1
|
Huang Q, Yang J, Zhang J, Yao L, Jiang B, Du S, Li F, Peng Q, Qin L, Wang Y, Qi L. Eupalinolide B suppresses pancreatic cancer by ROS generation and potential cuproptosis. iScience 2024; 27:110496. [PMID: 39100694 PMCID: PMC11295471 DOI: 10.1016/j.isci.2024.110496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/15/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024] Open
Abstract
Pancreatic cancer is highly lethal with limited effective treatments. This study explores the therapeutic effects of eupalinolide B (EB) from Eupatorium lindleyanum DC on pancreatic cancer cells. Through cellular functional assays, we observed that EB effectively inhibits cell viability, proliferation, migration, and invasion. In a xenograft mouse model, EB treatment resulted in reduced pancreatic cancer tumor growth and decreased expression of Ki-67. Mechanistically, EB induces apoptosis, elevates reactive oxygen species (ROS) levels, and disrupts copper homeostasis. RNA sequencing (RNA-seq) and gene set enrichment analysis (GSEA) identified copper ion binding pathways and potential involvement in cuproptosis. Furthermore, EB enhances the cytotoxic effects of elesclomol (ES), increasing ROS levels in a copper-dependent manner and exhibiting synergistic cytotoxicity. These findings suggest that EB, either alone or in combination with ES, represents a promising strategy for targeting metal ion dysregulation and inducing potential cuproptosis in pancreatic cancer, offering a potential improvement in therapeutic outcomes.
Collapse
Affiliation(s)
- Qingtian Huang
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
- Department of Pathology, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Jie Yang
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Jiaxing Zhang
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Leyi Yao
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Baoyi Jiang
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Siyuan Du
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Fengjin Li
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Qian Peng
- Biological Sample Resource Centre, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Lingsha Qin
- Biological Sample Resource Centre, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Yanfen Wang
- Department of Pathology, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Ling Qi
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
- Biological Sample Resource Centre, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
- Division of Gastroenterology, Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| |
Collapse
|
2
|
Li B, Hu Y, Chen Y, Liu K, Rong K, Hua Q, Fu S, Yang X, Zhou T, Cheng X, Zhang K, Zhao J. Homoplantaginin alleviates intervertebral disc degeneration by blocking the NF-κB/MAPK pathways via binding to TAK1. Biochem Pharmacol 2024; 226:116389. [PMID: 38914318 DOI: 10.1016/j.bcp.2024.116389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a common degenerative disease which is closely related to low back pain (LBP) and brings huge economic and social burdens. In this study, we explored the therapeutic effects of Homoplantaginin (Hom) for IVDD due to its convincing anti-inflammatory and antioxidant functions. TNF-α was used to simulate the inflammatory environment for nucleus pulposus (NP) cells in vitro. We verified that Hom could alleviate the TNF-α-induced inflammation and disturbance of ECM homeostasis through blocking the NF-κB/MAPK signaling pathways. Subsequently, we screened the binding targets of Hom and confirmed that Hom could directly bind to TAK1 and inhibit its phosphorylation to down-regulate the inflammation-related pathways. The therapeutic effects of Hom on IVDD were further validated through a needle puncture rat model in vivo. Overall, Hom was a promising small molecule for IVDD early intervention, possessing huge clinical translational value.
Collapse
Affiliation(s)
- Baixing Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, PR China
| | - Yibin Hu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, PR China
| | - Yan Chen
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, PR China
| | - Kexin Liu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, PR China
| | - Kewei Rong
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, PR China
| | - Qi Hua
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, PR China
| | - Shaotian Fu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, PR China
| | - Xiao Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, PR China
| | - Tangjun Zhou
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, PR China
| | - Xiaofei Cheng
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, PR China
| | - Kai Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, PR China.
