1
|
Siejka A, Lawnicka H, Fakir S, Barabutis N. Growth hormone - releasing hormone in the immune system. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09913-w. [PMID: 39370499 DOI: 10.1007/s11154-024-09913-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
GHRH is a neuropeptide associated with a diverse variety of activities in human physiology and immune responses. The present study reviews the latest information on the involvement of GHRH in the immune system and inflammation, suggesting that GHRH antagonists may deliver a new therapeutic possibility in disorders related to immune system dysfunction and inflammation.
Collapse
Affiliation(s)
- Agnieszka Siejka
- Department of Clinical Endocrinology, Medical University of Lodz, Lodz, Poland.
| | - Hanna Lawnicka
- Department of Immunoendocrinology, Medical University of Lodz, Lodz, Poland
| | - Saikat Fakir
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| |
Collapse
|
2
|
Farhadi R, Daniali M, Baeeri M, Foroumadi R, Gholami M, Hassani S, Mirzababaei S, Haghi-Aminjan H, Navaei-Nigjeh M, Rahimifard M, Abdollahi M. Metformin ameliorates cardiopulmonary toxicity induced by chlorpyrifos. Drug Chem Toxicol 2024; 47:649-661. [PMID: 37501618 DOI: 10.1080/01480545.2023.2239523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/05/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
Chlorpyrifos (CPF) is a widely used pesticide that can impair body organs. Nonetheless, metformin is known for its protective role against dysfunction at cellular and molecular levels led by inflammatory and oxidative stress. This study aimed to investigate the modulatory impacts of metformin on CPF-induced heart and lung damage. Following the treatment of Wistar rats with different combinations of metformin and CPF, plasma, as well as heart and lung tissues, were isolated to examine the level of oxidative stress biomarkers like reactive oxygen species (ROS) and malondialdehyde (MDA), inflammatory cytokines such as tumor necrosis alpha (TNF-α), high mobility group box 1 (HMGB1) gene, deoxyribonucleic acid (DNA) damage, lactate, ADP/ATP ratio, expression of relevant genes (TRADD, TERT, KL), and along with histological analysis. Based on the findings, metformin significantly modulates the impairments in heart and lung tissues induced by CPF.
Collapse
Affiliation(s)
- Ramtin Farhadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Marzieh Daniali
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Baeeri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Roham Foroumadi
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shokoufeh Hassani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Soheyl Mirzababaei
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mona Navaei-Nigjeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahban Rahimifard
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
3
|
Wang Y, Duan Y, Tian F, Zhou Z, Liu Y, Wang W, Gao B, Tang Y. Ultrathin and handleable nanofibrous net as a novel biomimetic basement membrane material for endothelial barrier formation. Colloids Surf B Biointerfaces 2022; 219:112775. [PMID: 36108364 DOI: 10.1016/j.colsurfb.2022.112775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 11/24/2022]
Abstract
Many strategies have been adopted to develop porous membranes to reconstitute basement membrane in vitro, which play a key role in the development of in vitro biomimetic models. However, the development of an artificial basement membrane combines cytocompatibility and nano-thickness is still challenging. Herein, a monolayer nanofibrous net patch was fabricated by combining microfabrication and electrospinning as a biomimetic basement membrane material, which was demonstrated for endothelial barrier formation. The nanofibrous net patches with different fiber densities were obtained by controlling electrospinning time. The net was with high porosity and ultrathin thickness approximate to the diameter of nanofibers, which is comparable to that of the native basement membrane. The morphology, proliferation and cell-cell/cell-substrate interactions of endothelial cells on the nanofibrous nets were studied and compared with track-etched polycarbonate membrane and traditional multilayer nanofibers membrane. In addition, the results of TEER measurement and permeability test demonstrated that the endothelial barrier formed on the nanofibrous net patch displayed stronger barrier integrity and function. Therefore, the proposed nanofibrous net patch shows great potential as a novel biomimetic basement membrane, which is promising to be applied for in vitro tissue mimetic applications.
Collapse
Affiliation(s)
- Yaqi Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yujie Duan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Feng Tian
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zehui Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yurong Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenlong Wang
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Botao Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
| | - Yadong Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
4
|
Effects of TP53 Mutations and miRs on Immune Responses in the Tumor Microenvironment Important in Pancreatic Cancer Progression. Cells 2022; 11:cells11142155. [PMID: 35883598 PMCID: PMC9318640 DOI: 10.3390/cells11142155] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/27/2023] Open
Abstract
Approximately 90% of pancreatic cancers are pancreatic ductal adenocarcinomas (PDAC). PDAC is the fourth leading cause of cancer death world-wide. Therapies for PDAC are largely ineffective due to the dense desmoplastic tumor microenvironment which prevents chemotherapeutic drugs and small molecule inhibitors from exerting effective anti-cancer effects. In this review, we will discuss the roles of TP53 and miRs on the PDAC tumor microenvironment and how loss of the normal functions of TP53 promote tumor progression. The TP53 gene is mutated in approximately 50% of pancreatic cancers. Often, these TP53 mutations are point mutations which confer additional functions for the TP53 proteins. These are called gain of function (GOF) mutations (mut). Another class of TP53 mutations are deletions which result in loss of the TP53 protein; these are referred to TP53-null mutations. We have organized this review into various components/properties of the PDAC microenvironment and how they may be altered in the presence of mutant TP53 and loss of certain miR expression.
Collapse
|
5
|
Abstract
Endothelial barrier dysfunction is associated with sepsis and lung injury, both direct and indirect. We discuss the involvement of unfolded protein response in the protective effects of heat shock protein 90 inhibitors and growth hormone releasing hormone antagonists in the vascular barrier, to reveal new possibilities in acute respiratory distress syndrome treatment.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| |
Collapse
|