1
|
Jin X, Bai Y, Xu X, Wu F, Long X, Yao Y. USP18-mediated protein stabilization of NOTCH1 is associated with altered Th17/Treg cell ratios and B cell-mediated autoantibody secretion in Sjögren syndrome. Immunol Res 2024; 73:10. [PMID: 39672989 DOI: 10.1007/s12026-024-09566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/01/2024] [Indexed: 12/15/2024]
Abstract
Sjögren Syndrome (SS) is a chronic inflammatory autoimmune disease characterized by lymphocytic infiltration of exocrine glands. This study, based on bioinformatics predictions, investigates the biological functions of ubiquitin specific peptidase 18 (USP18) and notch receptor 1 (NOTCH1) in T helper 17 (Th17) and regulatory T (Treg) cell imbalance and B cell activity in SS. USP18 and NOTCH1 were highly expressed in peripheral blood mononuclear cells (PBMCs) of SS patients and the PBMCs of NOD mice compared to the controls. Adenovirus-mediated knockdown of USP18 significantly enhanced the salivary flow rate of NOD mice while reducing lymphocyte infiltration in mouse salivary ligand tissues. In addition, it decreased the proportions of Th17 cells while increasing the proportions of Treg cells. USP18 enhanced NOTCH1 protein stability through de-ubiquitination modification. In the presence of USP18 knockdown, the NOTCH1 upregulation restored the predominance of Th17 cells in mice. In B cells isolated from PBMCs, the production of B cell autoantibodies was decreased by USP18 silencing but enhanced by NOTCH1 upregulation. In summary, this study demonstrates that USP18-mediated protein stabilization of NOTCH1 is correlated with Th17/Treg cell imbalance and B cell activity during SS development.
Collapse
Affiliation(s)
- Xiaorong Jin
- Department of Rheumatism and Immunology, Seventh Medical Center of Chinese PLA General Hospital, No. 5, Nanmencang, Dongcheng District, Beijing, 100700, P.R. China
| | - Yunjing Bai
- Department of Rheumatism and Immunology, Seventh Medical Center of Chinese PLA General Hospital, No. 5, Nanmencang, Dongcheng District, Beijing, 100700, P.R. China
| | - Xiaohua Xu
- Department of Rheumatism and Immunology, Seventh Medical Center of Chinese PLA General Hospital, No. 5, Nanmencang, Dongcheng District, Beijing, 100700, P.R. China
| | - Fan Wu
- Department of Rheumatism and Immunology, Seventh Medical Center of Chinese PLA General Hospital, No. 5, Nanmencang, Dongcheng District, Beijing, 100700, P.R. China
| | - Xiaoyu Long
- Department of Rheumatism and Immunology, Seventh Medical Center of Chinese PLA General Hospital, No. 5, Nanmencang, Dongcheng District, Beijing, 100700, P.R. China
| | - Yajuan Yao
- Department of Rheumatism and Immunology, Seventh Medical Center of Chinese PLA General Hospital, No. 5, Nanmencang, Dongcheng District, Beijing, 100700, P.R. China.
| |
Collapse
|
2
|
Chen S, Zhao W, Du J, Chen S, Li J, Shen B, Zhou Y, Chen S. The expression of RBPJ and its potential role in rheumatoid arthritis. BMC Genomics 2024; 25:899. [PMID: 39350019 PMCID: PMC11441141 DOI: 10.1186/s12864-024-10804-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Recombination signal-binding protein for immunoglobulin kappa J region (RBPJ) is a transcriptional regulator that plays an important role in maintaining immune homeostasis. This study aimed to estimate the expression of RBPJ in rheumatoid arthritis (RA) patients and investigate its relationship with RA. METHODS A total of 83 newly diagnosed RA patients and 70 healthy controls were included. mRNA was extracted from peripheral blood mononuclear cells (PBMCs), and the expression of RBPJ was detected using quantitative real-time PCR (qRT‒PCR). An RA dataset (GSE89408) was obtained from the Gene Expression Omnibus (GEO) database, and RA synovial tissues were divided into two groups. The differentially expressed genes (DEGs) were selected with the "DESeq2" R package. RESULTS RBPJ expression was lower in RA patients than in health controls and was negatively correlated with the DAS28 score, C-reactive protein (CRP) level and erythrocyte sedimentation rate (ESR). RA synovial tissues from GSE89408 were classified into RBPJ-low (≤ 25%) and RBPJ-high (≥ 75%) groups according to RBPJ expression, and 562 DEGs were identified. Gene Ontology (GO) enrichment analyses revealed that the DEGs significantly affected the regulation of T cell activation and lymphocyte/mononuclear cell differentiation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the most enriched pathways of DEGs were the T cell receptor signaling pathway, Th1/2 and Th17 cell differentiation, the PI3K - Akt signaling pathway and cytokine‒cytokine receptor interaction. CytoHubba Plugin revealed that most of the top 10 genes were involved in osteoclast differentiation, the T cell receptor signaling pathway and cytokine‒cytokine receptor interaction. CONCLUSIONS RBPJ expression was significantly lower in RA patients and negatively correlated with disease activity. GEO dataset analysis demonstrated that RBPJ may be involved in osteoclast differentiation, T cell activation and differentiation, and the T cell receptor signaling pathway. Our research may contribute to understanding the potential mechanisms by which RBPJ regulates T cell differentiation and cytokine‒cytokine receptor interaction in RA patients.