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, PR China.
| |
Collapse
|
3
|
Luo L, Wang H, Xiong J, Chen X, Shen X, Zhang H. Echinatin attenuates acute lung injury and inflammatory responses via TAK1-MAPK/NF-κB and Keap1-Nrf2-HO-1 signaling pathways in macrophages. PLoS One 2024; 19:e0303556. [PMID: 38753858 PMCID: PMC11098428 DOI: 10.1371/journal.pone.0303556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/27/2024] [Indexed: 05/18/2024] Open
Abstract
Echinatin is an active ingredient in licorice, a traditional Chinese medicine used in the treatment of inflammatory disorders. However, the protective effect and underlying mechanism of echinatin against acute lung injury (ALI) is still unclear. Herein, we aimed to explore echinatin-mediated anti-inflammatory effects on lipopolysaccharide (LPS)-stimulated ALI and its molecular mechanisms in macrophages. In vitro, echinatin markedly decreased the levels of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated murine MH-S alveolar macrophages and RAW264.7 macrophages by suppressing inducible nitric oxide synthase and cyclooxygenase-2 (COX-2) expression. Furthermore, echinatin reduced LPS-induced mRNA expression and release of interleukin-1β (IL-1β) and IL-6 in RAW264.7 cells. Western blotting and CETSA showed that echinatin repressed LPS-induced activation of mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) pathways through targeting transforming growth factor-beta-activated kinase 1 (TAK1). Furthermore, echinatin directly interacted with Kelch-like ECH-associated protein 1 (Keap1) and activated the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway to enhance heme oxygenase-1 (HO-1) expression. In vivo, echinatin ameliorated LPS-induced lung inflammatory injury, and reduced production of IL-1β and IL-6. These findings demonstrated that echinatin exerted anti-inflammatory effects in vitro and in vivo, via blocking the TAK1-MAPK/NF-κB pathway and activating the Keap1-Nrf2-HO-1 pathway.
Collapse
Affiliation(s)
- Liuling Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinrui Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaorui Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofei Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Wei H, Wang G, Tian Q, Liu C, Han W, Wang J, He P, Li M. Low shear stress induces macrophage infiltration and aggravates aneurysm wall inflammation via CCL7/CCR1/TAK1/ NF-κB axis. Cell Signal 2024; 117:111122. [PMID: 38417634 DOI: 10.1016/j.cellsig.2024.111122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/18/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND This study aimed to elucidate the mechanism by which wall shear stress (WSS) influences vascular walls, accounting for the susceptibility of intracranial aneurysms (IAs) to rupture. METHOD We collected blood samples from the sacs of 24 ruptured and 28 unruptured IAs and analyzed the expression of chemokine CCL7 using enzyme-linked immunosorbent assay (ELISA). Univariate and multivariate logistic regression analyses were employed to assess clinical data, aneurysm morphology, and hemodynamics in both groups. Pearson correlation analysis investigated the relationship between CCL7 expression in aneurysm sac blood and WSS. Additionally, we established a bionic cell parallel plate co-culture shear stress model and a mouse low shear stress (LSS) model. The model was modulated using CCL7 recombinant protein, CCR1 inhibitor, and TAK1 inhibitor. We further evaluated CCL7 expression in endothelial cells and the levels of TAK1, NF-κB, IL-1β, and TNF-α in macrophages. Subsequently, the intergroup differences in expression were calculated. RESULTS CCL7 expression was significantly higher in the ruptured group compared to the unruptured group. Hemodynamic analysis indicated that WSS was an independent predictor of the risk of aneurysm rupture. A negative linear correlation was observed between CCL7 expression and WSS. Upon addition of CCL7 recombinant protein, upregulation of CCR1 expression and increased levels of p-TAK1 and p-p65 were observed. Treatment with CCR1 and TAK1 inhibitors reduced inflammatory cytokine expression in macrophages under LSS conditions. Overexpression of TAK1 significantly alleviated the inhibitory effects of CCR1 inhibitors on p-p65 and inflammatory cytokines. CONCLUSION LSS prompts endothelial cells to secrete CCL7, which, upon binding to the macrophage surface receptor CCR1, stimulates the release of macrophage inflammatory factors via the TAK1/NF-κB signaling pathway. This process exacerbates aneurysm wall inflammation and increases the risk of aneurysm rupture.
