1
|
Nandana MB, Bharatha M, Praveen R, Nayaka S, Vishwanath BS, Rajaiah R. Dimethyl ester of bilirubin ameliorates Naja naja snake venom-induced lung toxicity in mice via inhibiting NLRP3 inflammasome and MAPKs activation. Toxicon 2024; 244:107757. [PMID: 38740099 DOI: 10.1016/j.toxicon.2024.107757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Naja naja snake bite causes thousands of deaths worldwide in a year. N. naja envenomed victims exhibit both local and systemic reactions that potentially lead to death. In clinical practice, pulmonary complications in N. naja envenomation are commonly encountered. However, the molecular mechanisms underlying N. naja venom-induced lung toxicity remain unknown. Here, we reasoned that N. naja venom-induced lung toxicity is prompted by NLRP3 inflammasome and MAPKs activation in mice. Treatment with dimethyl ester of bilirubin (BD1), significantly inhibited the N. naja venom-induced activation of NLRP3 inflammasome and MAPKs both in vivo and in vitro (p < 0.05). Further, BD1 reduced N. naja venom-induced recruitment of inflammatory cells, and hemorrhage in the lung toxicity examined by histopathology. BD1 also diminished N. naja venom-induced local toxicities in paw edema and myotoxicity in mice. Furthermore, BD1 was able to enhance the survival time against N. naja venom-induced mortality in mice. In conclusion, the present data showed that BD1 alleviated N. naja venom-induced lung toxicity by inhibiting NLRP3 inflammasome and MAPKs activation. Small molecule inhibitors that intervene in venom-induced toxicities may have therapeutic applications complementing anti-snake venom.
Collapse
Affiliation(s)
- Manuganahalli B Nandana
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India; Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - Madeva Bharatha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - Raju Praveen
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - Spandan Nayaka
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - Bannikuppe S Vishwanath
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India.
| | - Rajesh Rajaiah
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India.
| |
Collapse
|
2
|
Zuliani JP, Gutiérrez JM, Teixeira C. Role of nitric oxide and signaling pathways modulating the stimulatory effect of snake venom secretory PLA 2S on non-opsonized zymosan phagocytosis by macrophages. Toxicon 2024; 243:107716. [PMID: 38614247 DOI: 10.1016/j.toxicon.2024.107716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
The phagocytic activity of macrophages activated with MT-II, a Lys-49 PLA2 homolog, and MT-III, an Asp-49 PLA2, from Bothrops asper snake venom, was investigated in this study using a pharmacological approach. Stimulating thioglycollate-elicited macrophages with both venom components enhanced their ability to phagocytose non-opsonized zymosan particles. MT-II and MT-III-induced phagocytosis was drastically inhibited by pretreating cells with L-NAME, aminoguanidine or L-NIL, cNOS or iNOS inhibitors, or with ODQ (sGC inhibitor) or Rp-cGMPS (PKG inhibitor). These results indicate that the NO/sGC/GMP/PKG pathway plays an essential role in the β-glucan-mediated phagocytosis induced in macrophages by these venom-secretory PLA2s.
Collapse
Affiliation(s)
- Juliana Pavan Zuliani
- Laboratório de Farmacologia - Instituto Butantan, Sao Paulo, Brazil; Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz Rondônia/FIOCRUZ-RO, Porto Velho-RO, Brazil; Dep. Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil.
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Catarina Teixeira
- Laboratório de Farmacologia - Instituto Butantan, Sao Paulo, Brazil.
| |
Collapse
|
3
|
Nandana MB, Bharatha M, Vishwanath BS, Rajaiah R. Naja naja snake venom-induced local toxicities in mice is by inflammasome activation. Toxicon 2024; 238:107590. [PMID: 38163462 DOI: 10.1016/j.toxicon.2023.107590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Snake bite envenomation causes tissue damage resulting in acute and chronic inflammatory responses. Inflammasome activation is one of the factors involved in tissue damage in a mouse model of snake envenomation. The present study examines the potency of Indian Big Four snake venoms in the activation of inflammasome and its role in local and systemic tissue toxicity. Among Indian Big Four snake venoms, Naja naja venom activated NLRP3 inflammasome in mouse macrophages. Activation of NLRP3 inflammasome was also observed in mouse foot paw and thigh muscle upon administration of N. naja venom. Intraperitoneal administration of N. naja venom cause systemic lung damage showed activation of NLRP3 inflammasome. Treatment with MCC950, a selective NLRP3 inflammasome inhibitor effectively inhibited N. naja venom-induced activation of caspase-1 and liberation of IL-1β in macrophages. In mice, MCC950 partially inhibited the activation of NLRP3 inflammasome in N. naja venom administered foot paw and thigh muscle. In conclusion, the present data showed that inflammasome is one of the host responses involved in N. naja snake venom-induced toxicities. The inhibition of inflammasome activation will provide new insight into better management of snake bite-induced local tissue damage.
