1
|
Mafi M, Rezaei Adriani R, Mohammadkhani F, Mousavi Gargari SL. Development of protective egg yolk immunoglobulins (IgY) targeting CfaB, LTB, and EtpA recombinant proteins of Enterotoxigenic Escherichia coli (ETEC) for inhibiting toxin activity and bacterial adherence. Braz J Microbiol 2025; 56:403-413. [PMID: 39500826 PMCID: PMC11885764 DOI: 10.1007/s42770-024-01554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/21/2024] [Indexed: 03/09/2025] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) stands as a prevalent bacterial cause of global diarrheal incidents. ETEC's primary virulence factors encompass the B subunit of the Heat Labile Enterotoxin, along with the adhesion factors CfaB and EtpA. In this study, we isolated IgY antibodies against the three virulence factors individually, in pairs, and as triple cocktails. The in vitro efficacy of these IgY antibodies was examined, focusing on inhibiting heat-labile enterotoxin (LT) toxin cytotoxicity and impeding ETEC adherence to HT29 cells. Assessing the impact of IgY-treated bacteria on intestinal epithelial cells utilized the standard ileal loop method. Results demonstrated that the anti-LTB IgY antibody at 125 µg/ml and IgY antibodies from double and tertiary cocktails at 200 µg/ml effectively inhibited LT toxin attachment to the Y1 cell line. Pre-incubation of HT29 intestinal cells with specific IgYs reduced bacterial attachment by 59.7%. In the ileal loop test, toxin neutralization with specific IgYs curtailed the toxin's function in the intestine, leading to a 74.8% reduction in fluid accumulation compared to control loops. These findings suggest that egg yolk immunoglobulins against recombinant proteins LTB, CfaB, and EtpA, either individually or in combination, hold promise as prophylactic antibodies to impede the functioning of ETEC bacteria.
Collapse
Affiliation(s)
- Maryam Mafi
- Department of Cell Biology, Shahed University, Tehran-Qom Expressway, Tehran, 3319118651, Iran
| | - Razieh Rezaei Adriani
- Department of Cell Biology, Shahed University, Tehran-Qom Expressway, Tehran, 3319118651, Iran
| | - Fatemeh Mohammadkhani
- Department of Cell Biology, Shahed University, Tehran-Qom Expressway, Tehran, 3319118651, Iran
| | | |
Collapse
|
2
|
Chen W, Xiao H, Lin M, Zhou J, Xuan Q, Cui X, Zhao S. Preparation and evaluation of IgY against human papillomavirus. J Virol Methods 2025; 334:115115. [PMID: 39921191 DOI: 10.1016/j.jviromet.2025.115115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Human papillomavirus (HPV) infection is a major global health challenge and is closely related to the occurrence of diseases such as cervical cancer. Unfortunately, effective treatments are still lacking. In view of the advantages of antibody drugs, antibody-targeted therapy may become one of the means of treatment and prevention of HPV infection. This study explores the potential of antibody-targeted therapy using immunization with HPV nine-valent vaccine in Leghorn chickens. The resulting egg yolk antibodies (IgY) was extracted from eggs using the bitter-ammonium sulfate method and confirmed through SDS-PAGE analysis. The neutralizing titer was performed by pseudovirus-neutralizing antibody experiments, which could reach 1:2000 (18.2 μg/mL). This successful preparation of IgY against HPV 6/11/16/18/31/33/45/52/58-L1 protein showed its potential as a therapeutic agent, particularly post-HPV16 infection. This work lays the groundwork for HPV-specific IgY preparation and contributes to advancing targeted therapies for cervical cancer, prompting further research in HPV-related therapeutic approaches.
