1
|
Sun W, Cao H, Liu D, Baranova A, Zhang F, Zhang X. Genetic association and drug target exploration of inflammation-related proteins with risk of major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111165. [PMID: 39383931 DOI: 10.1016/j.pnpbp.2024.111165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND In numerous observational studies, circulating inflammation-related proteins have been linked with major depressive disorder (MDD), yet the precise causal direction of this relationship remains unclear. This study aims to investigate the potential causal link between inflammation-related proteins and the risk of developing MDD. METHODS We utilized summary data from a genome-wide association study (GWAS) of 91 circulating inflammation-associated proteins in 14,824 individuals of European descent. Additionally, we incorporated findings from a substantial GWAS on MDD, which included 294,322 cases and 741,438 controls. Our analysis employed a two-sample bidirectional Mendelian randomization (MR) approach, with inverse variance weighting (IVW) as the primary method. We augmented this with two supplementary techniques (MR-Egger and weighted median approaches) to detect and address potential pleiotropy. Furthermore, to identify and evaluate possible drug targets, we conducted a thorough search within the Drug-Gene Interaction Database (DGIdb). RESULTS Analysis using MR unveiled significant and causative associations between genetically determined CASP-8 (odds ratio (OR): 0.97), CD40 (OR: 0.96), IL-18 (OR: 0.98), SLAMF1 (OR: 0.97), and uPA (OR: 0.98) with MDD. Conversely, reverse MR analysis indicated causal associations between MDD and CCL19 (OR: 1.15), HGF (OR: 1.15), IL-8 (OR: 1.10), IL-18 (OR: 1.11), IL20RA (OR: 1.12), TGFA (OR: 1.12) and TNFSF14 (OR: 1.16). Notably, a significant bidirectional causal link was observed between IL-18 and MDD. Gene-drug analysis identified CD40, HGF, IL-8, IL-18, SLAMF1, and TGFA as potential therapeutic targets. CONCLUSIONS We've pinpointed causal links between inflammation-related proteins and MDD, offering compelling and innovative evidence to enhance our understanding of the inflammatory mechanisms involved in MDD and to investigate potential targets for anti-MDD medications.
Collapse
Affiliation(s)
- Wenxi Sun
- Suzhou Medical College of Soochow University, Suzhou 215031, Jiangsu, China; Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Dongming Liu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing 210008, China; Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, VA, USA; Research Centre for Medical Genetics, Moscow, Russia
| | - Fuquan Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China; Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Xiaobin Zhang
- Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China.
| |
Collapse
|
2
|
O’Rourke SA, Shanley LC, Dunne A. The Nrf2-HO-1 system and inflammaging. Front Immunol 2024; 15:1457010. [PMID: 39380993 PMCID: PMC11458407 DOI: 10.3389/fimmu.2024.1457010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/30/2024] [Indexed: 10/10/2024] Open
Abstract
Nrf2 is a master transcriptional regulator of a number of genes involved in the adaptive response to oxidative stress. Among the genes upregulated by Nrf2, heme oxygenase-1 (HO-1) has received significant attention, given that the products of HO-1-induced heme catabolism have well established antioxidant and anti-inflammatory properties. This is evidenced in numerous models of inflammatory and autoimmune disease whereby induction of HO-1 expression or administration of tolerable amounts of HO-1 reaction products can ameliorate disease symptoms. Unsurprisingly, Nrf2 and HO-1 are now considered viable drug targets for a number of conditions. In recent years, the term 'inflammaging' has been used to describe the low-grade chronic inflammation observed in aging/aged cells. Increased oxidative stress is also a key factor associated with aging and there is convincing evidence that Nrf2, not only declines with age, but that Nrf2 and HO-1 can reduce cellular senescence and the senescence-associated secretory phenotype (SASP) which is now considered an underlying driver of age-related inflammatory disease. In this review, we describe the role of oxidative stress in 'inflammaging' and highlight the potential anti-aging properties of the Nrf2-HO-1 system. We also highlight established and newly emerging Nrf2 activators and their therapeutic application in age-related disease.