Collapse
Affiliation(s)
- Manuganahalli B Nandana
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India; Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - Madeva Bharatha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - Bannikuppe S Vishwanath
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India.
| | - Rajesh Rajaiah
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India.
| |
Collapse
|
4
|
Luo P, Ji Y, Liu X, Zhang W, Cheng R, Zhang S, Qian X, Huang C. Affected inflammation-related signaling pathways in snake envenomation: A recent insight. Toxicon 2023; 234:107288. [PMID: 37703930 DOI: 10.1016/j.toxicon.2023.107288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/24/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Snake envenomation is well known to cause grievous pathological signs, including haemorrhagic discharge, necrosis, and respiratory distress. However, inflammatory reactions are also common envenoming manifestations that lead to successive damage, such as oedema, ulceration, lymphadenectasis, systemic inflammatory response syndrome (SIRS) and even multiple organ dysfunction syndrome (MODS). Interference with the inflammatory burst is hence important in the clinical treatment of snake envenomation. Here, we summarize the typical snake toxins (or venoms) that cause inflammatory reactions and the underlying signaling pathways. In brief, inflammatory reactions are usually triggered by snake venom phospholipase A2 (svPLA2), snake venom metalloprotease (SVMP), snake venom serine protease (SVSP) and C-type lectin/snaclec (CTL) as well as disintegrin (DIS) via multiple signaling pathways. They are nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3), nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase (MAPK), janus kinase/signal transducer and activator of transcription (JAK-STAT) and phosphoinositide 3-Kinase/protein kinase B (PI3K/PKB also called PI3K-AKT) signaling pathways. Activation of these pathways promotes the expression of pro-inflammatory molecules such as cytokines, especially interleukin-1β (IL-1β) which causes further inflammatory cascades and manifestations, such as swelling, fever, pain, and severe complications. Remarkably, almost half of introduced snake toxins (or venoms) have anti-inflammatory effects through blocking these pathways and suppressing the expression of pro-inflammatory molecules. Investigation of affected inflammation-related signaling pathways is meaningful to achieve better clinical treatment.
Collapse
Affiliation(s)
- Peiyi Luo
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| | - Yuxin Ji
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| | - Xiaohan Liu
- Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China.
| | - Weiyun Zhang
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| | - Ruoxi Cheng
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| | - Shuxian Zhang
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| | - Xiao Qian
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| | - Chunhong Huang
- College of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| |
Collapse
|
5
|
Zuliani JP. Alarmins and inflammatory aspects related to snakebite envenomation. Toxicon 2023; 226:107088. [PMID: 36924999 DOI: 10.1016/j.toxicon.2023.107088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Snakebite envenoming is characterized by the injection of a mixture of proteins/toxins present in venom following the bite of a venomous snake. The toxins have potent bioactivity capability to impact different aspects of envenomation evolution. The cascade of immune responses initiated by the participation of venom and/or toxins isolated from snake venom can contribute to the systemic and local inflammatory effects observed in victims of envenomation. To understand envenomation, a deeper comprehension of the numerous cells, mediators, and components that comprise the immune system reaction to the venom components is required. Thus, activities related to the immune response are highlighted in this study, including the initial line of defense of the innate immune response as signals for the complicated reaction led by specialized cells.
Collapse
Affiliation(s)
- Juliana P Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil.
| |
Collapse
|
6
|
de Oliveira AK, Pramoonjago P, Rucavado A, Moskaluk C, Silva DT, Escalante T, Gutiérrez JM, Fox JW. Mapping the Immune Cell Microenvironment with Spatial Profiling in Muscle Tissue Injected with the Venom of Daboia russelii. Toxins (Basel) 2023; 15:toxins15030208. [PMID: 36977099 PMCID: PMC10057198 DOI: 10.3390/toxins15030208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Pathological and inflammatory events in muscle after the injection of snake venoms vary in different regions of the affected tissue and at different time intervals. In order to study such heterogeneity in the immune cell microenvironment, a murine model of muscle necrosis based on the injection of the venom of Daboia russelii was used. Histological and immunohistochemical methods were utilized to identify areas in muscle tissue with a different extent of muscle cell damage, based on the presence of hypercontracted muscle cells, a landmark of necrosis, and on the immunostaining for desmin. A gradient of inflammatory cells (neutrophils and macrophages) was observed from heavily necrotic areas to less damaged and non-necrotic areas. GeoMx® Digital Spatial Profiler (NanoString, Seattle, WA, USA) was used for assessing the presence of markers of various immune cells by comparing high-desmin (nondamaged) and low-desmin (damaged) regions of muscle. Markers of monocytes, macrophages, M2 macrophages, dendritic cells, neutrophils, leukocyte adhesion and migration markers, and hematopoietic precursor cells showed higher levels in low-desmin regions, especially in samples collected 24 hr after venom injection, whereas several markers of lymphocytes did not. Moreover, apoptosis (BAD) and extracellular matrix (fibronectin) markers were also increased in low-desmin regions. Our findings reveal a hitherto-unknown picture of immune cell microheterogeneity in venom-injected muscle which greatly depends on the extent of muscle cell damage and the time lapse after venom injection.
