1
|
Khalaf WS, Morgan RN, Elkhatib WF. Clinical microbiology and artificial intelligence: Different applications, challenges, and future prospects. J Microbiol Methods 2025; 232-234:107125. [PMID: 40188989 DOI: 10.1016/j.mimet.2025.107125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/10/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Conventional clinical microbiological techniques are enhanced by the introduction of artificial intelligence (AI). Comprehensive data processing and analysis enabled the development of curated datasets that has been effectively used in training different AI algorithms. Recently, a number of machine learning (ML) and deep learning (DL) algorithms are developed and evaluated using diverse microbiological datasets. These datasets included spectral analysis (Raman and MALDI-TOF spectroscopy), microscopic images (Gram and acid fast stains), and genomic and protein sequences (whole genome sequencing (WGS) and protein data banks (PDBs)). The primary objective of these algorithms is to minimize the time, effort, and expenses linked to conventional analytical methods. Furthermore, AI algorithms are incorporated with quantitative structure-activity relationship (QSAR) models to predict novel antimicrobial agents that address the continuing surge of antimicrobial resistance. During the COVID-19 pandemic, AI algorithms played a crucial role in vaccine developments and the discovery of new antiviral agents, and introduced potential drug candidates via drug repurposing. However, despite their significant benefits, the implementation of AI encounters various challenges, including ethical considerations, the potential for bias, and errors related to data training. This review seeks to provide an overview of the most recent applications of artificial intelligence in clinical microbiology, with the intention of educating a wider audience of clinical practitioners regarding the current uses of machine learning algorithms and encouraging their implementation. Furthermore, it will discuss the challenges related to the incorporation of AI into clinical microbiology laboratories and examine future opportunities for AI within the realm of infectious disease epidemiology.
Collapse
Affiliation(s)
- Wafaa S Khalaf
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11751, Egypt.
| | - Radwa N Morgan
- National Centre for Radiation Research and Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt.
| | - Walid F Elkhatib
- Department of Microbiology & Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia, Cairo 11566, Egypt.
| |
Collapse
|
2
|
Aiman S, Ahmad A, Malik A, Chen R, Hanif MF, Khan AA, Ansari MA, Farrukh S, Xu G, Shahab M, Huang K. Whole proteome-integrated and vaccinomics-based next generation mRNA vaccine design against Pseudomonas aeruginosa-A hierarchical subtractive proteomics approach. Int J Biol Macromol 2025; 309:142627. [PMID: 40174835 DOI: 10.1016/j.ijbiomac.2025.142627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/09/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a multidrug-resistant opportunistic pathogen responsible for chronic obstructive pulmonary disease (COPD), cystic fibrosis, and ventilator-associated pneumonia (VAP), leading to cancer. Developing an efficacious vaccine remains the most promising strategy for combating P. aeruginosa infections. In this study, we employed an advanced in silico strategy to design a highly efficient and stable mRNA vaccine using immunoinformatics tools. Whole proteome data were utilized to identify highly immunogenic vaccine candidates using subtractive proteomics. Three extracellular proteins were prioritized for T- and linear B-cell epitope prediction. Beta-definsin protein sequence was incorporated as an adjuvant at the N-terminus of the construct. A total of 3 CTL, 3 HTL, and 3 linear B cell highly immunogenic epitopes were combined using specific linkers to design this multi-peptide construct. The 5' and 3' UTR sequences, Kozak sequence with a stop codon, and signal peptides followed by a poly-A tail were incorporated into the above vaccine construct to create our final mRNA vaccine. The vaccines exhibited antigenicity scores >0.88, ensuring high antigenicity with no allergenic or toxic. Physiochemical properties analysis revealed high solubility and thermostability. Three-dimensional structural analysis determined high-quality structures. Vaccine-receptor docking and molecular dynamic simulations demonstrated strong molecular interactions, stable binding affinities, dynamic nature, and structural stability of this vaccine, with significant immunogenic responses of the immune system against the vaccine. The immunological simulation indicates successful cellular and humoral immune responses to defend against P. aeruginosa infection. Validation of the study outcomes necessitates both experimental and clinical testing.