Collapse
Affiliation(s)
- Heng Wei
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Guijun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Wenrui Han
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jianfeng Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Peibang He
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
5
|
Nguyen TU, Hurh S, In S, Nguyen LP, Cho M, Mykhailova K, Kim HR, Ham BJ, Choi Y, Kim WK, Hwang JI. SP-8356 inhibits acute lung injury by suppressing inflammatory cytokine production and immune cell infiltration. Int Immunopharmacol 2024; 131:111847. [PMID: 38518593 DOI: 10.1016/j.intimp.2024.111847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
This study investigated the anti-inflammatory and protective properties of SP-8356, a synthetic derivative of (1S)-(-)-verbenone, in a mouse model of LPS-induced acute lung injury (ALI). By targeting intracellular signaling pathways and inflammatory responses, SP-8356 demonstrated a potent ability to attenuate deleterious effects of proinflammatory stimuli. Specifically, SP-8356 effectively inhibited the activation of crucial signaling molecules such as NF-κB and Akt, and subsequently dampened the expression of inflammatory cytokines in various lung cellular components. Intervention with SP-8356 treatment also preserved the structural integrity of the epithelial and endothelial barriers. By reducing immune cell infiltration into inflamed lung tissue, SP-8356 exerted a broad protective effect against ALI. These findings position SP-8356 as a promising therapeutic candidate for pulmonary inflammatory diseases that cause ALI.
Collapse
Affiliation(s)
- Thai-Uy Nguyen
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Sunghoon Hurh
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Soyeon In
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Lan Phuong Nguyen
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Minyeong Cho
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Kateryna Mykhailova
- Department of Biotechnology, College of Life Sciences Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hong-Rae Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Byung-Joo Ham
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea; Department of Psychiatry, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Yongseok Choi
- Department of Biotechnology, College of Life Sciences Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Won-Ki Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea; Institute for Inflammation Control, Korea University, Seoul 02841, Republic of Korea.
| | - Jong-Ik Hwang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
6
|
Liu QH, Zhang K, Feng SS, Zhang LJ, Li SY, Wang HY, Wang JH. Rosavin Alleviates LPS-Induced Acute Lung Injure by Modulating the TLR-4/NF-κB/MAPK Singnaling Pathways. Int J Mol Sci 2024; 25:1875. [PMID: 38339153 PMCID: PMC10856478 DOI: 10.3390/ijms25031875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Acute lung injury (ALI) is a serious inflammatory disease with high morbidity and mortality. Rosavin is an anti-inflammatory and antioxidant phenylpropanoid and glucoside, which is isolated from Rhodiola rosea L. However, its potential molecular mechanisms and whether it has protective effects against lipopolysaccharide (LPS)-induced ALI remain to be elucidated. To assess the in vitro anti-inflammatory effects and anti-lung injury activity of rosavin, RAW264.7 and A549 cells were stimulated using 1 μg/mL LPS. Rosavin attenuated LPS-induced activation of the TLR-4/NF-κB signaling pathway in RAW264.7 cells and inhibited LPS-induced release of inflammatory factors in A549 cells. A mouse model of acute lung injury was constructed by intraperitoneal injection of 5 mg/kg LPS to observe the therapeutic effect of rosavin. Transcriptomics analysis and Western blot assays were utilized to verify the molecular mechanism, rosavin (20, 40, and 80 mg/kg) dose-dependently ameliorated histopathological alterations, reduced the levels of inflammatory factors, and inhibited the TLR-4/NF-κB/MAPK signaling pathway and apoptosis activation. Rosavin is a promising therapeutic candidate for acute lung injury by inhibiting the TLR-4/NF-κB/MAPK pathway.