Collapse
Affiliation(s)
- Ana K. de Oliveira
- School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Alexandra Rucavado
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | | | - Dilza T. Silva
- School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Jay W. Fox
- School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Correspondence:
| |
Collapse
|
7
|
Lomonte B. Lys49 myotoxins, secreted phospholipase A 2-like proteins of viperid venoms: A comprehensive review. Toxicon 2023; 224:107024. [PMID: 36632869 DOI: 10.1016/j.toxicon.2023.107024] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Muscle necrosis is a potential clinical complication of snakebite envenomings, which in severe cases can lead to functional or physical sequelae such as disability or amputation. Snake venom proteins with the ability to directly damage skeletal muscle fibers are collectively referred to as myotoxins, and include three main types: cytolysins of the "three-finger toxin" protein family expressed in many elapid venoms, the so-called "small" myotoxins found in a number of rattlesnake venoms, and the widespread secreted phospholipase A2 (sPLA2) molecules. Among the latter, protein variants that conserve the sPLA2 structure, but lack such enzymatic activity, have been increasingly found in the venoms of many viperid species. Intriguingly, these sPLA2-like proteins are able to induce muscle necrosis by a mechanism independent of phospholipid hydrolysis. They are commonly referred to as "Lys49 myotoxins" since they most often present, among other substitutions, the replacement of the otherwise invariant residue Asp49 of sPLA2s by Lys. This work comprehensively reviews the historical developments and current knowledge towards deciphering the mechanism of action of Lys49 sPLA2-like myotoxins, and points out main gaps to be filled for a better understanding of these multifaceted snake venom proteins, to hopefully lead to improved treatments for snakebites.
Collapse
Affiliation(s)
- Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| |
Collapse
|
8
|
Lopes JA, Boeno CN, Paloschi MV, Silva MDS, Rego CMA, Pires WL, Santana HM, Chaves YO, Rodrigues MMDS, Lima AM, Setúbal SDS, Soares AM, Zuliani JP. Phenotypic, functional and plasticity features of human PBMCs induced by venom secreted PLA 2s. Mol Immunol 2023; 155:135-152. [PMID: 36812762 DOI: 10.1016/j.molimm.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023]
Abstract
Bothrops venom contains a high amount of secreted phospholipase A2 (sPLA2s) enzymes responsible for the inflammatory reaction and activation of leukocytes in cases of envenoming. PLA2s are proteins that have enzymatic activity and can hydrolyze phospholipids at the sn-2 position, thereby releasing fatty acids and lysophospholipids precursors of eicosanoids, which are significant mediators of inflammatory conditions. Whether these enzymes have a role in the activation and function of peripheral blood mononuclear cells (PBMCs) is not known. Here we show for the first time how two secreted PLA2s (BthTX-I and BthTX-II) isolated from the venom of Bothrops jararacussu affect the function and polarization of PBMCs. Neither BthTX-I nor BthTX-II exhibited significant cytotoxicity to isolated PBMCs compared with the control at any of the time points studied. RT-qPCR and enzyme-linked immunosorbent assays were used to determine changes in gene expression and the release of pro-inflammatory (TNF-α, IL-6, and IL-12) and anti-inflammatory (TGF-β and IL-10) cytokines, respectively, during the cell differentiation process. Lipid droplets formation and phagocytosis were also investigated. Monocytes/macrophages were labeled with anti-CD14, -CD163, and -CD206 antibodies to assay cell polarization. Both toxins caused a heterogeneous morphology (M1 and M2) on days 1 and 7 based on immunofluorescence analysis, revealing the considerable flexibility of these cells even in the presence of typical polarization stimuli. Thus, these findings indicate that the two sPLA2s trigger both immune response profiles in PBMCs indicating a significant degree of cell plasticity, which may be crucial for understanding the consequences of snake envenoming.
Collapse
Affiliation(s)
- Jéssica Amaral Lopes
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Charles Nunes Boeno
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Mauro Valentino Paloschi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Milena Daniela Souza Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Cristina Matiele Alves Rego
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Weverson Luciano Pires
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Hallison Mota Santana
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Yury Oliveira Chaves
- Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil; Fundação Oswaldo Cruz, FIOCRUZ Amazônia, Manaus, AM, Brazil
| | - Moreno Magalhães de Souza Rodrigues
- Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil; Laboratório de Análise e Visualização de Dados, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Anderson M Lima
- Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil; Laboratório de Biotecnologia de Proteínas e Compostos Bioativos, LABIOPROT, Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Brazil
| | - Sulamita da S Setúbal
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Andreimar M Soares
- Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil; Laboratório de Biotecnologia de Proteínas e Compostos Bioativos, LABIOPROT, Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Brazil
| | - Juliana P Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil; Laboratório de Biotecnologia de Proteínas e Compostos Bioativos, LABIOPROT, Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Brazil.
| |
Collapse
|