Collapse
Affiliation(s)
- Sara Aiman
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Liaobu Hospital of Dongguan City, Dongguan, China
| | - Abbas Ahmad
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Rui Chen
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Muhammad Farhan Hanif
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mushtaq Ahmed Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | | | - Guangxian Xu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| | - Muhammad Shahab
- State key laboratories of chemical Resources Engineering Beijing University of Chemical Technology, Beijing 100029, China.
| | - Kaisong Huang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Liaobu Hospital of Dongguan City, Dongguan, China.
| |
Collapse
|
3
|
Tai W, Tian C, Shi H, Chai B, Yu X, Zhuang X, Dong P, Li M, Yin Q, Feng S, Wang W, Zhang O, Liang S, Liu Y, Liu J, Zhu L, Zhao G, Tian M, Yu G, Cheng G. An mRNA vaccine against monkeypox virus inhibits infection by co-activation of humoral and cellular immune responses. Nat Commun 2025; 16:2971. [PMID: 40140411 PMCID: PMC11947304 DOI: 10.1038/s41467-025-58328-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
The persistent monkeypox outbreaks intensify the demand for monkeypox vaccines. Based on the mRNA vaccine platform, we conduct a systematic screening of monkeypox virus (MPXV) surface proteins from two types of viral particles, extracellular enveloped viruses (EVs) and intracellular mature viruses (MVs). This screening unveils 12 important antigens with diverse levels of neutralizing immunogenicity. Further assessment reveals that the combinations of 4, 8, and 12 of these antigens, namely Mix-4, Mix-8, and Mix-12, induce varying degrees of immune protection, with Mix-12 being the most potent. This finding demonstrates the significance of not only the level but also the diversity of the neutralizing antibodies in providing potent immune protection. Additionally, we utilize a T cell-epitope enrichment strategy, analyzing the complete proteome sequence of the MPXV to predict antigenic epitope-rich regions. Integration of these epitope-rich regions into a cellular immune-targeting antigen, named MPX-EPs, showcases that a cellular immune-targeting mRNA vaccine can independently confer immune protection. Furthermore, co-immunization with Mix-12 and MPX-EPs achieves complete protection against MPXV challenge. Overall, these results suggest an effective approach to enhance the immune protection of mRNA vaccines through the specific coordination of humoral and cellular immune responses.
Collapse
MESH Headings
- Animals
- Immunity, Humoral
- Immunity, Cellular
- Mice
- Antibodies, Neutralizing/immunology
- Monkeypox virus/immunology
- mRNA Vaccines/immunology
- Female
- Mpox, Monkeypox/prevention & control
- Mpox, Monkeypox/immunology
- Antibodies, Viral/immunology
- Mice, Inbred BALB C
- Humans
- Vaccines, Synthetic/immunology
- Viral Vaccines/immunology
- Chlorocebus aethiops
- Antigens, Viral/immunology
- Epitopes, T-Lymphocyte/immunology
Collapse
Affiliation(s)
- Wanbo Tai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Chongyu Tian
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Huicheng Shi
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Benjie Chai
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xinyang Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Xinyu Zhuang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Pengyuan Dong
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Qi Yin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Shengyong Feng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Weixiao Wang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Oujia Zhang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Shibo Liang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yang Liu
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jianying Liu
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Longchao Zhu
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.
| | - Mingyao Tian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China.
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
- Southwest United Graduate School, Kunming, China.
| |
Collapse
|
4
|
Arshad F, Sarfraz A, Shehroz M, Nishan U, Perveen A, Ullah R, Ibrahim MA, Shah M. Core-genome guided novel therapeutic targets identification and chimeric vaccine designing against Rickettsia rickettsii. Sci Rep 2025; 15:921. [PMID: 39762342 PMCID: PMC11704189 DOI: 10.1038/s41598-024-83395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Rocky Mountain Spotted Fever, caused by the gram-negative intracellular bacteria Rickettsia rickettsii, is a serious tick-borne infection with a fatality rate of 20-30%, if not treated. Since it is the most serious rickettsial disease in North America, modified prevention and treatment strategies are of critical importance. In order to find new therapeutic targets and create multiepitope vaccines, this study integrated subtractive proteomics with reverse vaccinology. The core genome of R. rickettsii was investigated, resulting in the identification of seven essential, human non-homologous proteins as potential drug targets, as well as four antigenic, non-allergenic proteins suitable for vaccine development. Using conserved antigenic peptides, two chimeric vaccine constructs were developed and assessed using molecular docking, molecular dynamics simulations, principal component analysis, MM-GBSA binding free energy, and dynamic cross-correlation matrix studies. The high immunogenic potential was indicated by the vaccine designs' robust and consistent interactions with human immunological receptors. Their capacity to trigger strong humoral and cellular immunological responses was further demonstrated by in silico immune simulations. The persistent interactions of vaccine V1 and V2 with human immunological receptor demonstrated that these might have high immunogenic potential. Moreover, the identified drug targets were annotated for essential biological processes, which shed light on their therapeutic potential. The vaccine constructs were cloned and expressed in suitable systems. This study displays a comprehensive strategy for managing Rocky Mountain Spotted Fever via rational vaccine development. Further experimental research is needed to confirm the immunogenicity of the vaccines and the druggability of identified targets, establishing the path toward effective RMSF management.