Collapse
Affiliation(s)
- Qiao-Hui Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China (J.-H.W.)
| | - Ke Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China (J.-H.W.)
| | - Shu-Shu Feng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China (J.-H.W.)
| | - Li-Juan Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China (J.-H.W.)
| | - Shun-Ying Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China (J.-H.W.)
| | - Hang-Yu Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China (J.-H.W.)
| | - Jin-Hui Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China (J.-H.W.)
- State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, Department of Medicinal Chemistry and Natural Medicine Chemistry, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
7
|
Chen H, Hu Q, Wen T, Luo L, Liu L, Wang L, Shen X. Arteannuin B, a sesquiterpene lactone from Artemisia annua, attenuates inflammatory response by inhibiting the ubiquitin-conjugating enzyme UBE2D3-mediated NF-κB activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155263. [PMID: 38181532 DOI: 10.1016/j.phymed.2023.155263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/15/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Anomalous activation of NF-κB signaling is associated with many inflammatory disorders, such as ulcerative colitis (UC) and acute lung injury (ALI). NF-κB activation requires the ubiquitination of receptor-interacting protein 1 (RIP1) and NF-κB essential modulator (NEMO). Therefore, inhibition of ubiquitation of RIP1 and NEMO may serve as a potential approach for inhibiting NF-κB activation and alleviating inflammatory disorders. PURPOSE Here, we identified arteannuin B (ATB), a sesquiterpene lactone found in the traditional Chinese medicine Artemisia annua that is used to treat malaria and inflammatory diseases, as a potent anti-inflammatory compound, and then characterized the putative mechanisms of its anti-inflammatory action. METHODS Detections of inflammatory mediators and cytokines in LPS- or TNF-α-stimulated murine macrophages using RT-qPCR, ELISA, and western blotting, respectively. Western blotting, CETSA, DARTS, MST, gene knockdown, LC-MS/MS, and molecular docking were used to determine the potential target and molecular mechanism of ATB. The pharmacological effects of ATB were further evaluated in DSS-induced colitis and LPS-induced ALI in vivo. RESULTS ATB effectively diminished the generation of NO and PGE2 by down-regulating iNOS and COX2 expression, and decreased the mRNA expression and release of IL-1β, IL-6, and TNF-α in LPS-exposed RAW264.7 macrophages. The anti-inflammatory effect of ATB was further demonstrated in LPS-treated BMDMs and TNF-α-activated RAW264.7 cells. We further found that ATB obviously inhibited NF-κB activation induced by LPS or TNF-α in vitro. Moreover, compared with ATB, dihydroarteannuin B (DATB) which lost the unsaturated double bond, completely failed to repress LPS-induced NO release and NF-κB activation in vitro. Furthermore, UBE2D3, a ubiquitin-conjugating enzyme, was identified as the functional target of ATB, but not DATB. UBE2D3 knockdown significantly abolished ATB-mediated inhibition on LPS-induced NO production. Mechanistically, ATB could covalently bind to the catalytic cysteine 85 of UBE2D3, thereby inhibiting the function of UBE2D3 and preventing ubiquitination of RIP1 and NEMO. In vivo, ATB treatment exhibited robust protective effects against DSS-induced UC and LPS-induced ALI. CONCLUSION Our findings first demonstrated that ATB exerted anti-inflammatory functions by repression of NF-κB pathway via covalently binding to UBE2D3, and raised the possibility that ATB could be effective in the treatment of inflammatory diseases and other diseases associated with abnormal NF-κB activation.
