathways, as evidenced by the clear decline in the phosphorylation of AKT, GSK3β, S6, ERK, and P38. Furthermore, the combination of wogonin and the BCL-2 inhibitor venetoclax elicited synergistically enhanced killing effect on DLBCL cells regardless of their molecular subtypes. Finally, administration of wogonin significantly impeded the progression of the DLBCL tumor in a xenograft animal model without obvious side effects. Taken together, the present study suggests a promising potential of wogonin in the treatment of DLBCL patients either as monotherapy or an adjuvant for venetoclax-based combinations.
Collapse
Affiliation(s)
- Ye Lin
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Xia Jiang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China
| | - Mengting Zhao
- Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Youhong Li
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China
| | - Lili Jin
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China
| | - Sumeng Xiang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China
| | - Renzhi Pei
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China
| | - Ying Lu
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China.
| | - Lei Jiang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China.
| |
Collapse
|
3
|
He K, Wang Z, Liu M, Du W, Yin T, Bai R, Duan Q, Wang Y, Lei H, Zheng Y. Exploring the Effect of Xiao-Chai-Hu Decoction on Treating Psoriasis Based on Network Pharmacology and Experiment Validation. Curr Pharm Des 2024; 30:215-229. [PMID: 38532341 DOI: 10.2174/0113816128288527240108110844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/27/2023] [Indexed: 03/28/2024]
Abstract
BACKGROUND Psoriasis is a chronic, inflammatory and recurrent skin disease. Xiao-Chai-Hu Decoction (XCHD) has shown good effects against some inflammatory diseases and cancers. However, the pharmacological effect and mechanisms of XCHD on psoriasis are not yet clear. OBJECTIVE To uncover the effect and mechanisms of XCHD on psoriasis by integrating network pharmacology, molecular docking, and in vivo experiments. METHODS The active ingredients and corresponding targets of XCHD were screened through Traditional Chinese Medicine Systems Pharmacology Database and Analysis (TCMSP) and Traditional Chinese Medicine Integrated Database (TCMID). Differentially expressed genes (DEGs) of psoriasis were obtained from the gene expression omnibus (GEO) database. The XCHD-psoriasis intersection targets were obtained by intersecting XCHD targets, and DEGs were used to establish the "herb-active ingredient-target" network and Protein-Protein Interaction (PPI) Network. The hub targets were identified based on the PPI network by Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed next. Molecular docking was executed via AutoDockTools-1.5.6. Finally, in vivo experiments were carried out further to validate the therapeutic effects of XCHD on psoriasis. RESULTS 58 active components and 219 targets of XCHD were screened. 4 top-active components (quercetin, baicalein, wogonin and kaempferol) and 7 hub targets (IL1B, CXCL8, CCND1, FOS, MMP9, STAT1 and CCL2) were identified. GO and KEGG pathway enrichment analyses indicated that the TNF signaling pathway, IL-17 signaling pathway and several pathways were involved. Molecular docking results indicated that hub genes had a good affinity to the corresponding key compounds. In imiquimod (IMQ)-induced psoriasis mouse models, XCHD could significantly improve psoriasis-like skin lesions, downregulate KRT17 and Ki67, and inhibit inflammation cytokines and VEGF. CONCLUSION XCHD showed the therapeutic effect on psoriasis by regulating keratinocyte differentiation, and suppressing inflammation and angiogenesis, which provided a theoretical basis for further experiments and clinical research.
