1
|
Yang Y, Guo L, Wei L, Yu J, Zhu S, Li X, Liu J, Liang R, Peng W, Ge F, Zhang J. Da-yuan-yin decoction alleviates ulcerative colitis by inhibiting complement activation, LPS-TLR4/NF-κB signaling pathway and NET formation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118392. [PMID: 38797378 DOI: 10.1016/j.jep.2024.118392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Da-yuan-yin decoction (DYY) is a classical traditional Chinese medicine prescription for ulcerative colitis (UC). AIM OF STUDY This study explored the protective effects and mechanisms of DYY on UC. MATERIALS AND METHODS The mice were fed 2.5% dextran sulfate sodium (DSS) for 7 days to establish UC. On the second day, DYY (0.4 g/kg, 0.8 g/kg, 1.6 g/kg) was orally administered daily for 7 consecutive days. The colon tissues and serum were measured by histopathological examination and biochemical analysis. RESULTS DYY significantly reduced the disease activity index (DAI) and severity of colon shortening and alleviated pathological changes in the colon tissue. DYY restored the protein expression of intestinal tight junction (TJ) protein (ZO-1, occludin and claudin-3). DYY remarkably decreased the level of lipopolysaccharide (LPS), Lactic acid (LA), circulating free DNA (cfDNA), complement (C3, C3a, C3c, C3aR1, C5a and C5aR1) and regulated the levels of inflammatory cytokines in serum. DYY significantly inhibited the expressions of nuclear factor kappa-B p65 (NF-κB p65) and Toll-like receptor 4 (TLR4), citrullinated histone H3 (CitH3) and myeloperoxidase (MPO), reactive oxygen species (ROS) peptidylarginine deiminase 4 (PAD4) and CD 11b, the mRNA levels of PADI4, MPO and ELANE in colon tissues. CONCLUSIONS DYY significantly attenuated DSS-induced UC, which was related with regulating the inflammatory response by the inhibition of complement activation, the LPS-TLR4/NF-κB signaling pathway and neutrophil extracellular traps (NETs) formation. DYY is a potential therapeutic agent for UC.
Collapse
Affiliation(s)
- Yun Yang
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China.
| | - Lengqiu Guo
- Suzhou Vocational Health College, Suzhou, 215009, China
| | - Lan Wei
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Jinghua Yu
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Song Zhu
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Xinyi Li
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Jiangyun Liu
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Rui Liang
- Suzhou Vocational Health College, Suzhou, 215009, China
| | - Wei Peng
- The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Fei Ge
- Department of Gastroenterology, Haian Hospital of Traditional Chinese Medicine, Nantong, 226000, China.
| | - Jian Zhang
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
Zhang Y, He X, Yin D, Zhang Y. Redefinition of Synovial Fibroblasts in Rheumatoid Arthritis. Aging Dis 2024:AD.2024.0514. [PMID: 39122458 DOI: 10.14336/ad.2024.0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
The breakdown of immune tolerance and the rise in autoimmunity contribute to the onset of rheumatoid arthritis (RA), driven by significant changes in immune components. Recent advances in single-cell and spatial transcriptome profiling have revealed shifts in cell distribution and composition, expanding our understanding beyond molecular-level changes in inflammatory cytokines, autoantibodies, and autoantigens in RA. Surprisingly, synovial fibroblasts (SFs) play an active immunopathogenic role rather than remaining passive bystanders in RA, with notable alterations in their subpopulation distribution and composition. This study examines these changes in SF heterogeneity, assesses their impact on RA progression, and elucidates the immune characteristics and functions of SF subsets in the RA autoimmunity, encompassing both intrinsic and adaptive immunity. Additionally, this review discusses therapeutic strategies targeting immune SF subsets, highlighting the potential of future interventions in SF phenotypic reprogramming. Overall, this review redefines the role of SFs in RA and suggests targeting SF phenotypic reprogramming and its upstream molecules as a promising therapeutic approach to restore immune balance and modulate immune tolerance in RA.