Collapse
Affiliation(s)
- Weiguang Chen
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Huanxin Xiao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Mingxia Lin
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jiqing Zhou
- Locking Antibody (Hunan) Medical Technology Co. Ltd., Hunan 411100, PR China
| | - Qiancheng Xuan
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiping Cui
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
3
|
Wang Z, Ye R, Zhang S, Liu C, Chen K, Zhu K, Wang P, Wang F, Huang J. Amelioration of LPS-Induced Jejunum Injury and Mucus Barrier Damage in Mice by IgY Embedded in W/O/W Emulsion. Foods 2024; 13:4138. [PMID: 39767078 PMCID: PMC11675984 DOI: 10.3390/foods13244138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Chicken yolk immunoglobulin (IgY) is a natural immunologically active antibody extracted from egg yolk and can be used as a natural dietary supplement for the treatment of inflammation and damage to the intestines. In our study, IgY was embedded in a double emulsion (W/O/W; DE) to explore the therapeutic effect of the embedded IgY on Lipopolysaccharide (LPS)-induced jejunal injury in mice. The results showed that W/O/W-embedded IgY as a dietary supplement (IgY + DE) attenuated LPS-induced damage to mouse small intestinal structures and protected the integrity of the jejunal mucosal barrier. IgY + DE increased the amount of related transcription factors (Math1, Spdef, Elf3, and Klf4) and promoted thrush cell differentiation. IgY + DE ameliorated LPS-induced reduction in mucin quantity and markers. It promoted the expression of Muc1 and Muc2 and increased the mRNA expression levels of Muc1, Muc2, Muc3, Muc4, Muc13, and Agr2 (p < 0.05). IgY + DE increased the expression of several glycosyltransferases involved in mucin glycosylation. IgY + DE also neutralized the LPS attack on the expression of jejunal inflammatory factors IL-1β, IL-6, IL-4, and TNF-α. In conclusion, the IgY-embedded double emulsion can be used as a dietary supplement for immunotherapy to prevent LPS-induced jejunal injury in mice.
Collapse
Affiliation(s)
- Zhaohui Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| | - Ruihua Ye
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, China;
| | - Shidi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| | - Chuanming Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| | - Ke Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| | - Kongdi Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| | - Pengjie Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| | - Fuqing Wang
- Tibet Tianhong Science and Technology Co., Ltd., Lasha 851414, China
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| |
Collapse
|
4
|
Tabll AA, Shahein YE, Omran MM, Hussein NA, El-Shershaby A, Petrovic A, Glasnovic M, Smolic R, Smolic M. Monoclonal IgY antibodies: advancements and limitations for immunodiagnosis and immunotherapy applications. Ther Adv Vaccines Immunother 2024; 12:25151355241264520. [PMID: 39071998 PMCID: PMC11273732 DOI: 10.1177/25151355241264520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/09/2024] [Indexed: 07/30/2024] Open
Abstract
Due to their high specificity and scalability, Monoclonal IgY antibodies have emerged as a valuable alternative to traditional polyclonal IgY antibodies. This abstract provides an overview of the production and purification methods of monoclonal IgY antibodies, highlights their advantages over polyclonal IgY antibodies, and discusses their recent applications. Monoclonal recombinant IgY antibodies, in contrast to polyclonal IgY antibodies, offer several benefits. such as derived from a single B-cell clone, monoclonal antibodies exhibit superior specificity, ensuring consistent and reliable results. Furthermore, it explores the suitability of monoclonal IgY antibodies for low- and middle-income countries, considering their cost-effectiveness and accessibility. We also discussed future directions and challenges in using polyclonal IgY and monoclonal IgY antibodies. In conclusion, monoclonal IgY antibodies offer substantial advantages over polyclonal IgY antibodies regarding specificity, scalability, and consistent performance. Their recent applications in diagnostics, therapeutics, and research highlight their versatility.
Collapse
Affiliation(s)
- Ashraf A. Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Giza, 12622, Egypt
| | - Yasser E. Shahein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed M. Omran
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Nahla A. Hussein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Asmaa El-Shershaby
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Ana Petrovic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Marija Glasnovic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Robert Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Martina Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| |
Collapse
|
5
|
Li Z, Yan J, Bian Z, Zhang J, Liu Y, Deng J, Deng B, Han S. Protective effect of chicken yolk antibody Y against Campylobacter jejuni induced diarrhea in cats. Front Microbiol 2024; 15:1378029. [PMID: 38655089 PMCID: PMC11037399 DOI: 10.3389/fmicb.2024.1378029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Campylobacter jejuni (C. jejuni) is a common pathogen that often causes diarrhea, loss of appetite, and even enteritis in domestic cats, affecting their growth and development, especially in kittens under 6 months of age. Oral passive immunization with chicken yolk antibody Y has been proved effective for the treatment of gastrointestinal pathogen infections due to its high specificity. In this study, C. jejuni was isolated from diarrheal cat feces, and the specific egg yolk antibody Y against C. jejuni was demonstrated to effectively inhibit its proliferation in vitro experiments. To evaluate the effect of anti-C. jejuni IgY, the mouse C. jejuni infection model was established and it was found that IgY could alleviate C. jejuni-induced clinical symptoms. Consistent with these results, the reduction of pro-inflammatory factors and intestinal colonization by C. jejuni in the IgY-treated groups, especially in the high dose group. We then evaluated the protective effect of IgY on young Ragdoll cats infected with C. jejuni. This specific antibody reduced the rate of feline diarrhea, protected the growth of young cats, inhibited systemic inflammatory hyperactivation, and increased fecal short-chain fatty acid concentrations. Notably, IgY may have a protective role by changing intestinal amino acid metabolism and affecting C. jejuni chemotaxis. Collectively, specific IgY is a promising therapeutic strategy for C. jejuni-induced cat diarrhea.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Sufang Han