Collapse
Affiliation(s)
- Ke He
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ziyang Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Meng Liu
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wenqian Du
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Tingyi Yin
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruimin Bai
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qiqi Duan
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuqian Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Hao Lei
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yan Zheng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
4
|
Yang Y, Huang S, Wang J, Nie X, Huang L, Li T. Wogonin attenuates vascular remodeling by inhibiting smooth muscle cell proliferation and migration in hypertensive rat. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:39-48. [PMID: 38154963 PMCID: PMC10762488 DOI: 10.4196/kjpp.2024.28.1.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/30/2023]
Abstract
Wogonin, extracted from the roots of Scutellaria baicalensis Georgi, has been shown to suppress collagen deposition in spontaneously hypertensive rats (SHRs). This study was performed to investigate the role and mechanism of wogonin underlying vascular remodeling in SHRs. After injection of SHRs with 40 mg/kg of wogonin, blood pressure in rats was measured once a week. Masson's trichrome staining was conducted to observe the changes in aortas and mesenteric arteries. Vascular smooth muscle cells (VSMCs) isolated from rat thoracic aortas were treated with Angiotensin II (Ang II; 100 nM) in the presence or absence of varying concentrations of wogonin. The viability and proliferation of VSMCs were examined using Cell Counting Kit-8 assay and 5-ethynyl-2'-deoxyuridine assay, respectively. The migration of VSMCs was examined using wound healing assay and transwell assay. We found that wogonin administration alleviated hypertension, increased lumen diameter, and reduced the thickness of the arterial media in SHRs. Ang II treatment enhanced the viability of VSMCs, which was inhibited by wogonin in a concentration-dependent manner. Wogonin reversed Ang II-induced increases in the viability, proliferation, and migration of VSMCs. Moreover, wogonin inhibited Ang II-induced activation of mitogen-activated protein kinase (MAPK) signaling in VSMCs. Overall, wogonin repressed the proliferative and migratory capacity of VSMCs by regulating the MAPK signaling pathway, thereby attenuating vascular remodeling in hypertensive rats, indicating that wogonin might be a therapeutic agent for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Yang Yang
- Department of Cardiovasology, The First Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Shan Huang
- Department of Cardiovasology, The First Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Jun Wang
- Department of Cardiovasology, The First Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Xiao Nie
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou 570311, China
| | - Ling Huang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Tianfa Li
- Department of Cardiovasology, The First Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| |
Collapse
|
5
|
Liu B, Lu Y, Taledaohan A, Qiao S, Li Q, Wang Y. The Promoting Role of HK II in Tumor Development and the Research Progress of Its Inhibitors. Molecules 2023; 29:75. [PMID: 38202657 PMCID: PMC10779805 DOI: 10.3390/molecules29010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Increased glycolysis is a key characteristic of malignant cells that contributes to their high proliferation rates and ability to develop drug resistance. The glycolysis rate-limiting enzyme hexokinase II (HK II) is overexpressed in most tumor cells and significantly affects tumor development. This paper examines the structure of HK II and the specific biological factors that influence its role in tumor development, as well as the potential of HK II inhibitors in antitumor therapy. Furthermore, we identify and discuss the inhibitors of HK II that have been reported in the literature.