Collapse
Affiliation(s)
- Sinead A. O’Rourke
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Centre for Advanced Material and Bioengineering Research (AMBER), Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Lianne C. Shanley
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Centre for Advanced Material and Bioengineering Research (AMBER), Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Centre for Advanced Material and Bioengineering Research (AMBER), Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Han Q, Li W, Chen P, Wang L, Bao X, Huang R, Liu G, Chen X. Microglial NLRP3 inflammasome-mediated neuroinflammation and therapeutic strategies in depression. Neural Regen Res 2024; 19:1890-1898. [PMID: 38227513 DOI: 10.4103/1673-5374.390964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/22/2023] [Indexed: 01/17/2024] Open
Abstract
Previous studies have demonstrated a bidirectional relationship between inflammation and depression. Activation of the nucleotide-binding oligomerization domain, leucine-rich repeat, and NLR family pyrin domain-containing 3 (NLRP3) inflammasomes is closely related to the pathogenesis of various neurological diseases. In patients with major depressive disorder, NLRP3 inflammasome levels are significantly elevated. Understanding the role that NLRP3 inflammasome-mediated neuroinflammation plays in the pathogenesis of depression may be beneficial for future therapeutic strategies. In this review, we aimed to elucidate the mechanisms that lead to the activation of the NLRP3 inflammasome in depression as well as to provide insight into therapeutic strategies that target the NLRP3 inflammasome. Moreover, we outlined various therapeutic strategies that target the NLRP3 inflammasome, including NLRP3 inflammatory pathway inhibitors, natural compounds, and other therapeutic compounds that have been shown to be effective in treating depression. Additionally, we summarized the application of NLRP3 inflammasome inhibitors in clinical trials related to depression. Currently, there is a scarcity of clinical trials dedicated to investigating the applications of NLRP3 inflammasome inhibitors in depression treatment. The modulation of NLRP3 inflammasomes in microglia holds promise for the management of depression. Further investigations are necessary to ascertain the efficacy and safety of these therapeutic approaches as potential novel antidepressant treatments.
Collapse
Affiliation(s)
- Qiuqin Han
- Department of Scientific Research, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Wenhui Li
- Department of Scientific Research, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Peiqing Chen
- Department of Scientific Research, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Lijuan Wang
- Department of Scientific Research, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xiwen Bao
- Department of Scientific Research, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Renyan Huang
- Department of Traditional Chinese Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guobin Liu
- Department of Traditional Chinese Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaorong Chen
- Department of Physiology, Laboratory of Neurodegenerative Diseases, Changzhi Medical College, Changzhi, Shanxi Province, China
| |
Collapse
|
4
|
Yang YH, Li CX, Zhang RB, Shen Y, Xu XJ, Yu QM. A review of the pharmacological action and mechanism of natural plant polysaccharides in depression. Front Pharmacol 2024; 15:1348019. [PMID: 38389919 PMCID: PMC10883385 DOI: 10.3389/fphar.2024.1348019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Depression is a prevalent mental disorder. However, clinical treatment options primarily based on chemical drugs have demonstrated varying degrees of adverse reactions and drug resistance, including somnolence, nausea, and cognitive impairment. Therefore, the development of novel antidepressant medications that effectively reduce suffering and side effects has become a prominent area of research. Polysaccharides are bioactive compounds extracted from natural plants that possess diverse pharmacological activities and medicinal values. It has been discovered that polysaccharides can effectively mitigate depression symptoms. This paper provides an overview of the pharmacological action and mechanisms, intervention approaches, and experimental models regarding the antidepressant effects of polysaccharides derived from various natural sources. Additionally, we summarize the roles and potential mechanisms through which these polysaccharides prevent depression by regulating neurotransmitters, HPA axis, neurotrophic factors, neuroinflammation, oxidative stress, tryptophan metabolism, and gut microbiota. Natural plant polysaccharides hold promise as adjunctive antidepressants for prevention, reduction, and treatment of depression by exerting their therapeutic effects through multiple pathways and targets. Therefore, this review aims to provide scientific evidence for developing polysaccharide resources as effective antidepressant drugs.