Collapse
Affiliation(s)
- Shuaishuai Chen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, 150 Ximen Street of Linhai City, Linhai, 317000, China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Luqiao, China
| | - Weibo Zhao
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Juping Du
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, 150 Ximen Street of Linhai City, Linhai, 317000, China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Luqiao, China
| | - Suyun Chen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, 150 Ximen Street of Linhai City, Linhai, 317000, China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Luqiao, China
| | - Jun Li
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, 150 Ximen Street of Linhai City, Linhai, 317000, China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Luqiao, China
| | - Bo Shen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, 150 Ximen Street of Linhai City, Linhai, 317000, China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Luqiao, China
| | - Yuanlin Zhou
- Department of Neurology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, 150 Ximen Street of Linhai City, Linhai, 317000, China.
| | - Shiyong Chen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, 150 Ximen Street of Linhai City, Linhai, 317000, China.
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Luqiao, China.
| |
Collapse
|
3
|
Yang X, Liu C, Lei Y, Liu Z, Zhu B, Zhao D. PIM1 signaling in immunoinflammatory diseases: an emerging therapeutic target. Front Immunol 2024; 15:1443784. [PMID: 39372407 PMCID: PMC11449710 DOI: 10.3389/fimmu.2024.1443784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
PIM1, the proviral integration site for Moloney murine leukemia virus, is a member of the serine/threonine protein kinase family. It is involved in many biological events, such as cell survival, cell cycle progression, cell proliferation, and cell migration, and has been widely studied in malignant diseases. However, recent studies have shown that PIM1 plays a prominent role in immunoinflammatory diseases, including autoimmune uveitis, inflammatory bowel disease, asthma, and rheumatoid arthritis. PIM1 can function in inflammatory signal transduction by phosphorylating multiple inflammatory protein substrates and mediating macrophage activation and T lymphocyte cell specification, thus participating in the development of multiple immunoinflammatory diseases. Moreover, the inhibition of PIM1 has been demonstrated to ameliorate certain immunoinflammatory disorders. Based on these studies, we suggest PIM1 as a potential therapeutic target for immunoinflammatory diseases and a valid candidate for future research. Herein, for the first time, we provide a detailed review that focuses on the roles of PIM1 in the pathogenesis of immunoinflammatory diseases.
Collapse
Affiliation(s)
- Xue Yang
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunming Liu
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuxi Lei
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhi Liu
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bin Zhu
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Dongchi Zhao
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Tang Y, Qu S, Ning Z, Wu H. Immunopeptides: immunomodulatory strategies and prospects for ocular immunity applications. Front Immunol 2024; 15:1406762. [PMID: 39076973 PMCID: PMC11284077 DOI: 10.3389/fimmu.2024.1406762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Immunopeptides have low toxicity, low immunogenicity and targeting, and broad application prospects in drug delivery and assembly, which are diverse in application strategies and drug combinations. Immunopeptides are particularly important for regulating ocular immune homeostasis, as the eye is an immune-privileged organ. Immunopeptides have advantages in adaptive immunity and innate immunity, treating eye immune-related diseases by regulating T cells, B cells, immune checkpoints, and cytokines. This article summarizes the application strategies of immunopeptides in innate immunity and adaptive immunity, including autoimmunity, infection, vaccine strategies, and tumors. Furthermore, it focuses on the mechanisms of immunopeptides in mediating ocular immunity (autoimmune diseases, inflammatory storms, and tumors). Moreover, it reviews immunopeptides' application strategies and the therapeutic potential of immunopeptides in the eye. We expect the immune peptide to get attention in treating eye diseases and to provide a direction for eye disease immune peptide research.