Collapse
Affiliation(s)
- Bingru Liu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (B.L.); (Y.L.); (A.T.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (B.L.); (Y.L.); (A.T.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Department of Core Facility Center, Capital Medical University, Beijing 100069, China
| | - Ayijiang Taledaohan
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (B.L.); (Y.L.); (A.T.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Shi Qiao
- Civil Aviation Medical Center, Civil Aviation Administration of China, Beijing 100123, China;
| | - Qingyan Li
- Civil Aviation Medical Center, Civil Aviation Administration of China, Beijing 100123, China;
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (B.L.); (Y.L.); (A.T.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Department of Core Facility Center, Capital Medical University, Beijing 100069, China
| |
Collapse
|
6
|
Tuli HS, Rath P, Chauhan A, Parashar G, Parashar NC, Joshi H, Rani I, Ramniwas S, Aggarwal D, Kumar M, Rana R. Wogonin, as a potent anticancer compound: From chemistry to cellular interactions. Exp Biol Med (Maywood) 2023; 248:820-828. [PMID: 37387217 PMCID: PMC10468645 DOI: 10.1177/15353702231179961] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
Chinese native medicine Scutellaria baicalensis Georgi, also referred to as Chinese skullcap or Huang-Qin, is frequently used to treat cancer, viral infections, and seizures. This plant's abundance of flavones (wogonoside) and their related aglycones (wogonin) is responsible for many of its pharmacologic effects. A significant ingredient in S. baicalensis that has been the subject of the most research is wogonin. Numerous preclinical investigations revealed that wogonin suppresses tumor growth by cell cycle arrest, stimulating cell death and preventing metastasis. This review focuses on a complete overview of published reports that suggest chemopreventive action of wogonin and the mechanistic insights behind these neoplastic activities. It also emphasizes the synergistic improvements made by wogonin in chemoprevention. The factual data in this mini-review stimulate additional research on chemistry and toxicological profile of wogonin to confirm its safety issues. This review will encourage researchers to generalize the merits of wogonin to be used as potential compound for cancer treatment.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University, Ambala 133207, India
| | - Prangya Rath
- Amity Institute of Environmental Sciences, Amity University, Noida 201303, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida 201303, India
| | - Gaurav Parashar
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India
| | - Nidarshana Chaturvedi Parashar
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University, Ambala 133207, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar College of Medical Sciences and Research (MMCMSR), Sadopur Ambala 134007, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali 140413, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University, Ambala 133207, India
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University Sadopur, Ambala 134007, India
| | - Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| |
Collapse
|
7
|
Li R, He H, He X. APOC1 promotes the progression of osteosarcoma by binding to MTCH2. Exp Ther Med 2023; 25:163. [PMID: 36911382 PMCID: PMC9996334 DOI: 10.3892/etm.2023.11862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/06/2023] [Indexed: 02/25/2023] Open
Abstract
Osteosarcoma is the most prevalent primary malignant bone cancer worldwide. Apolipoprotein C1 (APOC1) and mitochondrial carrier homolog 2 (MTCH2) have been identified to be upregulated during the oncogenesis and metastasis of osteosarcoma. The aim of the present study was to explore the role of APOC1 in osteosarcoma progression and the mechanisms associated with MTCH2. APOC1 and MTCH2 expression in osteosarcoma cells was assessed by reverse transcription-quantitative PCR and western blotting. Then, APOC1 was silenced to detect its effect on cell viability, proliferation and apoptosis using Cell Counting Kit-8, a colony formation assay and TUNEL staining, respectively. Transwell and wound healing assays were used to evaluate cell invasion and migration. The interaction between APOC1 and MTCH2 as predicted by the Biological General Repository for Interaction Datasets and the Search Tool for the Retrieval of Interacting Genes/Proteins databases was verified by co-immunoprecipitation assay. Subsequently, rescue experiments were performed to analyze the regulatory effects of APOC1 on MTCH2 in the biological behavior and Warburg effect of osteosarcoma cells. Significantly upregulated APOC1 and MTCH2 expression was found in osteosarcoma SAOS-2 cells. APOC1 silencing attenuated cell viability, inhibited proliferation and promoted cell apoptosis, coupled with the decreased Bcl-2 expression and increased Bax and cleaved-caspase 3 expression. The invasive and migratory capacities of SAOS-2 cells were also suppressed following APOC1 knockdown. Moreover, APOC1 was confirmed to interact with MTCH2 in osteosarcoma cells. MTCH2 upregulation inhibited the impacts of APOC1 deletion on the malignant behavior of osteosarcoma cells. APOC1 silencing-induced oxidative phosphorylation elevation and Warburg effect decrease were partially restored by MTCH2 upregulation. In sum, APOC1 promoted progression of osteosarcoma by binding to MTCH2, suggesting that targeting the APOC1/MTCH2 axis may be a potential treatment of osteosarcoma.