Collapse
Affiliation(s)
- Fizza Arshad
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 66000, Punjab, Pakistan
| | - Asifa Sarfraz
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 66000, Punjab, Pakistan
| | - Muhammad Shehroz
- Department of Bioinformatics, Kohsar University Murree, Murree, 47150, Pakistan
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Asia Perveen
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Macquarie Park, NSW, 2109, Australia
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 66000, Punjab, Pakistan.
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil.
| |
Collapse
|
5
|
Shovon MHJ, Imtiaz M, Biswas P, Tareq MMI, Zilani MNH, Hasan M. A pan-genomic analysis based multi-epitope vaccine development by targeting Stenotrophomonas maltophilia using reverse vaccinology method: an in-silico approach. In Silico Pharmacol 2024; 12:93. [PMID: 39464855 PMCID: PMC11499521 DOI: 10.1007/s40203-024-00271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
Antibiotic resistance in bacteria leads to high mortality rates and healthcare costs, a significant concern for public health. A colonizer of the human respiratory system, Stenotrophomonas maltophilia is frequently associated with hospital-acquired infections in individuals with cystic fibrosis, cancer, and other chronic illnesses. The importance of this study is underscored by its capacity to meet the critical demand for effective preventive strategies against this pathogen, particularly among susceptible groups of cystic fibrosis and those undergoing cancer treatment. In this study, we engineered a multi-epitope vaccine targeting S. maltophilia through genomic analysis, reverse vaccination strategies, and immunoinformatic techniques by examining a total of 81 complete genomes of S. maltophilia strains. Our investigation revealed 1945 core protein-coding genes alongside their corresponding proteomic sequences, with 191 of these genes predicted to exhibit virulence characteristics. Out of the filtered proteins, three best antigenic proteins were selected for epitope prediction while seven epitopes each from CTL, HTL, and B cell were chosen for vaccine development. The vaccine was refined and validated, showing highly antigenic and desirable physicochemical features. Molecular docking assessments revealed stable binding with TLR-4. Molecular dynamic simulation demonstrated stable dynamics with minor alterations. The originality of this investigation is rooted in the thorough techniques aimed at designing a vaccine that directly targets S. maltophilia, a microorganism of considerable clinical relevance that currently lacks an available vaccine. This study not only responds to a pressing public health crisis but also lays the groundwork for subsequent research endeavors focused on the prevention of S. maltophilia outbreaks. Further evidence from studies in mice models is needed to confirm immune protection against S. maltophilia.
Collapse
Affiliation(s)
- Md. Hasan Jafre Shovon
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Md. Imtiaz
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Md. Mohaimenul Islam Tareq
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Md Nazmul Hasan Zilani
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Md.Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| |
Collapse
|
6
|
Hashempour A, Khodadad N, Bemani P, Ghasemi Y, Akbarinia S, Bordbari R, Tabatabaei AH, Falahi S. Design of multivalent-epitope vaccine models directed toward the world's population against HIV-Gag polyprotein: Reverse vaccinology and immunoinformatics. PLoS One 2024; 19:e0306559. [PMID: 39331650 PMCID: PMC11432917 DOI: 10.1371/journal.pone.0306559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/18/2024] [Indexed: 09/29/2024] Open
Abstract
Significant progress has been made in HIV-1 research; however, researchers have not yet achieved the objective of eradicating HIV-1 infection. Accordingly, in this study, eucaryotic and procaryotic in silico vaccines were developed for HIV-Gag polyproteins from 100 major HIV subtypes and CRFs using immunoinformatic techniques to simulate immune responses in mice and humans. The epitopes located in the conserved domains of the Gag polyprotein were evaluated for allergenicity, antigenicity, immunogenicity, toxicity, homology, topology, and IFN-γ induction. Adjuvants, linkers, CTLs, HTLs, and BCL epitopes were incorporated into the vaccine models. Strong binding affinities were detected between HLA/MHC alleles, TLR-2, TLR-3, TLR-4, TLR-7, and TLR-9, and vaccine models. Immunological simulation showed that innate and adaptive immune cells elicited active and consistent responses. The human vaccine model was matched with approximately 93.91% of the human population. The strong binding of the vaccine to MHC/HLA and TLR molecules was confirmed through molecular dynamic stimulation. Codon optimization ensured the successful translation of the designed constructs into human cells and E. coli hosts. We believe that the HIV-1 Gag vaccine formulated in our research can reduce the challenges faced in developing an HIV-1 vaccine. Nevertheless, experimental verification is necessary to confirm the effectiveness of these vaccines in these models.
