1
|
Liu Z, Yuan J, Zeng Q, Wu Z, Han J. UBAP2 contributes to radioresistance by enhancing homologous recombination through SLC27A5 ubiquitination in hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167481. [PMID: 39186963 DOI: 10.1016/j.bbadis.2024.167481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/03/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Radiotherapy stands as an effective method in the clinical treatment of hepatocellular carcinoma (HCC) patients. However, both primary and acquired radioresistance limit its clinical application in HCC. Therefore, investigating the mechanism of radioresistance may provide other options for treating HCC. Based on single-cell RNA sequencing (scRNA-seq) and HCC transcriptome datasets, 227 feature genes with prognostic value were selected to establish the tSNE score. The tSNE score emerged as an independent prognostic factor for HCC and correlated with cell proliferation and radioresistance-related biological functions. UBAP2 was identified as the most relevant gene with the tSNE score, consistently elevated in human HCC samples, and positively associated with patient prognosis. Functionally, UBAP2 knockdown impeded HCC development and reduced radiation resistance in vitro and in vivo. The ectopic expression of SLC27A5 reversed the effects of UBAP2. Mechanically, we uncovered that UBAP2, through the ubiquitin-proteasome system, decreased the homologous recombination-related gene RAD51, not the non-homologous end-joining (NHEJ)-related gene CTIP, by degrading the antioncogene SLC27A5, thereby generating radioresistance in HCC. The findings recapitulated that UBAP2 promoted HCC progression and radioresistance via SLC27A5 stability mediated by the ubiquitin-proteasome pathway. It was also suggested that targeting the UBAP2/SLC27A5 axis could be a valuable radiosensitization strategy in HCC.
Collapse
Affiliation(s)
- Zijian Liu
- Laboratory of Liquid Biopsy and Single Cell Research, Department of Radiation Oncology and Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Jingsheng Yuan
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiwen Zeng
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenru Wu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiaqi Han
- Laboratory of Liquid Biopsy and Single Cell Research, Department of Radiation Oncology and Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
2
|
Jin K, Zhao D, Zhou J, Zhang X, Wang Y, Wu Z. Pulsed electromagnetic fields inhibit IL-37 to alleviate CD8 + T cell dysfunction and suppress cervical cancer progression. Apoptosis 2024; 29:2108-2127. [PMID: 39404933 DOI: 10.1007/s10495-024-02006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 11/10/2024]
Abstract
Pulsed electromagnetic field (PEMF) therapy is a potential non-invasive treatment to modulate immune responses and inhibit tumor growth. Cervical cancer (CC) is influenced by IL-37-mediated immune regulation, making PEMF therapy a potential strategy to impede CC progression. This study aimed to elucidate the effects of PEMF on IL-37 regulation and its molecular mechanisms in CC. CC cell-xenografted mouse models, including IL-37 transgenic (IL-37tg) mice, were used to assess tumor growth through in vivo fluorescence imaging and analyze CC cell apoptosis via flow cytometry. TCGA-CESC transcriptome and clinical data were analyzed to identify key inflammation and immune-related genes. CD8+ T cell models were stimulated with PEMF, and apoptosis, oxidative stress, and inflammatory factor expression were analyzed through RT-qPCR, Western blot, and flow cytometry. PEMF treatment significantly inhibited IL-37 expression (p < 0.05), promoted inflammatory factor release (TNF-α and IL-6), and activated oxidative stress, leading to increased CC cell apoptosis (p < 0.05). IL-37 interaction with SMAD3 impacted the p38/NF-κB signaling pathway, modulating CD8+ T cell activity and cytotoxicity. Co-culture of Hela cells with CD8+ T cells under PEMF treatment showed reduced proliferation (by 40%), migration, and invasion (p < 0.05). In vivo experiments with CC-bearing mice demonstrated that PEMF treatment downregulated IL-37 expression (p < 0.05), enhanced CD8+ T cell function, and inhibited tumor growth (p < 0.05). These molecular mechanisms were validated through RT-qPCR, Western blot, and immunohistochemistry. Thus, PEMF therapy inhibits CC progression by downregulating IL-37 and improving CD8+ T cell function via the SMAD3/p38/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ke Jin
- Department of Oncology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Dan Zhao
- Department of Oncology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jun Zhou
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xun Zhang
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West 2nd Section, First Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China
| | - Yujue Wang
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West 2nd Section, First Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China.