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Indhuprakash ST, S P, C DR, Thirumalai D. Efficacy evaluation of anti-DEC-IgY against antibiotic-resistant diarrhoeagenic Escherichia coli. J Med Microbiol 2024; 73. [PMID: 38314672 DOI: 10.1099/jmm.0.001801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Introduction. The rise of multi-drug-resistant bacteria poses a global threat. In 2017, the World Health Organization identified 12 antibiotic-resistant 'priority pathogens', including Enterobacteriaceae, highlighting the menace of Gram-negative bacteria. Diarrhoeagenic Escherichia coli (DEC)-induced diarrhoea is particularly problematic for travellers and infants. In contrast to other antibiotic alternatives, passive immunotherapy is showing promise by providing immediate and precise protection. However, mammalian-sourced antibodies are costly, hindering large-scale production. Egg-laying chicken-derived IgY antibodies present a cost-effective, high-yield solution, revolutionizing antibody-based therapeutics compared to mammalian IgG.Hypothesis/Gap Statement. This study hypothesized that developing anti-DEC-IgY could combat DEC infections effectively.Aim. The primary aim was to develop anti-DEC-IgY and assess its potential in DEC-induced diarrhoeal management.Method. Chickens were immunized with DEC antigens to induce an immune response. IgY antibodies were extracted from immune eggs and purified using ion-exchange column chromatography. Anti-DEC-IgY's ability to inhibit DEC growth was evaluated through growth inhibition assays. Anti-DEC-IgY's capacity to prevent E. coli adhesion was assessed using mice intestinal mucosa. In vivo experiments measured pathogen colonization reduction and infection severity reduction. P values were calculated to confirm statistical significance.Result. The antibacterial efficacy of anti-DEC-IgY by growth inhibition assay demonstrated that 25 mg ml-1 of IgY could inhibit the DEC growth. The anti-adherence-property was tested using mice intestinal mucosa and found that anti-DEC-IgY could prevent the E. coli adhesion. In vivo results suggest that 12 mg ml-1 of IgY will reduce the pathogen colonization in intestine and reduce the severity of the infection. The P values between the experimental groups confirm the statistical significance of the findings.Conclusion. The study findings suggest that IgY-based passive immunotherapy could be a potential strategy for managing the risks associated with antibiotic-resistant bacterial infections. Additionally, this study paves the way for the development of IgY-related research and applications in India.
Collapse
Affiliation(s)
- Srichandrasekar Thuthikkadu Indhuprakash
- Centre for Research in Infectious Diseases (CRID), Bioengineering, School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Panchapakesan S
- Central Animal Facility, School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - David Raj C
- Centre for Advanced Research in Indian System of Medicine, School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Diraviyam Thirumalai
- Centre for Research in Infectious Diseases (CRID), Bioengineering, School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| |
Collapse
|
7
|
Gopal G, Selvaraj H, Venkataramanan SK, Venkataraman S, Saravanan K, Bibina C, Ambi SV. Systematic review and meta-analysis on the efficacy of Indian polyvalent antivenom against the Indian snakes of clinical significance. Arch Toxicol 2024; 98:375-393. [PMID: 38153416 DOI: 10.1007/s00204-023-03643-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/16/2023] [Indexed: 12/29/2023]
Abstract
Snakebite in India is a severe problem as it causes a mortality rate of 58,000 and a disability rate of 140,000 every year which is the highest among any other country. Antivenom is the primary therapy for snakebite, and its manufacturing techniques have essentially stayed unaltered for over a century. Indian polyvalent antivenom, a scientifically validated medicine for treating the toxic effects of snakebites, is available against the venom of the so-called Big Four snakes namely Spectacled cobra (Naja naja), Saw-scaled viper (Echis carinatus), Russell's viper (Daboia russelli) and the Common krait (Bungarus caeruleus), responsible for majority of the deaths in India. India hosts many other species of snakes, including cobras, kraits, saw-scaled vipers, sea snakes, and pit vipers, responsible for clinically severe envenomation. Neutralization strategy has been applied to access the efficacy of antivenoms, crucial for reducing snake bite deaths and disabilities. This review aims to conduct a systematic review and meta-analysis on the neutralization efficiency of the Polyvalent Antivenom (PAV) and focus on the factors that may contribute to the poor recognition of the antivenom towards the venom toxins. Reports focusing on the investigation of antivenom efficacy were searched and collected from several databases. Preclinical studies that reported the neutralization efficacy of the commercial antivenom against the medically important snakes of India were included. The articles were screened based on the inclusion criteria and 8 studies were shortlisted for meta-analysis. Pooled proportion was calculated for the antivenom efficacy reported by the studies and was found to be statistically significant with a 95% confidence interval. The heterogenicity in the venom toxicity and neutralization potency of the antivenom was evident in the overall estimate (proportion) and individual data. We provide comprehensive evidence on antivenom efficacy against medically important snakes from various parts of India which may aid in identifying the gaps in snake envenomation therapy and the need for novel potentially improved treatment of snakebites.