Collapse
Affiliation(s)
- Yinci Zhang
- First Affiliated Hospital of Medical School, Anhui University of Science and Technology, Huainan, China
| | - Xiong He
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Dongdong Yin
- First Affiliated Hospital of Medical School, Anhui University of Science and Technology, Huainan, China
| | - Yihao Zhang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Huang B, Gui M, An H, Shen J, Ye F, Ni Z, Zhan H, Che L, Lai Z, Zeng J, Peng J, Lin J. Babao Dan alleviates gut immune and microbiota disorders while impacting the TLR4/MyD88/NF-кB pathway to attenuate 5-Fluorouracil-induced intestinal injury. Biomed Pharmacother 2023; 166:115387. [PMID: 37643486 DOI: 10.1016/j.biopha.2023.115387] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
Adjuvant chemotherapy based on 5-fluorouracil (5-FU), such as FOLFOX, is suggested as a treatment for gastrointestinal cancer. Yet, intestinal damage continues to be a prevalent side effect for which there are no practical prevention measures. We investigated whether Babao Dan (BBD), a Traditional Chinese Medicine, protects against intestinal damage induced by 5-FU by controlling immune response and gut microbiota. 5-FU was injected intraperitoneally to establish the mice model, then 250 mg/kg BBD was gavaged for five days straight. 5-FU led to marked weight loss, diarrhea, fecal blood, and histopathologic intestinal damage. Administration of BBD reduced these symptoms, inhibited proinflammatory cytokine (IL-6, IL-1β, IFN-γ, TNF-α) secretion, and upregulated the ratio of CD3(+) T cells and the CD4(+)/CD8(+) ratio. According to 16S rRNA sequencing, BBD dramatically repaired the disruption of the gut microbiota caused in a time-dependent way, and increased the Firmicutes/Bacteroidetes (F/B) ratio. Transcriptomic results showed that the mechanism is mainly concentrated on the NF-κB pathway, and we found that BBD reduced the concentration of LPS in the fecal suspension and serum, and inhibited TLR4/MyD88/NF-κB pathway activation. Furthermore, at the genus level on the fifth day, BBD upregulated the abundance of unidentified_Corynebacteriaceae, Aerococcus, Blautia, Jeotgalicoccus, Odoribacter, Roseburia, Rikenella, Intestinimonas, unidentified_Lachnospiraceae, Enterorhabdus, Ruminiclostridium, and downregulated the abundance of Bacteroides, Parabacteroides, Parasutterella, Erysipelatoclostridium, which were highly correlated with intestinal injury or the TLR4/MyD88/NF-κB pathway. In conclusion, we established a network involving 5-FU, BBD, the immune response, gut microbiota, and key pathways to explain the pharmacology of oral BBD in preventing 5-FU-induced intestinal injury.
Collapse
Affiliation(s)
- Bin Huang
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Mengxuan Gui
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Honglin An
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Jiayu Shen
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Feimin Ye
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Zhuona Ni
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Hanzhang Zhan
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Li Che
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen 361100, PR China
| | - Zhicheng Lai
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen 361100, PR China
| | - Jiahan Zeng
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen 361100, PR China
| | - Jun Peng
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Jiumao Lin
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China.