| | - Zhao Wu
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West 2nd Section, First Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China.
| |
Collapse
|
3
|
Pan X, Qian H, Sun Z, Yi Q, Liu Y, Lan G, Chen J, Wang G. Investigating the role of disulfidptosis related genes in radiotherapy resistance of lung adenocarcinoma. Front Med (Lausanne) 2024; 11:1473080. [PMID: 39507711 PMCID: PMC11539857 DOI: 10.3389/fmed.2024.1473080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Background Radiotherapy resistance is an important reason for high mortality in lung cancer patients, but the mechanism is still unclear. Dysregulation of cell proliferation and death plays a crucial role in the onset and progression of lung adenocarcinoma (LUAD). In recent times, a novel form of cellular demise called disulfidptosis, has attracted increasing attention. However, it is unclear whether the radiation-related disulfidptosis genes have prognostic role in LUAD. Methods A complete suite of bioinformatics tools was used to analyze the expression and prognostic significance of radiation-related disulfidptosis genes. Afterward, we investigated the predictive significance of the risk signature in tumor microenvironments (TME), somatic mutations, and immunotherapies. In addition, we conducted a series of experiments to verify the expression of differentially expressed radiotherapy related disulfidptosis genes (DERRDGs) in vitro. Results A total of 88 DERRDGs were found. We constructed and validated a novel prognostic model based on PRELP, FGFBP1, CIITA and COL5A1. The enrichment analysis showed the DERRDG affected tumor prognosis by influencing tumor microenvironments (TME) and immunotherapy. And we constructed nomogram to promote clinical application. In addition, q-PCR confirmed the significant differences in the expression of prognostic genes between A549 irradiation-resistance cell and A549. Finally, western-blot, IHC staining, and small interference experiment suggested that PRELP may be a potential biomarker for radiotherapy resistance, whose low expression was associated with poor outcomes in LUAD patients. Conclusion This study reveals the signature and possible underlying mechanisms of DERRDGs in LUAD and discovered the key gene PRELP, which helps to identify new prognostic biomarkers and provides a basis for future research.
Collapse
Affiliation(s)
- Xiaoxia Pan
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University and Medical School of Nantong University, Nantong, China
| | - Hongyan Qian
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University and Medical School of Nantong University, Nantong, China
| | - Zhouna Sun
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University and Medical School of Nantong University, Nantong, China
| | - Qiong Yi
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Ying Liu
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University and Medical School of Nantong University, Nantong, China
| | - Gangzhi Lan
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University and Medical School of Nantong University, Nantong, China
| | - Jia Chen
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University and Medical School of Nantong University, Nantong, China
- Department of Oncology Internal Medicine, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Gaoren Wang
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University and Medical School of Nantong University, Nantong, China
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| |
Collapse
|
4
|
Zheng W, Ling S, Cao Y, Shao C, Sun X. Combined use of NK cells and radiotherapy in the treatment of solid tumors. Front Immunol 2024; 14:1306534. [PMID: 38264648 PMCID: PMC10803658 DOI: 10.3389/fimmu.2023.1306534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024] Open
Abstract
Natural killer (NK) cells are innate lymphocytes possessing potent tumor surveillance and elimination activity. Increasing attention is being focused on the role of NK cells in integral antitumor strategies (especially immunotherapy). Of note, therapeutic efficacy is considerable dependent on two parameters: the infiltration and cytotoxicity of NK cells in tumor microenvironment (TME), both of which are impaired by several obstacles (e.g., chemokines, hypoxia). Strategies to overcome such barriers are needed. Radiotherapy is a conventional modality employed to cure solid tumors. Recent studies suggest that radiotherapy not only damages tumor cells directly, but also enhances tumor recognition by immune cells through altering molecular expression of tumor or immune cells via the in situ or abscopal effect. Thus, radiotherapy may rebuild a NK cells-favored TME, and thus provide a cost-effective approach to improve the infiltration of NK cells into solid tumors, as well as elevate immune-activity. Moreover, the radioresistance of tumor always hampers the response to radiotherapy. Noteworthy, the puissant cytotoxic activity of NK cells not only kills tumor cells directly, but also increases the response of tumors to radiation via activating several radiosensitization pathways. Herein, we review the mechanisms by which NK cells and radiotherapy mutually promote their killing function against solid malignancies. We also discuss potential strategies harnessing such features in combined anticancer care.