Collapse
Affiliation(s)
- Gayathri Gopal
- Biopharmaceutical Research Lab, Anusandhan Kendra-1, School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur, Tamil Nadu, 613401, India
- Department of Bioengineering, School of Chemical and Biotechnology, , SASTRA Deemed-to-be-University, Thanjavur, Tamil Nadu, 613401, India
| | - Harish Selvaraj
- Biopharmaceutical Research Lab, Anusandhan Kendra-1, School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur, Tamil Nadu, 613401, India
| | - Suresh Krishna Venkataramanan
- Biopharmaceutical Research Lab, Anusandhan Kendra-1, School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur, Tamil Nadu, 613401, India
| | - Saraswathi Venkataraman
- Biopharmaceutical Research Lab, Anusandhan Kendra-1, School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur, Tamil Nadu, 613401, India
| | - Keerthana Saravanan
- Biopharmaceutical Research Lab, Anusandhan Kendra-1, School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur, Tamil Nadu, 613401, India
| | - Catherine Bibina
- Biopharmaceutical Research Lab, Anusandhan Kendra-1, School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur, Tamil Nadu, 613401, India
| | - Senthil Visaga Ambi
- Biopharmaceutical Research Lab, Anusandhan Kendra-1, School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur, Tamil Nadu, 613401, India.
- Department of Bioengineering, School of Chemical and Biotechnology, , SASTRA Deemed-to-be-University, Thanjavur, Tamil Nadu, 613401, India.
| |
Collapse
|
8
|
Liu X, Xiao H, Chao J, Jian S, Wu X, Lu J, Wang J, Chen C, Liu Y. Polyvalent passive vaccine candidates from egg yolk antibodies (IgY) of important outer membrane proteins (PF1380 and ExbB) of Pseudomonas fluorescens in fish. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109211. [PMID: 37944683 DOI: 10.1016/j.fsi.2023.109211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Polyvalent antibodies can resist multiple bacterial species, and immunoglobulin Y (IgY) antibody can be economically prepared in large quantities from egg yolk; further, IgY polyvalent antibodies have application value in aquaculture. The outer membrane proteins (OMPs) PF1380 and ExbB of Pseudomonas fluorescens were expressed and purified, and the corresponding IgY antibodies were prepared. PF1380, ExbB, and the corresponding IgY antibodies could activate the innate immune responses of chicken and Carassius auratus. The passive immunization to C. auratus showed that the IgY antibodies of PF1380 and ExbB had an immune protection rate, down-regulated the expression of antioxidant-related factors (MDA, SOD, GSH-Px, and CAT) to reduce the antioxidant reaction, down-regulated the expression of inflammation-related genes (IL-6, IL-8, TNF-α, and IL-1β) to reduce the inflammatory reaction, maintained the integrity of visceral tissue structure, and reduced apoptosis and damage of tissue cells in relation to P. fluorescens and Aeromonas hydrophila infections. Thus, the IgY antibodies of PF1380 and ExbB could be considered as passive polyvalent vaccine candidates in aquaculture.
Collapse
Affiliation(s)
- Xiang Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, China; Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China; Fuyang Normal University--Funan Rural Revitalization Collaborative Technology Service Center, Fuyang Normal University, Fuyang, 236041, China.
| | - Huihui Xiao
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, China; Fuyang Normal University--Funan Rural Revitalization Collaborative Technology Service Center, Fuyang Normal University, Fuyang, 236041, China
| | - Jia Chao
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, China; Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Sijie Jian
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Xiaoqing Wu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, China
| | - Juan Lu
- Fuyang Normal University--Funan Rural Revitalization Collaborative Technology Service Center, Fuyang Normal University, Fuyang, 236041, China
| | - Juan Wang
- Fuyang Normal University--Funan Rural Revitalization Collaborative Technology Service Center, Fuyang Normal University, Fuyang, 236041, China
| | - Chunlin Chen
- Fuyang Normal University--Funan Rural Revitalization Collaborative Technology Service Center, Fuyang Normal University, Fuyang, 236041, China
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, China; Fuyang Normal University--Funan Rural Revitalization Collaborative Technology Service Center, Fuyang Normal University, Fuyang, 236041, China.