Collapse
Affiliation(s)
- Renjie Li
- School of Nursing, Sun Yat-Sen University, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Huixian He
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xinxin He
- School of Medicine, Foshan University, Foshan, Guangdong 528000, P.R. China
| |
Collapse
|
8
|
Wumei Pill Ameliorates AOM/DSS-Induced Colitis-Associated Colon Cancer through Inhibition of Inflammation and Oxidative Stress by Regulating S-Adenosylhomocysteine Hydrolase- (AHCY-) Mediated Hedgehog Signaling in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4061713. [PMID: 35927991 PMCID: PMC9345734 DOI: 10.1155/2022/4061713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
Wumei Pill (WMP) is a traditional Chinese herbal formulation and widely used to treat digestive system diseases in clinical. S-Adenosylhomocysteine hydrolase (AHCY) can catalyze the hydrolysis of S-adenosylhomocysteine to adenosine and homocysteine in living organisms, and its abnormal expression is linked to the pathogenesis of many diseases including colorectal cancer (CRC). A previous study reported that WMP could prevent CRC in mice; however, the underlying mechanisms especially the roles of AHCY in WMP-induced anti-CRC remain largely unknown. Here, we investigated the regulatory roles and potential mechanisms of AHCY in WMP-induced anti-CRC. WMP notably alleviated the azoxymethane/dextran sulfate sodium- (AOM/DSS-) induced colitis-associated colon cancer (CAC) in mice. Besides, WMP inhibited the inflammation and oxidative stress in AOM/DSS-induced CAC mice. AHCY was high expression in clinical samples of colon cancer compared to the adjacent tissues. WMP inhibited the AHCY expression in AOM/DSS-induced CAC mice. An in vitro study found that AHCY overexpression induced cell proliferation, colony formation, invasion, and tumor angiogenesis, whereas its knockdown impaired its oncogenic function. AHCY overexpression enhanced, while its knockdown weakened the inflammation and oxidative stress in colon cancer cells. Interestingly, WMP potently suppressed the hedgehog (Hh) signaling in AOM/DSS-induced CAC mice. A further study showed that AHCY overexpression activated the Hh signaling while AHCY knockdown inactivated the Hh signaling. Moreover, activation of the Hh signaling reversed the effect of AHCY silencing on inflammation and oxidative stress in vitro. In conclusion, WMP alleviated the AOM/DSS-induced CAC through inhibition of inflammation and oxidative stress by regulating AHCY-mediated hedgehog signaling in mice. These findings uncovered a potential molecular mechanism underlying the anti-CAC effect of WMP and suggested WMP as a promising therapeutic candidate for CRC.
Collapse
|
9
|
Amalinei C, Grigoraș A, Lozneanu L, Căruntu ID, Giușcă SE, Balan RA. The Interplay between Tumour Microenvironment Components in Malignant Melanoma. Medicina (B Aires) 2022; 58:medicina58030365. [PMID: 35334544 PMCID: PMC8953474 DOI: 10.3390/medicina58030365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Malignant melanoma has shown an increasing incidence during the last two decades, exhibiting a large spectrum of locations and clinicopathological characteristics. Although current histopathological, biochemical, immunohistochemical, and molecular methods provide a deep insight into its biological behaviour and outcome, melanoma is still an unpredictable disease, with poor outcome. This review of the literature is aimed at updating the knowledge regarding melanoma’s clinicopathological and molecular hallmarks, including its heterogeneity and plasticity, involving cancer stem cells population. A special focus is given on the interplay between different cellular components and their secretion products in melanoma, considering its contribution to tumour progression, invasion, metastasis, recurrences, and resistance to classical therapy. Furthermore, the influences of the specific tumour microenvironment or “inflammasome”, its association with adipose tissue products, including the release of “extracellular vesicles”, and distinct microbiota are currently studied, considering their influences on diagnosis and prognosis. An insight into melanoma’s particular features may reveal new molecular pathways which may be exploited in order to develop innovative therapeutic approaches or tailored therapy.
Collapse
|