Collapse
Affiliation(s)
- Hongqing Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiongying Hu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Wen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuling Luo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lun Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
8
|
Song J, Yang Q, Xiong H, Gu X, Chen M, Zhou C, Cai Y. TIPE3 protects mice from lipopolysaccharide-induced acute lung injury. Transpl Immunol 2023; 77:101799. [PMID: 36842565 DOI: 10.1016/j.trim.2023.101799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is a severe inflammatory disease with high morbidity and mortality in patients and lung transplant recipients. Tumor necrosis factor-α-induced protein 8-like 3 (TIPE3) is one of the members of the TIPE family. While TIPE2 has been demonstrated to be protective against lipopolysaccharide (LPS)-induced ALI, the role of TIPE3 in ALI is currently unidentified. METHODS To examine the role of TIPE3 in ALI, we pretreated C57BL/6 mice with control or TIPE3-lentivirus in LPS-induced ALI models. The C57BL/6 mice were randomly divided into four groups: control group; ALI-induced group; ALI-induced group with control lentivirus; and ALI-induced group with TIPE3-lentivirus. Additionally, RAW 264.7 cells were used to validate the role and molecular mechanism of TIPE3 signaling in vitro. RESULTS An increased expression of TIPE3 reduced lung histopathological damage in ALI-affected mice. ALI-affected mice treated with TIPE3-lentivirus exhibited reduced lung microvascular permeability, myeloperoxidase (MPO) activity, neutrophil buildup, and inflammation response. Additionally, over-expression of TIPE3 significantly inhibited NF-κB activation and promoted the activation of Liver X receptors alpha (LXRα). In LPS-treated RAW264.7 cells, enforced TIPE3 expression produced anti-inflammatory effects, whereas the LXR inhibitor geranylgeranyl pyrophosphate (GGPP) reversed these effects. CONCLUSIONS TIPE3 protected against LPS-induced ALI by regulating the LXRα/NF-κB signaling pathway. These results suggest that TIPE3 might provide a novel insight into the prevention of ALI.
Collapse
Affiliation(s)
- Jie Song
- Department of Pediatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Qiuping Yang
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Hui Xiong
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xia Gu
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Mo Chen
- Department of Pediatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Chuanxin Zhou
- Department of Pediatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| | - Yao Cai
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
| |
Collapse
|
9
|
Li Y, Liu X, Li L, Zhang T, Gao Y, Zeng K, Wang Q. Characterization of the metabolism of eupalinolide A and B by carboxylesterase and cytochrome P450 in human liver microsomes. Front Pharmacol 2023; 14:1093696. [PMID: 36762117 PMCID: PMC9905117 DOI: 10.3389/fphar.2023.1093696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Eupalinolide A (EA; Z-configuration) and eupalinolide B (EB; E-configuration) are bioactive cis-trans isomers isolated from Eupatorii Lindleyani Herba that exert anti-inflammatory and antitumor effects. Although one pharmacokinetic study found that the metabolic parameters of the isomers were different in rats, metabolic processes relevant to EA and EB remain largely unknown. Our preliminary findings revealed that EA and EB are rapidly hydrolyzed by carboxylesterase. Here, we investigated the metabolic stability and enzyme kinetics of carboxylesterase-mediated hydrolysis and cytochrome P450 (CYP)-mediated oxidation of EA and EB in human liver microsomes (HLMs). We also explored differences in the hydrolytic stability of EA and EB in human liver microsomes and rat liver microsomes (RLMs). Moreover, cytochrome P450 reaction phenotyping of the isomers was performed via in silico methods (i.e., using a quantitative structure-activity relationship model and molecular docking) and confirmed using human recombinant enzymes. The total normalized rate approach was considered to assess the relative contributions of five major cytochrome P450s to EA and EB metabolism. We found that EA and EB were eliminated rapidly, mainly by carboxylesterase-mediated hydrolysis, as compared with cytochrome P450-mediated oxidation. An inter-species difference was observed as well, with faster rates of EA and EB hydrolysis in rat liver microsomes. Furthermore, our findings confirmed EA and EB were metabolized by multiple cytochrome P450s, among which CYP3A4 played a particularly important role.
Collapse
Affiliation(s)
- Yingzi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Xiaoyan Liu
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Tao Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Yadong Gao
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China,*Correspondence: Kewu Zeng, ; Qi Wang,
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, China,Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Beijing, China,Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, China,*Correspondence: Kewu Zeng, ; Qi Wang,
| |
Collapse
|