| |
Collapse
|
9
|
Grzywa R, Łupicka-Słowik A, Sieńczyk M. IgYs: on her majesty's secret service. Front Immunol 2023; 14:1199427. [PMID: 37377972 PMCID: PMC10291628 DOI: 10.3389/fimmu.2023.1199427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
There has been an increasing interest in using Immunoglobulin Y (IgY) antibodies as an alternative to "classical" antimicrobials. Unlike traditional antibiotics, they can be utilized on a continual basis without leading to the development of resistance. The veterinary IgY antibody market is growing because of the demand for minimal antibiotic use in animal production. IgY antibodies are not as strong as antibiotics for treating infections, but they work well as preventative agents and are natural, nontoxic, and easy to produce. They can be administered orally and are well tolerated, even by young animals. Unlike antibiotics, oral IgY supplements support the microbiome that plays a vital role in maintaining overall health, including immune system function. IgY formulations can be delivered as egg yolk powder and do not require extensive purification. Lipids in IgY supplements improve antibody stability in the digestive tract. Given this, using IgY antibodies as an alternative to antimicrobials has garnered interest. In this review, we will examine their antibacterial potential.
Collapse
|
10
|
Xia M, Liu C, Ahn DU, Huang X, Jin Y, Cai Z. Large-scale isolation and purification of yolk immunoglobulin with different purity levels via a combination technique based on high-speed-shear crossflow membrane separation. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
Mohammadkhani F, Mousavi Gargari SL, Nazarian S, Mafi M. Protective effects of anti-CfaB-EtpA-LTB IgY antibody against adherence and toxicity of enterotoxigenic Escherichia coli (ETEC). J Appl Microbiol 2023; 134:6994376. [PMID: 36662123 DOI: 10.1093/jambio/lxad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/13/2022] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
AIM Production of IgY antibodies against CfaB-EtpA-LTB (CEL) chimeric protein and evaluation of its protective effects against enterotoxigenic Escherichia coli (ETEC) by in vivo and in vitro investigation. METHODS AND RESULTS Indirect ELISA and immunoblotting methods were applied to assess the immunogenicity and specificity of IgYs and also to evaluate the efficacy of IgYs in binding prevention and neutralizing the heat-labile (LT) toxin of ETEC bacteria. The results indicated that the anti-CEL IgY at a concentration of 2 mg ml-1 could decrease the bacterial adhesion to HT-29 cells by 74% compared to the control group.At a concentration of 750 μg ml-1, the IgY antibody managed to neutralize the disruptive LT toxin effect on the Y1 cell line. At a concentration of 2 mg ml-1, 81% reduction was observed in the fluid accumulation in the ileal loop assay. CONCLUSION According to our findings, passive immunotherapy with anti-CEL IgY can prevent bacterial colonization and toxicity, thus facilitating in controlling the enteric diseases caused by ETEC infection.
Collapse
Affiliation(s)
| | | | - Shahram Nazarian
- Department of Biology, Faculty of Basic Science, Imam Hossein University, Tehran, 1651155017, Iran
| | - Maryam Mafi
- Department of Biology, Shahed University, Tehran, 3319118651, Iran
| |
Collapse
|
12
|
IgY Antibodies as Biotherapeutics in Biomedicine. Antibodies (Basel) 2022; 11:antib11040062. [PMID: 36278615 PMCID: PMC9590010 DOI: 10.3390/antib11040062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Since the discovery of antibodies by Emil Von Behring and Shibasaburo Kitasato during the 19th century, their potential for use as biotechnological reagents has been exploited in different fields, such as basic and applied research, diagnosis, and the treatment of multiple diseases. Antibodies are relatively easy to obtain from any species with an adaptive immune system, but birds are animals characterized by relatively easy care and maintenance. In addition, the antibodies they produce can be purified from the egg yolk, allowing a system for obtaining them without performing invasive practices, which favors the three “rs” of animal care in experimentation, i.e., replacing, reducing, and refining. In this work, we carry out a brief descriptive review of the most outstanding characteristics of so-called “IgY technology” and the use of IgY antibodies from birds for basic experimentation, diagnosis, and treatment of human beings and animals.
Collapse
|