Collapse
Affiliation(s)
- Yu-He Yang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chen-Xue Li
- Harbin University of Commerce, Harbin, China
| | | | - Ying Shen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xue-Jiao Xu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qin-Ming Yu
- Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
5
|
Qiu W, Zhang X, Pang X, Huang J, Zhou S, Wu R, Wang R, Tang Z, Su R. Tert-butylhydroquinone attenuates LPS-induced pyroptosis of IPEC-J2 cells via downregulating HMGB1/TLR4/NF-κB axis. J Anim Physiol Anim Nutr (Berl) 2024; 108:194-205. [PMID: 37675629 DOI: 10.1111/jpn.13878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/03/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
Inflammatory response induced by biological stress usually occurs in weaning piglets, it reduces the production performance of piglets and even causes death. Tert-butylhydroquinone (TBHQ) is a food additive that has the effect of anti-inflammation and anti-oxidation. However, there are few reports related to the protective mechanisms of TBHQ on lipopolysaccharide (LPS) induced injury in intestinal porcine epithelial (IPEC-J2) cells. Quantitative real-time polymerase chain reaction and western blot analysis, respectively, detected the mRNA levels and protein expressions related to pyroptosis, tight junction (TJ) protein and high-mobility group box 1/toll-like receptor 4/nuclear factor kappa-B (HMGB1/TLR4/NF-κB) axis. Localisation and expression of NOD-like receptor pyrin domain containing 3 (NLRP3), HMGB1 and P-NF-κB proteins detected by immunofluorescence. The results showed that TBHQ (12.5 and 25 μM) can increase cell activity and reduce intracellular lactate dehydrogenase (LDH) levels in a dose-dependent manner. LPS significantly decreases cell viability and increases the LDH level. However, pretreatment with TBHQ evidently increases cell viability and decreases the LDH level of IPEC-J2 cells. In addition, treatment with LPS decreased the mRNA level and protein expression of zonula occludens-1, occludin and claudin-1, and increased the mRNA level and protein expression of pyroptosis and HMGB1/TLR4/NF-κB axis. Interestingly, pretreatment with TBHQ increased the TJ protein expressions as well as decreased the mRNA level and protein expressions of pyroptosis and HMGB1/TLR4/NF-κB axis. Moreover, the results of immunofluorescence showed that TBHQ significantly reduced the expression of NLRP3, HMGB1 and P-NF-κB in LPS-induced injury of IPEC-J2 cells. Therefore, we come to the conclusion that TBHQ attenuates LPS-induced pyroptosis in IPEC-J2 cells through downregulation of the HMGB1/TLR4/NF-κB axis, TBHQ may become a potential feed additive for preventing inflammatory diarrhoea in piglets.
Collapse
Affiliation(s)
- Wenyue Qiu
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Xinting Zhang
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Xiaoyue Pang
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Jianjia Huang
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Shuilian Zhou
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Ruixia Wu
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Rongmei Wang
- Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Rongsheng Su
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Guo YX, Xia CY, Yan Y, Han Y, Shi R, He J, Wang YM, Wang ZX, Zhang WK, Xu JK. Loganin improves chronic unpredictable mild stress-induced depressive-like behaviors and neurochemical dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116288. [PMID: 36809822 DOI: 10.1016/j.jep.2023.116288] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cornus officinalis Sieb. et Zucc., is a valuable herb commonly used in Chinese medicine clinics. Loganin is a major iridoid glycoside obtained from the traditional Chinese herb Corni Fructus. Loganin, which has been shown to improve depression-like behavior in mice exposed to acute stress, is probably a potential antidepressant candidate. AIM OF THE STUDY Loganin was evaluated for its effect on chronic unpredictable mild stress (CUMS) induced depressive-like mice, and its action mechanisms were explored. MATERIALS AND METHODS ICR mice were subjected to the CUMS stimulation method to induce depression. The therapeutic effect of loganin on depressive-like behavior was evaluated by a series of behavioral tests such as sucrose preference test (SPT), forced swim test (FST), tail suspension test (TST) and open-field test (OFT). In addition, the serum levels of adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were measured using ELISA. The levels of monoamine neurotransmitters were detected by high performance liquid chromatography-electrochemical detection (HPLC-ECD). The levels of brain-derived neurotrophic factor (BDNF) in the hippocampus were measured using western blot analysis. RESULTS The results showed that CUMS induced depressive-like behaviors in mice, as indicated by behavioral tests. Administration of loganin increased the sucrose preference in SPT, as well as decreased the immobility time in FST and TST. Loganin could also improve food intake, and increased crossing times in the OFT. In mechanism, loganin restored the secretion of monoamine neurotransmitters, ACTH and CORT to normal levels. In addition, loganin elevated the expression of BDNF in the hippocampus. In conclusion, loganin exerts antidepressant-like effects in CUMS model mice through modulating monoamine neurotransmitters, ACTH, CORT and BDNF. CONCLUSION Loganin effectively ameliorated depressive-like symptoms in CUMS-exposed mice by increasing 5-hydroxytryptamine (5-HT) and dopamine (DA) levels, alleviating hypothalamic-pituitary-adrenal (HPA) axis dysfunction, and increasing BDNF expression. In conclusion, the findings of the current study extensive evidence for the application of loganin in stress-associated disorders, specifically targeting depression.