| |
Collapse
|
4
|
Ding HS, Huang Y, Qu JF, Wang YJ, Huang ZY, Wang FY, Yi WJ, Liu XX. Panaxynol ameliorates cardiac ischemia/reperfusion injury by suppressing NLRP3-induced pyroptosis and apoptosis via HMGB1/TLR4/NF-κB axis. Int Immunopharmacol 2023; 121:110222. [PMID: 37343367 DOI: 10.1016/j.intimp.2023.110222] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND AND PURPOSE Panaxynol (PNN) is a common natural minor component in Umbelliferae plants. Many clinical studies have shown that PNN exhibits nutritional value and anti-inflammatory and other pharmacological activities. However, whether PNN can mediate cardiac ischemia/reperfusion injury (IRI) remains unclear. Here, we aimed to determine the potential effects of PNN on myocardial IRI. METHODS Myocardial IRI was stimulated in a mouse IRI model, and neonatal rat ventricle myocytes (NRVMs) were exposed to hypoxia/reoxygenation to construct in an vitro model. Myocardial infarction size, myocardial tissue injury, myocardial apoptotic index, hemodynamic monitoring, pyroptosis-related proteins, cardiac enzyme activities and inflammatory responses were examined to assess myocardial injury. RESULTS It was found that PNN administration markedly reduced myocardial infarct size and apoptosis, suppressed myocardial damage and cell pyroptosis, attenuated pro-inflammatory cytokines and neutrophil infiltration via NLRP3 inhibitor. More importantly, PNN treatment remarkably decreased the expression of TLR4/NF-κB pathway-associated proteins and NLRP3-related pyroptosis proteins by HMGB1 inhibitor. PNN also enhanced cell viability, reduced cardiac enzyme activities, suppressed apoptosis and attenuated inflammation in the isolated NRVMs. Furthermore, vitro studies indicated that MCC950 (a NLRP3 inhibitor) increased the anti-inflammatory and anti-apoptotic effects of PNN on NRVMs via HMGB1/TLR4 pathway. CONCLUSION To sum up, our results demonstrate that PNN exhibits a cardioprotective effect by modulating heart IRI-induced apoptosis and pyroptosis via HMGB1/TLR4/NF-κB pathway, thereby inhibiting NLRP3 inflammasome stimulation.
Collapse
Affiliation(s)
- Hua-Sheng Ding
- Department of Emergency, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, PR China.
| | - Yan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China; Institute of Cardiovascular Diseases, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Ji-Fu Qu
- Department of Emergency, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, PR China
| | - Yong-Jian Wang
- Department of Emergency, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, PR China
| | - Zhong-Yi Huang
- Department of Emergency, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, PR China
| | - Feng-Yuan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China; Institute of Cardiovascular Diseases, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Wen-Juan Yi
- Department of Dermatology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China.
| | - Xiao-Xiong Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China; Institute of Cardiovascular Diseases, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| |
Collapse
|
5
|
Niu X, Yang Y, Yu J, Song H, Yu J, Huang Q, Liu Y, Zhang D, Han T, Li W. Panlongqi tablet suppresses adjuvant-induced rheumatoid arthritis by inhibiting the inflammatory reponse in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116250. [PMID: 36791928 DOI: 10.1016/j.jep.2023.116250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panlongqi Tablet is prepared with the ancestral secret recipe provided by Mr. Wang Jiacheng, a famous specialist in orthopedics and traumatology of China. The efficacy and safety of PLQT have been supported by years of clinical practice in the treatment of joint-related conditions. Has remarkable effect for treating rheumatoid arthritis (RA) clinically. However, its mechanism is not entirely clear. AIM OF THE STUDY We aim to evaluate the anti-inflammatory activity of PLQT and explore its mechanism in adjuvant-induced arthritis (AA) mice and LPS-induced Human fibroblast-like synovial (HFLS) cells. MATERIALS AND METHODS To this end, we analyzed the active ingredients in PLQT by HPLC-MS/MS. Furthermore, the anti-RA effect of PLQT was studied through proliferation, apoptosis, foot swelling, cytokine levels, immune organ index, histopathology and related signal pathways in LPS-induced HFLS cells and AA-treated mice. RESULTS HPLC-MS/MS results showed that PLQT contained a variety of active compounds, such as epicatechin, imperatorin, hydroxysafflor yellow A and so on. PLQT significantly inhibited the abnormal proliferation of HFLS cells induced by LPS, promoted cell apoptosis. In AA-treated mice, PLQT alleviated RA symptoms by alleviating paw swelling, synovial hyperplasia, pannus formation, inflammatory cell infiltration, and inhibiting abnormal immune responses. The results showed that PLQT significantly decreased the expression of inflammatory mediators (IL-1β, IL-6, IL-17) in vivo and in vitro, which may be related to the regulation of PI3K/Akt, MAPK and JAK/STAT signaling pathways. CONCLUSION Based on serum pharmacology and in vivo pharmacology studies, PLQT may regulate RA symptoms by regulating inflammatory and immune response-related pathways, which is an effective method for the treatment of RA.