Collapse
Affiliation(s)
- Wang Zheng
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sunkai Ling
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuandong Cao
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chunlin Shao
- Institution of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Dong Y, Chen J, Chen Y, Liu S. Targeting the STAT3 oncogenic pathway: Cancer immunotherapy and drug repurposing. Biomed Pharmacother 2023; 167:115513. [PMID: 37741251 DOI: 10.1016/j.biopha.2023.115513] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
Immune effector cells in the microenvironment tend to be depleted or remodeled, unable to perform normal functions, and even promote the malignant characterization of tumors, resulting in the formation of immunosuppressive microenvironments. The strategy of reversing immunosuppressive microenvironment has been widely used to enhance the tumor immunotherapy effect. Signal transducer and activator of transcription 3 (STAT3) was found to be a crucial regulator of immunosuppressive microenvironment formation and activation as well as a factor, stimulating tumor cell proliferation, survival, invasiveness and metastasis. Therefore, regulating the immune microenvironment by targeting the STAT3 oncogenic pathway might be a new cancer therapy strategy. This review discusses the pleiotropic effects of STAT3 on immune cell populations that are critical for tumorigenesis, and introduces the novel strategies targeting STAT3 oncogenic pathway for cancer immunotherapy. Lastly, we summarize the conventional drugs used in new STAT3-targeting anti-tumor applications.
Collapse
Affiliation(s)
- Yushan Dong
- Graduate School of Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin, Heilongjiang, China
| | - Jingyu Chen
- Department of Chinese Medicine Internal Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, No. 1 Xiyuan Playground, Haidian District, Beijing, China
| | - Yuhan Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Songjiang Liu
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, No.26, Heping Road, Xiangfang District, Harbin, Heilongjiang Province, China.
| |
Collapse
|
6
|
Tamai Y, Fujiwara N, Tanaka T, Mizuno S, Nakagawa H. Combination Therapy of Immune Checkpoint Inhibitors with Locoregional Therapy for Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:5072. [PMID: 37894439 PMCID: PMC10605879 DOI: 10.3390/cancers15205072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is estimated to be the fourth leading cause of cancer-related deaths globally, and its overall prognosis is dismal because most cases are diagnosed at a late stage and are unamenable to curative treatment. The emergence of immune checkpoint inhibitors (ICIs) has dramatically improved the therapeutic efficacy for advanced hepatocellular carcinoma; however, their response rates remain unsatisfactory, partly because >50% of HCC exhibit an ICI-nonresponsive tumor microenvironment characterized by a paucity of cytotoxic T cells (immune-cold), as well as difficulty in their infiltration into tumor sites (immune excluded). To overcome this limitation, combination therapies with locoregional therapies, including ablation, transarterial embolization, and radiotherapy, which are usually used for early stage HCCs, have been actively explored to enhance ICI efficacy by promoting the release of tumor-associated antigens and cytokines, and eventually accelerating the so-called cancer-immunity cycle. Various combination therapies have been investigated in early- to late-phase clinical trials, and some have shown promising results. This comprehensive article provides an overview of the immune landscape for HCC to understand ICI efficacy and its limitations and, subsequently, reviews the status of combinatorial therapies of ICIs with locoregional therapy for HCC.
