1
|
Satyanarayanan SK, Han Z, Xiao J, Yuan Q, Yung WH, Ke Y, Chang RCC, Zhu MH, Su H, Su KP, Qin D, Lee SMY. Frontiers of Neurodegenerative Disease Treatment: Targeting Immune Cells in Brain Border Regions. Brain Behav Immun 2024; 123:483-499. [PMID: 39378973 DOI: 10.1016/j.bbi.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/15/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
Neurodegenerative diseases (NDs) demonstrate a complex interaction with the immune system, challenging the traditional view of the brain as an "immune-privileged" organ. Microglia were once considered the sole guardians of the brain's immune response. However, recent research has revealed the critical role of peripheral immune cells located in key brain regions like the meninges, choroid plexus, and perivascular spaces. These previously overlooked cells are now recognized as contributors to the development and progression of NDs. This newfound understanding opens doors for pioneering therapeutic strategies. By targeting these peripheral immune cells, we may be able to modulate the brain's immune environment, offering an alternative approach to treat NDs and circumvent the challenges posed by the blood-brain barrier. This comprehensive review will scrutinize the latest findings on the complex interactions between these peripheral immune cells and NDs. It will also critically assess the prospects of targeting these cells as a ground-breaking therapeutic avenue for these debilitating disorders.
Collapse
Affiliation(s)
- Senthil Kumaran Satyanarayanan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China
| | - Zixu Han
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China
| | - Jingwei Xiao
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China
| | - Qiuju Yuan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing Ho Yung
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Ya Ke
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Faculty of Medicine Building, Hong Kong, China
| | - Maria Huachen Zhu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Hong Kong, China
| | - Kuan-Pin Su
- An-Nan Hospital, China Medical University, Tainan, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan; Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
| | - Dajiang Qin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| | - Suki Man Yan Lee
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Kong Y, Zhang Q, Wang S, Li R, Fu C, Wei Q. Mitochondrial metabolism regulated macrophage phenotype in myocardial infarction. Biomed Pharmacother 2024; 180:117494. [PMID: 39321509 DOI: 10.1016/j.biopha.2024.117494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide, with myocardial infarction (MI) being the primary contributor to mortality and disability associated with CVD. Reperfusion therapies are widely recognized as effective strategies for treating MI. However, while intended to restore blood flow, the reperfusion processes paradoxically initiate a series of pathophysiological events that worsen myocardial injury, resulting in ischemia-reperfusion (I/R) injury. Therefore, there is a pressing need for new treatment strategies to reduce the size of MI and enhance cardiac function post-infarction. Macrophages are crucial for maintaining homeostasis and mitigating undesirable remodeling following MI. Extensive research has established a strong link between cellular metabolism and macrophage function. In the context of MI, macrophages undergo adaptive metabolic reprogramming to mount an immune response. Moreover, mitochondrial metabolism in macrophages is evident, leading to significant changes in their metabolism. Therefore, we need to delve deeper into summarizing and understanding the relationship and role between mitochondrial metabolism and macrophage phenotype, and summarize existing treatment methods. In this review, we explore the role of mitochondria in shaping the macrophage phenotype and function. Additionally, we summarize current therapeutic strategies aimed at modulating mitochondrial metabolism of macrophages, which may offer new insights treating of MI.
Collapse
Affiliation(s)
- Youli Kong
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Qing Zhang
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Shiqi Wang
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Ran Li
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Chenying Fu
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Quan Wei
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China.
| |
Collapse
|
3
|
Li D, Gao S. The interplay between T lymphocytes and macrophages in myocardial ischemia/reperfusion injury. Mol Cell Biochem 2024; 479:1925-1936. [PMID: 37540399 DOI: 10.1007/s11010-023-04822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Acute myocardial infarction is one of the most important causes of death in the world, causing a huge health and economic burden to the world. It is still a ticklish problem how to effectively prevent reperfusion injury while recovering the blood flow of ischemic myocardium. During the process of myocardial ischemia/reperfusion injury (MI/RI), the modulation of immune cells plays an important role. Monocyte/macrophage, neutrophils and endothelial cells initiate the inflammatory response and induce the release of various inflammatory cytokines, resulting in increased vascular permeability, tissue edema and damage. Meanwhile, T cells were recruited to impaired myocardium and release pro-inflammatory and anti-inflammatory cytokines. T cells and macrophages play important roles in keeping cardiac homeostasis and orchestrate tissue repair. T cells differentiation and macrophages polarization precisely regulates the tissue microenvironment in MI/RI, and shows cross action, but the mechanism is unclear. To identify potential intervention targets and propose ideas for treatment and prevention of MI/RI, this review explores the crosstalk between T lymphocytes and macrophages in MI/RI.
Collapse
Affiliation(s)
- Dan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China
- Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Shan Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China.
- Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
4
|
Qin X, Li H, Zhao H, Fang L, Wang X. Enhancing healthy aging with small molecules: A mitochondrial perspective. Med Res Rev 2024; 44:1904-1922. [PMID: 38483176 DOI: 10.1002/med.22034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/27/2024] [Accepted: 03/04/2024] [Indexed: 06/10/2024]
Abstract
The pursuit of enhanced health during aging has prompted the exploration of various strategies focused on reducing the decline associated with the aging process. A key area of this exploration is the management of mitochondrial dysfunction, a notable characteristic of aging. This review sheds light on the crucial role that small molecules play in augmenting healthy aging, particularly through influencing mitochondrial functions. Mitochondrial oxidative damage, a significant aspect of aging, can potentially be lessened through interventions such as coenzyme Q10, alpha-lipoic acid, and a variety of antioxidants. Additionally, this review discusses approaches for enhancing mitochondrial proteostasis, emphasizing the importance of mitochondrial unfolded protein response inducers like doxycycline, and agents that affect mitophagy, such as urolithin A, spermidine, trehalose, and taurine, which are vital for sustaining protein quality control. Of equal importance are methods for modulating mitochondrial energy production, which involve nicotinamide adenine dinucleotide boosters, adenosine 5'-monophosphate-activated protein kinase activators, and compounds like metformin and mitochondria-targeted tamoxifen that enhance metabolic function. Furthermore, the review delves into emerging strategies that encourage mitochondrial biogenesis. Together, these interventions present a promising avenue for addressing age-related mitochondrial degradation, thereby setting the stage for the development of innovative treatment approaches to meet this extensive challenge.
Collapse
Affiliation(s)
- Xiujiao Qin
- Department of Geriatrics, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Huiying Zhao
- Department of Geriatrics, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Le Fang
- Department of Neurology, The China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
- Beijing National Laboratory for Molecular Sciences, Beijing, China
| |
Collapse
|
5
|
Ruchika, Bhardwaj N, Saneja A. Orally fast dissolving α-lipoic acid electrospun nanofibers mitigates lipopolysaccharide induced inflammation in RAW 264.7 macrophages. Int J Biol Macromol 2024; 264:130623. [PMID: 38447832 DOI: 10.1016/j.ijbiomac.2024.130623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/02/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
α-Lipoic acid (LA), a dietary supplement known for its strong antioxidant and anti-inflammatory potential, faces challenges due to its poor aqueous solubility and thermal instability. To address these issues, herein methyl-beta-cyclodextrin (M-β-CD) was utilized to create inclusion complex (IC) of LA in 1:1 M stoichiometric ratio of M-β-CD to LA. The LA-M-β-CD-IC was further combined with pullulan (PUL), a non-toxic and water-soluble biopolymer, for the development of electrospun nanofibers (NF) by green and sustainable approach. The resulting PUL/LA/M-β-CD NF formed as a self-standing and flexible material with an average diameter of 569 ± 129 nm and encapsulation efficiency of ∼86.90 %. The developed NF demonstrated an accelerated release, quick dissolution, and disintegration when exposed to artificial saliva replicating the conditions of oral cavity. PUL/LA/M-β-CD NF attenuated the production of ROS and NO by downregulating pro-inflammatory enzymes (iNOS and COX-2) in lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Moreover, PUL/LA/M-β-CD NF also significantly downregulated the expression of pro-inflammatory cytokines including TNF-α, IL-6, and IL-1β along with suppression of NF-ĸB nuclear translocation in comparison to LA (at 250 μM). In nutshell, PUL/LA/M-β-CD NF demonstrated great potential as a rapid disintegrating delivery system for oral anti-inflammatory treatment due to the enhanced physicochemical characteristics of LA.
Collapse
Affiliation(s)
- Ruchika
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neha Bhardwaj
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankit Saneja
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Hang L, Zhang Y, Zhang Z, Jiang H, Xia L. Metabolism Serves as a Bridge Between Cardiomyocytes and Immune Cells in Cardiovascular Diseases. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07545-5. [PMID: 38236378 DOI: 10.1007/s10557-024-07545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
Metabolic disorders of cardiomyocytes play an important role in the progression of various cardiovascular diseases. Metabolic reprogramming can provide ATP to cardiomyocytes and protect them during diseases, but this transformation also leads to adverse consequences such as oxidative stress, mitochondrial dysfunction, and eventually aggravates myocardial injury. Moreover, abnormal accumulation of metabolites induced by metabolic reprogramming of cardiomyocytes alters the cardiac microenvironment and affects the metabolism of immune cells. Immunometabolism, as a research hotspot, is involved in regulating the phenotype and function of immune cells. After myocardial injury, both cardiac resident immune cells and heart-infiltrating immune cells significantly contribute to the inflammation, repair and remodeling of the heart. In addition, metabolites generated by the metabolic reprogramming of immune cells can further affect the microenvironment, thereby affecting the function of cardiomyocytes and other immune cells. Therefore, metabolic reprogramming and abnormal metabolite levels may serve as a bridge between cardiomyocytes and immune cells, leading to the development of cardiovascular diseases. Herein, we summarize the metabolic relationship between cardiomyocytes and immune cells in cardiovascular diseases, and the effect on cardiac injury, which could be therapeutic strategy for cardiovascular diseases, especially in drug research.
Collapse
Affiliation(s)
- Lixiao Hang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Zhenjiang, 212001, China
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Zheng Zhang
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Haiqiang Jiang
- Department of Laboratory Medicine, Jiangyin Hospital of Traditional Chinese Medicine, No.130 Renmin Middle Road, Wuxi, 214400, Jiangyin, China.
| | - Lin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Zhenjiang, 212001, China.
- Institute of Hematological Disease, Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|