Collapse
Affiliation(s)
- Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Yajie Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Huixin Song
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Jiabao Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Qiuxia Huang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Yang Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Dezhu Zhang
- Shaanxi Panlong Pharmaceutical Group Limited By Share LTD, Xi'an, PR China
| | - Tengfei Han
- Shaanxi Panlong Pharmaceutical Group Limited By Share LTD, Xi'an, PR China.
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
6
|
Lu Y, Zhou J, Wang Q, Cai J, Yu B, Dai Q, Bao Y, Chen R, Zhang Z, Zhang D, Hou T. Glucocorticoid-loaded pH/ROS Dual-Responsive Nanoparticles Alleviate Joint Destruction by Downregulating the NF-κB Signaling Pathway. Acta Biomater 2023; 164:458-473. [PMID: 37072065 DOI: 10.1016/j.actbio.2023.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/20/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease causing severe symptoms that are difficult to treat. Nano-drug delivery system is recognized as a promising strategy for management of RA. However, how to thoroughly release payloads from nanoformulations and synergistic therapy of RA needs to be further investigated. To address this issue, a pH and reactive oxygen species (ROS) dual-responsive, methylprednisolone (MPS)-loaded and arginine-glycine-aspartic acid (RGD)-modified nanoparticles (NPs) were fabricated using phytochemical and ROS-responsive moiety co-modified α-cyclodextrin (α-CD) as a carrier. In vitro and in vivo experiments verified that the pH/ROS dual-responsive nanomedicine could be efficiently internalized by activated macrophages and synovial cells, and the released MPS could promote transformation of M1-type macrophages into M2 phenotype, thereby down-regulating pro-inflammatory cytokines. In vivo experiments demonstrated that the pH/ROS dual-responsive nanomedicine was remarkably accumulated in the inflamed joints of mice with collagen-induced arthritis (CIA). The accumulated nanomedicine could obviously relieve joint swelling and cartilage destruction without obvious adverse effects. Importantly, the expression of interleukin-6 and tumor necrosis factor-α in the joints of CIA mice were significantly inhibited by the pH/ROS dual-responsive nanomedicine in comparison with free drug and non-targeted counterparts. In addition, the expression of the NF-κB signaling pathway molecules P65 was also significantly decreased by nanomedicine-treatment. Our results reveal that MPS-loaded pH/ROS dual-responsive NPs can effectively alleviate joint destruction via down-regulation of the NF-κB signaling pathway. STATEMENT OF SIGNIFICANCE: Nanomedicine is recognized as an attractive method for the targeting treatment of rheumatoid arthritis (RA). To thorough release of payloads from nanoformulations and synergistic therapy of RA, herein, a phytochemical and ROS-responsive moiety co-modified α-cyclodextrin was used as a pH/ROS dual-responsive carrier to encapsulate methylprednisolone to manage RA. The fabricated nanomedicine can effectively release its payloads under pH and/or ROS microenvironment, and the released drugs dramatically promote transformation of M1-type macrophages into M2 phenotype to reduce the release of pro-inflammatory cytokines. The prepared nanomedicine also obviously decreased the NF-κB signaling pathway molecule P65 expression in the joints, thereby down-regulating pro-inflammatory cytokines expression to alleviate joint swelling and cartilage destruction. We provided a candidate for the targeting treatment of RA.
Collapse
Affiliation(s)
- Yanzhu Lu
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; Department of Orthopaedics, 958th Hospital of Chinese People's Liberation Army (Third Military Medical University), Chongqing 400038, China
| | - Jiangling Zhou
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qianmei Wang
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Juan Cai
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Bo Yu
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qijie Dai
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ying Bao
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Rui Chen
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhongrong Zhang
- Department of Orthopaedics, 958th Hospital of Chinese People's Liberation Army (Third Military Medical University), Chongqing 400038, China.