Collapse
Affiliation(s)
- Yasuyuki Tamai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (Y.T.); (T.T.); (H.N.)
| | - Naoto Fujiwara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (Y.T.); (T.T.); (H.N.)
| | - Takamitsu Tanaka
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (Y.T.); (T.T.); (H.N.)
| | - Shugo Mizuno
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan;
| | - Hayato Nakagawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (Y.T.); (T.T.); (H.N.)
| |
Collapse
|
7
|
Yousef EH, El-Magd NFA, El Gayar AM. Norcantharidin potentiates sorafenib antitumor activity in hepatocellular carcinoma rat model through inhibiting IL-6/STAT3 pathway. Transl Res 2023; 260:69-82. [PMID: 37257560 DOI: 10.1016/j.trsl.2023.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
In hepatocellular carcinoma (HCC), sorafenib (Sora) efficacy is limited by primary and/or acquired resistance. Emerging evidence shows that the inflammatory factor interleukin 6 (IL-6) plays a role in Sora resistance. Norcantharidin (NCTD), a derivative of cantharidine, was identified as a potent IL-6 inhibitor. Thus, in this study, we evaluated NCTD ability to improve the Sora efficacy in HCC and its underlying molecular mechanisms. Male Sprague Dawely rats were administered NCTD (0.1 mg/kg/day; orally) or Sora (10 mg/kg day; orally) or combination for 6 weeks after HCC induction using thioacetamide (200 mg/kg; ip; 2 times/wk) for 16 weeks. Our results showed that NCTD greatly enhanced Sora activity against HCC and potentiated Sora-induced oxidative stress. NCTD enhanced Sora-induced tumor immunity reactivation by decreasing both fibrinogen-like protein 1 level and increasing both tumor necrosis factor-α gene expression along with CD8+ T cells number. Also, NCTD augmented Sora attenuation activity against TAA-induced angiogenesis and metastasis by decreasing VEGFA, HIF-1α, serum lactate dehydrogenase enzyme, and vimentin levels. The combined use of NCTD/Sora suppressed drug resistance and stemness by downregulating ATP-binding cassette subfamily G member 2, neurogenic locus notch homolog protein, spalt-like transcription factor 4, and CD133. NCTD boosted Sora antiproliferative and apoptotic activities by decreasing Ccnd1 and BCL2 expressions along with increasing BAX and caspase-3 expressions. To our knowledge, this study represents the first study providing evidence for the potential novel therapeutic use of NCTD/Sora combination for HCC. Moreover, no previous studies have reported the effect of NCTD on FGL1.
Collapse
Affiliation(s)
- Eman H Yousef
- Biochemistry department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Biochemistry department, Faculty of Pharmacy, Horus University-Egypt, Damietta, Egypt.
| | - Nada F Abo El-Magd
- Biochemistry department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amal M El Gayar
- Biochemistry department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
8
|
Wang X, Xu S, Fu T, Wu Y, Sun W. Combination of downregulating FEN1 and PD-1 blockade enhances antitumor activity of CD8+ T cells against HNSCC cells in vitro. J Oral Pathol Med 2023; 52:834-842. [PMID: 37728572 DOI: 10.1111/jop.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Programmed cell death ligand 1 (PD-L1) and human leukocyte antigen/major histocompatibility complex (HLA/MHC) are two main kinds of immunophenotypes affecting the susceptibility to anti-PD therapy. Our previous study found that down-regulation of flap endonuclease-1 (FEN1) could not only inhibit PD-L1 expression, but also upregulate HLA expression in head and neck squamous cell carcinoma (HNSCC). We aimed to clarify whether downregulating FEN1 cloud enhance the response to PD-1 blockade, and possible mechanisms in HNSCC in vitro. METHODS Differential expression of FEN1 in HNSCC tumor and normal tissues were explored in the TIMER and TISIDB datasets. A HNSCC cells/CD8+ T cells co-culture model was established. HNSCC cell cycle and apoptosis were recorded by flow cytometry. Immune activity markers of granzyme A, granzyme B, and PRF1 expressed in the CD8+ T cells, and IFN-γ, IL-2, and TNF-α secreted in the supernatants were detected by western blot, ELISA, respectively. RESULTS FEN1 was highly expressed in HNSCC and associated with low immune infiltration. Downregulating FEN1 could induce HLA class I expression, and inhibit PD-L1 expression in HNSCC cells. Functionally, FEN1 knockdown enhanced the response to αPD-1 mAb by mediating G2/M phase arrest, apoptosis of HNSCC cells. Mechanistically, targeting FEN1 synergized with αPD-1 mAb could reinforce the antitumor response of CD8+ T cells against HNSCC cells, as indicated by increasing granzyme A, granzyme B, and PRF1 expressions, and promoting IFN-γ, IL-2, and TNF-α secretions. CONCLUSION These findings might offer a potential combined strategy for patients resistant to anti-PD therapy via combining FEN1 knockdown and PD-1 blockade.