Collapse
Affiliation(s)
| | | | | | - Hong Wu
- Eye Center of Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Wang X, Sun B, Wang Y, Gao P, Song J, Chang W, Xiao Z, Xi Y, Li Z, An F, Yan C. Research progress of targeted therapy regulating Th17/Treg balance in bone immune diseases. Front Immunol 2024; 15:1333993. [PMID: 38352872 PMCID: PMC10861655 DOI: 10.3389/fimmu.2024.1333993] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Rheumatoid arthritis (RA) and postmenopausal osteoporosis (PMOP) are common bone-immune diseases. The imbalance between helper (Th17) and regulatory T cells (Tregs) produced during differentiation of CD4+ T cells plays a key regulatory role in bone remodelling disorders in RA and PMOP. However, the specific regulatory mechanism of this imbalance in bone remodelling in RA and PMOP has not been clarified. Identifying the regulatory mechanism underlying the Th17/Treg imbalance in RA and PMOP during bone remodelling represents a key factor in the research and development of new drugs for bone immune diseases. In this review, the potential roles of Th17, Treg, and Th17/Treg imbalance in regulating bone remodelling in RA and PMOP have been summarised, and the potential mechanisms by which probiotics, traditional Chinese medicine compounds, and monomers maintain bone remodelling by regulating the Th17/Treg balance are expounded. The maintenance of Th17/Treg balance could be considered as an therapeutic alternative for the treatment of RA and PMOP. This study also summarizes the advantages and disadvantages of conventional treatments and the quality of life and rehabilitation of patients with RA and PMOP. The findings presented her will provide a better understanding of the close relationship between bone immunity and bone remodelling in chronic bone diseases and new ideas for future research, prevention, and treatment of bone immune diseases.
Collapse
Affiliation(s)
- Xiaxia Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Bai Sun
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yujie Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Weirong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Zhipan Xiao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yongbin Xi
- Orthopaedics Department, The No.2 People's Hospital of Lanzhou, Lanzhou, Gansu, China
| | - Zhonghong Li
- Pathological Research Centre, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Fangyu An
- Teaching Experiment Training Centre, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Gao W, Jin X, Zhou P, Zhu H, Xie K, Jin B, Du L. Relationship between Uveitis and the Differential Reactivity of Retinal Microglia. Ophthalmic Res 2023; 66:1206-1212. [PMID: 37666222 PMCID: PMC10614524 DOI: 10.1159/000531156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/09/2023] [Indexed: 09/06/2023]
Abstract
Uveitis, a complicated group of ocular inflammatory diseases, can be affected by massive pathogenic contributors such as infection, autoimmunity, and genetics. Although it is well known that many pathological changes, including disorders of the immune system and disruption of the blood-retinal barrier, count much in the onset and progression of uveitis, there is a paucity of safe and effective treatments, which has exceedingly hindered the appropriate treatment of uveitis. As innate immune cells in the retina, microglia occupy a salient position in retinal homeostasis. Many studies have reported the activation of microglia in uveitis and the mitigation of uveitis by interfering with microglial reactivity, which strongly implicates microglia as a therapeutic target. However, it has been increasingly recognized that microglia are a nonhomogeneous population under different physiological and pathological conditions, which makes it essential to thoroughly have knowledge of their specific characteristics. The paper outlines the various properties of activated microglia in uveitis, summarizes the connections between their polarization patterns and the manifestations of uveitis, and ultimately is intended to enhance the understanding of microglial versatility and expedite the exploration of promising strategies for visual protection.
Collapse
Affiliation(s)
- Wenna Gao
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuemin Jin
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengyi Zhou
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyan Zhu
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kunpeng Xie
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Jin
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liping Du
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Nouralishahi A, Fazlinejad N, Pecho RDC, Zaidan HK, Kheradjoo H, Amin AH, Mohammadzadehsaliani S. Pathological role of inflammation in ocular disease progress and its targeting by mesenchymal stem cells (MSCs) and their exosome; current status and prospect. Pathol Res Pract 2023; 248:154619. [PMID: 37406377 DOI: 10.1016/j.prp.2023.154619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
Because of their unique capacity for differentiation to a diversity of cell lineages and immunosuppressive properties, mesenchymal stem cells (MSC) are being looked at as a potential new treatment option in ophthalmology. The MSCs derived from all tissue sources possess immunomodulatory attributes through cell-to-cell contact and releasing a myriad of immunomodulatory factors (IL-10, TGF-β, growth-related oncogene (GRO), indoleamine 2,3 dioxygenase (IDO), nitric oxide (NO), interleukin 1 receptor antagonist (IL-1Ra), prostaglandin E2 (PGE2)). Such mediators, in turn, alter both the phenotype and action of all immune cells that serve a pathogenic role in the progression of inflammation in eye diseases. Exosomes from MSCs, as natural nano-particles, contain the majority of the bioactive components of parental MSCs and can easily by-pass all biological barriers to reach the target epithelial and immune cells in the eye without interfering with nearby parenchymal cells, thus having no serious side effects. We outlined the most recent research on the molecular mechanisms underlying the therapeutic benefits of MSC and MSC-exosome in the treatment of inflammatory eye diseases in the current article.
Collapse
Affiliation(s)
- Alireza Nouralishahi
- Isfahan Eye Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; KIMS Hospital, Oman
| | | | | | - Haider Kamil Zaidan
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hillah, Babylon, Iraq
| | | | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | | |
Collapse
|