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Tianyong Hou
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
7
|
Lin X, Chen J, Tao C, Luo L, He J, Wang Q. Osthole regulates N6-methyladenosine-modified TGM2 to inhibit the progression of rheumatoid arthritis and associated interstitial lung disease. MedComm (Beijing) 2023; 4:e219. [PMID: 36845072 PMCID: PMC9945862 DOI: 10.1002/mco2.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease, and RA interstitial lung disease (ILD) is a severe complication of RA. This investigation aims to determine the effect and underlying mechanism of osthole (OS), which could be extracted from Cnidium, Angelica, and Citrus plants and evaluate the role of transglutaminase 2 (TGM2) in RA and RA-ILD. In this work, OS downregulated TGM2 to exert its additive effect with methotrexate and suppress the proliferation, migration, and invasion of RA-fibroblast-like synoviocytes (FLS) by attenuating NF-κB signaling, resulting in the suppression of RA progression. Interestingly, WTAP-mediated N6-methyladenosine modification of TGM2 and Myc-mediated WTAP transcription cooperatively contributed to the formation of a TGM2/Myc/WTAP-positive feedback loop through upregulating NF-κB signaling. Moreover, OS could downregulate the activation of the TGM2/Myc/WTAP-positive feedback circuit. Furthermore, OS restrained the proliferation and polarization of M2 macrophages to inhibit the aggregation of lung interstitial CD11b+ macrophages, and the effectiveness and non-toxicity of OS in suppressing RA and RA-ILD progression were verified in vivo. Finally, bioinformatics analyses validated the importance and the clinical significance of the OS-regulated molecular network. Taken together, our work emphasized OS as an effective drug candidate and TGM2 as a promising target for RA and RA-ILD treatment.
Collapse
Affiliation(s)
- Xian Lin
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenChina
- Institute of Immunology and Inflammatory DiseasesShenzhen Peking University‐The Hong Kong University of Science and Technology Medical Center; Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenChina
| | - Jian Chen
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenChina
- Institute of Immunology and Inflammatory DiseasesShenzhen Peking University‐The Hong Kong University of Science and Technology Medical Center; Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenChina
| | - Cheng Tao
- School of PharmacyGuangdong Medical UniversityDongguanChina
| | - Lianxiang Luo
- The Marine Biomedical Research InstituteGuangdong Medical UniversityZhanjiangChina
- The Marine Biomedical Research Institute of Guangdong ZhanjiangZhanjiangChina
| | - Juan He
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenChina
- Institute of Immunology and Inflammatory DiseasesShenzhen Peking University‐The Hong Kong University of Science and Technology Medical Center; Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenChina
| | - Qingwen Wang
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenChina
- Institute of Immunology and Inflammatory DiseasesShenzhen Peking University‐The Hong Kong University of Science and Technology Medical Center; Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenChina
| |
Collapse
|
8
|
Jo HG, Seo J, Lee D. Clinical evidence construction of East Asian herbal medicine for inflammatory pain in rheumatoid arthritis based on integrative data mining approach. Pharmacol Res 2022; 185:106460. [PMID: 36152738 DOI: 10.1016/j.phrs.2022.106460] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to a significant social burden. East Asian herbal medicine (EAHM) has long been used to treat RA. Therefore, a systematic study of how EAHM treatments can be developed into new drugs using specific materials is needed. METHODS Eleven databases containing literature in English, Korean, Chinese, and Japanese were searched for randomized controlled trials comparing EAHM with conventional medicine (CM). A meta-analysis was performed on the variable data to assess their effects on inflammatory pain. Subsequently, we searched for core materials and combinations of core material-based data mining methods. RESULTS A total of 186 trials involving 19,716 patients with RA met the inclusion criteria. According to the meta-analysis, EAHM had a significantly superior effect on continuous pain intensity, tender joint count, and response rate. Patients treated with EAHM had a significantly reduced incidence of adverse events compared with those treated with CM. Based on additional analysis of the EAHM formula data included in this meta-analysis, 21 core materials and five core herbal combinations were identified. CONCLUSION EAHM remedies for RA have the adequate potential for use as candidate materials for treating inflammatory pain in RA. The candidate core herbs evaluated in this study act on multiple pathways and are expected to provide pain relief, sustained inflammation suppression, immune regulation, and prevention of joint destruction. It seems worthwhile to conduct follow-up research on drug development using the core materials derived from this review.