Collapse
Affiliation(s)
- Xiangjian Wang
- Department of Oral Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shenjie Xu
- Department of Oral Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Fu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Wu
- Department of General Dentistry, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weilian Sun
- Department of Oral Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Shao Y, Su R, Wang Y, Yin S, Pu W, Koo S, Yu H. Drug co-administration in the tumor immune microenvironment of Hepatocellular carcinoma. ACUPUNCTURE AND HERBAL MEDICINE 2023; 3:189-199. [DOI: 10.1097/hm9.0000000000000074] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The etiology and exact molecular mechanisms of primary hepatocellular carcinoma (HCC) remain unclear, and its incidence has continued to increase in recent years. Despite tremendous advances in systemic therapies such as molecularly targeted drugs, HCC has some of the worst prognoses owing to drug resistance, frequent recurrence, and metastasis. Hepatocellular carcinoma is a widespread disease and its progression is regulated by the immune system. Traditional Chinese medicine (TCM) has been gradually theorized and systematized to have a holistic regulatory role for use in the prevention and treatment of tumors. Although half of the patients with HCC receive systemic therapy, traditionally sorafenib or lenvatinib are used as first-line treatment modalities. TCM is also widely used in the treatment of HCC, and the same immune checkpoint inhibitors (ICIs) such as PD-L1 have also received much focus in the field of continuously changing cancer treatment. Owing to the high probability of resistance to specific drugs and unsatisfactory efficacy due to administration of chemotherapy in single doses, the combination of drugs is the newest therapeutic option for patients with tumors and has become increasingly prominent for treatment. In this article, the research progress on combination therapy in the immunology of HCC is reviewed and the unique advantages of synergistic anti-tumor therapy with combination drugs are highlighted to provide new solutions for the clinical treatment of tumors.
Graphical abstract:
http://links.lww.com/AHM/A65
Collapse
Affiliation(s)
- Yingying Shao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Ranran Su
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Yu Wang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Shuangshuang Yin
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Weiling Pu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Sangho Koo
- Department of Energy Science and Technology, Department of Chemistry, Myongji University, Yongin, Gyeonggi-Do, Korea
| | - Haiyang Yu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| |
Collapse
|
10
|
Li Y, Zhu Q, Zhou S, Chen J, Du A, Qin C. Combined bulk RNA and single-cell RNA analyses reveal TXNL4A as a new biomarker for hepatocellular carcinoma. Front Oncol 2023; 13:1202732. [PMID: 37305572 PMCID: PMC10248245 DOI: 10.3389/fonc.2023.1202732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) has a high mortality rate worldwide. The dysregulation of RNA splicing is a major event leading to the occurrence, progression, and drug resistance of cancer. Therefore, it is important to identify new biomarkers of HCC from the RNA splicing pathway. Methods We performed the differential expression and prognostic analyses of RNA splicing-related genes (RRGs) using The Cancer Genome Atlas-liver hepatocellular carcinoma (LIHC). The International Cancer Genome Consortium (ICGC)-LIHC dataset was used to construct and validate prognostic models, and the PubMed database was used to explore genes in the models to identify new markers. The screened genes were subjected to genomic analyses, including differential, prognostic, enrichment, and immunocorrelation analyses. Single-cell RNA (scRNA) data were used to further validate the immunogenetic relationship. Results Of 215 RRGs, we identified 75 differentially expressed prognosis-related genes, and a prognostic model incorporating thioredoxin like 4A (TXNL4A) was identified using least absolute shrinkage and selection operator regression analysis. ICGC-LIHC was used as a validation dataset to confirm the validity of the model. PubMed failed to retrieve HCC-related studies on TXNL4A. TXNL4A was highly expressed in most tumors and was associated with HCC survival. Chi-squared analyses indicated that TXNL4A expression positively correlated positively with the clinical features of HCC. Multivariate analyses revealed that high TXNL4A expression was an independent risk factor for HCC. Immunocorrelation and scRNA data analyses indicated that TXNL4A was correlated with CD8 T cell infiltration in HCC. Conclusion Therefore, we identified a prognostic and immune-related marker for HCC from the RNA splicing pathway.