Collapse
Affiliation(s)
- Yu-Xuan Guo
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yu Yan
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yan Han
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Rui Shi
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yu-Ming Wang
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Ze-Xing Wang
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Wei-Ku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| |
Collapse
|
7
|
Xia CY, Guo YX, Lian WW, Yan Y, Ma BZ, Cheng YC, Xu JK, He J, Zhang WK. The NLRP3 inflammasome in depression: Potential mechanisms and therapies. Pharmacol Res 2023; 187:106625. [PMID: 36563870 DOI: 10.1016/j.phrs.2022.106625] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/20/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022]
Abstract
Increasing evidence suggests that the failure of clinical antidepressants may be related with neuroinflammation. The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is an intracellular multiprotein complex, and has been considered as a key contributor to the development of neuroinflammation. Inhibition of NLRP3 inflammasome is an effective method for depression treatment. In this review, we summarized current researches highlighting the role of NLRP3 inflammasome in the pathology of depression. Firstly, we discussed NLRP3 inflammasome activation in patients with depression and animal models. Secondly, we outlined the possible mechanisms driving the activation of NLRP3 inflammasome. Thirdly, we discussed the pathogenetic role of NLRP3 inflammasome in depression. Finally, we overviewed the current and potential antidepressants targeting the NLRP3 inflammasome. Overall, the inhibition of NLRP3 inflammasome activation may be a potential therapeutic strategy for inflammation-related depression.
Collapse
Affiliation(s)
- Cong-Yuan Xia
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Yu-Xuan Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Wen-Wen Lian
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Bing-Zhi Ma
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Yung-Chi Cheng
- School of Medicine, Yale University, New Haven, CT, United States
| | - Jie-Kun Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| | - Wei-Ku Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| |
Collapse
|
8
|
Zuo C, Cao H, Song Y, Gu Z, Huang Y, Yang Y, Miao J, Zhu L, Chen J, Jiang Y, Wang F. Nrf2: An all-rounder in depression. Redox Biol 2022; 58:102522. [PMID: 36335763 PMCID: PMC9641011 DOI: 10.1016/j.redox.2022.102522] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
The balance between oxidation and antioxidant is crucial for maintaining homeostasis. Once disrupted, it can lead to various pathological outcomes and diseases, such as depression. Oxidative stress can result in or aggravate a battery of pathological processes including mitochondrial dysfunction, neuroinflammation, autophagical disorder and ferroptosis, which have been found to be involved in the development of depression. Inhibition of oxidative stress and related pathological processes can help improve depression. In this regard, the nuclear factor erythroid 2-related factor 2 (Nrf2) in the antioxidant defense system may play a pivotal role. Nrf2 activation can not only regulate the expression of a series of antioxidant genes that reduce oxidative stress and its damages, but also directly regulate the genes related to the above pathological processes to combat the corresponding alterations. Therefore, targeting Nrf2 has great potential for the treatment of depression. Activation of Nrf2 has antidepressant effect, but the specific mechanism remains to be elucidated. This article reviews the key role of Nrf2 in depression, focusing on the possible mechanisms of Nrf2 regulating oxidative stress and related pathological processes in depression treatment. Meanwhile, we summarize some natural and synthetic compounds targeting Nrf2 in depression therapy. All the above may provide new insights into targeting Nrf2 for the treatment of depression and provide a broad basis for clinical transformation.
Collapse
|