Collapse
Affiliation(s)
- Hee-Geun Jo
- BS Healthcare Co., Ltd., 11 Teheran-ro 33-gil, Gangnam-gu, Seoul 06141, Republic of Korea; Allbarun Kyunghee Korean Medicine Clinic, 18, Pungmu-ro 146-gil, Gimpo, Gyeonggi-do, Republic of Korea; Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea.
| | - Jihye Seo
- BS Healthcare Co., Ltd., 11 Teheran-ro 33-gil, Gangnam-gu, Seoul 06141, Republic of Korea; Allbarun Kyunghee Korean Medicine Clinic, 18, Pungmu-ro 146-gil, Gimpo, Gyeonggi-do, Republic of Korea; Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea
| | - Donghun Lee
- BS Healthcare Co., Ltd., 11 Teheran-ro 33-gil, Gangnam-gu, Seoul 06141, Republic of Korea; Allbarun Kyunghee Korean Medicine Clinic, 18, Pungmu-ro 146-gil, Gimpo, Gyeonggi-do, Republic of Korea; Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea.
| |
Collapse
|
9
|
Niu X, Song H, Xiao X, Yang Y, Huang Q, Yu J, Yu J, Liu Y, Han T, Zhang D, Li W. Tectoridin ameliorates proliferation and inflammation in TNF-α-induced HFLS-RA cells via suppressing the TLR4/NLRP3/NF-κB signaling pathway. Tissue Cell 2022; 77:101826. [DOI: 10.1016/j.tice.2022.101826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/23/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022]
|
10
|
Ma C, Wang X, Zhang J, Zhao Y, Hua Y, Zhang C, Zheng G, Yang G, Guan J, Li H, Li M, Kang L, Xiang J, Fan G, Yang S. Exploring Ganweikang Tablet as a Candidate Drug for NAFLD Through Network Pharmacology Analysis and Experimental Validation. Front Pharmacol 2022; 13:893336. [PMID: 35774609 PMCID: PMC9239345 DOI: 10.3389/fphar.2022.893336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is defined as liver disease in which more than 5% of hepatocytes are steatotic with little or no alcohol consumption. NAFLD includes benign nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH). Importantly, NASH is an advanced progression of NAFL and is characterized by steatosis, hepatocyte ballooning, lobular inflammation, and fibrosis. However, to date, no drugs specifically targeting NAFLD have been approved by the FDA. Therefore, a new drug or strategy for NAFLD treatment is necessary. However, the pathogenesis of NAFLD is complex and no single-target drugs have achieved the desired results. Noticeably, traditional Chinese medicine formulations are a complex system with multiple components, multiple targets, and synergistic effects between components. The Ganweikang tablet is a compound formula based on traditional Chinese medicine theory and clinical experience. In this study, network pharmacology analysis indicates Ganweikang tablet as a candidate for NAFLD treatment. Furthermore, we evaluated the therapeutic effects of Ganweikang tablet on the NAFL and NASH and tried to clarify the underlying molecular mechanisms in animal models and cell experiments. As expected, Ganweikang tablet was found to improve NAFL and NASH by modulating inflammation, apoptosis, and fatty acid oxidation by inhibiting NFκB, caspase-8, and activating PPARα, which not only indicates that Ganweikang tablet as a drug candidate but also provides a theoretical basis of Ganweikang tablet for the treatment of NAFL and NASH.
Collapse
Affiliation(s)
- Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyu Wang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yun Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yunqing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chao Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Guobin Zheng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Guangyan Yang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jianli Guan
- Henan Fusen Pharmaceutical Co., Ltd., Henan, China
| | - Huahuan Li
- Henan Fusen Pharmaceutical Co., Ltd., Henan, China
| | - Meng Li
- Henan Fusen Pharmaceutical Co., Ltd., Henan, China
| | - Lin Kang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- The Biobank of National Innovation Center for Advanced Medical Devices, Shenzhen People’s Hospital, Shenzhen, China
| | - Jiaqing Xiang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- *Correspondence: Shu Yang, ; Guanwei Fan, ; Jiaqing Xiang,
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Shu Yang, ; Guanwei Fan, ; Jiaqing Xiang,
| | - Shu Yang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
- *Correspondence: Shu Yang, ; Guanwei Fan, ; Jiaqing Xiang,
| |
Collapse
|