Collapse
Affiliation(s)
- Yifan Li
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Qiaozhen Zhu
- Infection and Immunity Institute and Translational Medical Center, Huaihe Hospital, Kaifeng, Henan, China
| | - Shuchang Zhou
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Jiangtao Chen
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Aoyu Du
- Department of Plastic Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Changjiang Qin
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| |
Collapse
|
11
|
Hashemi M, Sabouni E, Rahmanian P, Entezari M, Mojtabavi M, Raei B, Zandieh MA, Behroozaghdam M, Mirzaei S, Hushmandi K, Nabavi N, Salimimoghadam S, Ren J, Rashidi M, Raesi R, Taheriazam A, Alexiou A, Papadakis M, Tan SC. Deciphering STAT3 signaling potential in hepatocellular carcinoma: tumorigenesis, treatment resistance, and pharmacological significance. Cell Mol Biol Lett 2023; 28:33. [PMID: 37085753 PMCID: PMC10122325 DOI: 10.1186/s11658-023-00438-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/15/2023] [Indexed: 04/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is considered one of the greatest challenges to human life and is the most common form of liver cancer. Treatment of HCC depends on chemotherapy, radiotherapy, surgery, and immunotherapy, all of which have their own drawbacks, and patients may develop resistance to these therapies due to the aggressive behavior of HCC cells. New and effective therapies for HCC can be developed by targeting molecular signaling pathways. The expression of signal transducer and activator of transcription 3 (STAT3) in human cancer cells changes, and during cancer progression, the expression tends to increase. After induction of STAT3 signaling by growth factors and cytokines, STAT3 is phosphorylated and translocated to the nucleus to regulate cancer progression. The concept of the current review revolves around the expression and phosphorylation status of STAT3 in HCC, and studies show that the expression of STAT3 is high during the progression of HCC. This review addresses the function of STAT3 as an oncogenic factor in HCC, as STAT3 is able to prevent apoptosis and thus promote the progression of HCC. Moreover, STAT3 regulates both survival- and death-inducing autophagy in HCC and promotes cancer metastasis by inducing the epithelial-mesenchymal transition (EMT). In addition, upregulation of STAT3 is associated with the occurrence of chemoresistance and radioresistance in HCC. Specifically, non-protein-coding transcripts regulate STAT3 signaling in HCC, and their inhibition by antitumor agents may affect tumor progression. In this review, all these topics are discussed in detail to provide further insight into the role of STAT3 in tumorigenesis, treatment resistance, and pharmacological regulation of HCC.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Eisa Sabouni
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Behnaz Raei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, 200032, China
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Hashemi M, Nadafzadeh N, Imani MH, Rajabi R, Ziaolhagh S, Bayanzadeh SD, Norouzi R, Rafiei R, Koohpar ZK, Raei B, Zandieh MA, Salimimoghadam S, Entezari M, Taheriazam A, Alexiou A, Papadakis M, Tan SC. Targeting and regulation of autophagy in hepatocellular carcinoma: revisiting the molecular interactions and mechanisms for new therapy approaches. Cell Commun Signal 2023; 21:32. [PMID: 36759819 PMCID: PMC9912665 DOI: 10.1186/s12964-023-01053-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/15/2023] [Indexed: 02/11/2023] Open
Abstract
Autophagy is an evolutionarily conserved process that plays a role in regulating homeostasis under physiological conditions. However, dysregulation of autophagy is observed in the development of human diseases, especially cancer. Autophagy has reciprocal functions in cancer and may be responsible for either survival or death. Hepatocellular carcinoma (HCC) is one of the most lethal and common malignancies of the liver, and smoking, infection, and alcohol consumption can lead to its development. Genetic mutations and alterations in molecular processes can exacerbate the progression of HCC. The function of autophagy in HCC is controversial and may be both tumor suppressive and tumor promoting. Activation of autophagy may affect apoptosis in HCC and is a regulator of proliferation and glucose metabolism. Induction of autophagy may promote tumor metastasis via induction of EMT. In addition, autophagy is a regulator of stem cell formation in HCC, and pro-survival autophagy leads to cancer cell resistance to chemotherapy and radiotherapy. Targeting autophagy impairs growth and metastasis in HCC and improves tumor cell response to therapy. Of note, a large number of signaling pathways such as STAT3, Wnt, miRNAs, lncRNAs, and circRNAs regulate autophagy in HCC. Moreover, regulation of autophagy (induction or inhibition) by antitumor agents could be suggested for effective treatment of HCC. In this paper, we comprehensively review the role and mechanisms of autophagy in HCC and discuss the potential benefit of targeting this process in the treatment of the cancer. Video Abstract.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloufar Nadafzadeh
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Hassan Imani
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahr-E Kord Branch, Islamic Azad University, Tehran, Chaharmahal and Bakhtiari, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Setayesh Ziaolhagh
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Raheleh Norouzi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reihaneh Rafiei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Behnaz Raei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Wang CL, Ho AS, Chang CC, Sie ZL, Peng CL, Chang J, Cheng CC. Radiotherapy enhances CXCR3 highCD8 + T cell activation through inducing IFNγ-mediated CXCL10 and ICAM-1 expression in lung cancer cells. Cancer Immunol Immunother 2023; 72:1865-1880. [PMID: 36688994 DOI: 10.1007/s00262-023-03379-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/15/2023] [Indexed: 01/24/2023]
Abstract
Radiotherapy (RT) not only damages tumors but also induces interferon (IFN) expression in tumors. IFNs mediate PD-L1 to exhaust CD8+ T cells, but which also directly impact tumor cells and potentially activate anti-tumor immune surveillance. Little is known about the contradictory mechanism of IFNs in regulating CD8+ T-mediated anti-tumor activity in lung cancer. This study found that RT induced IFNs and CXCL9/10 expression in the RT-treated lung cancer cells. Specifically, RT- and IFNγ-pretreated A549 significantly activated CD8+ T cells, resulting in significant inhibition of A549 colony formation. RNAseq and consequent qPCR results revealed that IFNγ induced PD-L1, CXCL10, and ICAM-1, whereas PD-L1 knockdown activated CD8+ T cells, but ICAM-1 knockdown diminished CD8+ T cell activation. We further demonstrated that CXCR3 and CXCL10 decreased in the CD8+ T cells and nonCD8+ PBMCs, respectively, in the patients with lung cancer that expressed lower reactivation as co-cultured with A549 cells. In addition, inhibitors targeting CXCR3 and LFA-1 in CD8+ T cells significantly diminished CD8+ T cell activation and splenocytes-mediated anti-LL/2shPdl1. In conclusion, we validated that RT suppressed lung cancer and overexpress PD-L1, CXCL10, and ICAM-1, which exhibited different roles in regulating CD8+ T cell activity. We propose that CXCR3highCD8+ T cells stimulated by CXCL10 exhibit anti-tumor immunity, possibly by enhancing T cells-tumor cells adhesion through CXCL10/CXCR3-activated LFA-1-ICAM-1 interaction, but CXCR3lowCD8+ T cells with low CXCL10 in patients with lung cancer were exhausted by PD-L1 dominantly. Therefore, RT potentially activates CD8+ T cells by inducing IFNs-mediated CXCL10 and ICAM-1 expression in tumors to enhance CD8+ T-tumor adhesion and recognition. This study clarified the possible mechanisms of RT and IFNs in regulating CD8+ T cell activation in lung cancer.
Collapse
Affiliation(s)
- Chih-Liang Wang
- Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, 333, Taiwan
| | - Ai-Sheng Ho
- Division of Gastroenterology, Cheng Hsin General Hospital, Taipei, 112, Taiwan
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, 110, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.,TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Zong-Lin Sie
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan, 333, Taiwan
| | - Cheng-Liang Peng
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, 325, Taiwan
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Chun-Chia Cheng
- Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, 333, Taiwan. .,Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan, 333, Taiwan.
| |
Collapse
|