Collapse
Affiliation(s)
- Ava Hashempour
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nastaran Khodadad
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Peyman Bemani
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shokufeh Akbarinia
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Bordbari
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Hossein Tabatabaei
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahab Falahi
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
7
|
Kircheis R, Planz O. Special Issue "The Role of Toll-Like Receptors (TLRs) in Infection and Inflammation 2.0". Int J Mol Sci 2024; 25:9709. [PMID: 39273656 PMCID: PMC11396464 DOI: 10.3390/ijms25179709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Toll-like receptors (TLRs) are key players in the innate immune system, in host' first-line defense against pathogens [...].
Collapse
Affiliation(s)
| | - Oliver Planz
- Institute of Cell Biology and Immunology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
8
|
Kumar A, Dutt M, Dehury B, Martinez GS, Singh KP, Kelvin DJ. Formulation of next-generation polyvalent vaccine candidates against three important poxviruses by targeting DNA-dependent RNA polymerase using an integrated immunoinformatics and molecular modeling approach. J Infect Public Health 2024; 17:102470. [PMID: 38865776 DOI: 10.1016/j.jiph.2024.102470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/27/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Poxviruses comprise a group of large double-stranded DNA viruses and are known to cause diseases in humans, livestock animals, and other animal species. The Mpox virus (MPXV; formerly Monkeypox), variola virus (VARV), and volepox virus (VPXV) are among the prevalent poxviruses of the Orthopoxviridae genera. The ongoing Mpox infectious disease pandemic caused by the Mpox virus has had a major impact on public health across the globe. To date, only limited repurposed antivirals and vaccines are available for the effective treatment of Mpox and other poxviruses that cause contagious diseases. METHODS The present study was conducted with the primary goal of formulating multi-epitope vaccines against three evolutionary closed poxviruses i.e., MPXV, VARV, and VPXV using an integrated immunoinformatics and molecular modeling approach. DNA-dependent RNA polymerase (DdRp), a potential vaccine target of poxviruses, has been used to determine immunodominant B and T-cell epitopes followed by interactions analysis with Toll-like receptor 2 at the atomic level. RESULTS Three multi-epitope vaccine constructs, namely DdRp_MPXV (V1), DdRp_VARV (V2), and DdRp_VPXV (V3) were designed. These vaccine constructs were found to be antigenic, non-allergenic, non-toxic, and soluble with desired physicochemical properties. Protein-protein docking and interaction profiling analysis depicts a strong binding pattern between the targeted immune receptor TLR2 and the structural models of the designed vaccine constructs, and manifested a number of biochemical bonds (hydrogen bonds, salt bridges, and non-bonded contacts). State-of-the-art all-atoms molecular dynamics simulations revealed highly stable interactions of vaccine constructs with TLR2 at the atomic level throughout the simulations on 300 nanoseconds. Additionally, the outcome of the immune simulation analysis suggested that designed vaccines have the potential to induce protective immunity against targeted poxviruses. CONCLUSIONS Taken together, formulated next-generation polyvalent vaccines were found to have good efficacy against closely related poxviruses (MPXV, VARV, and VPXV) as demonstrated by our extensive immunoinformatics and molecular modeling evaluations; however, further experimental investigations are still needed.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Canada; Department of Pediatrics, IWK Health Center, Canadian Centre for Vaccinology CCfV, Halifax, Canada; Laboratory of Immunity, Shantou University Medical College, Shantou, China; BioForge Canada Limited, Halifax, Canada
| | - Mansi Dutt
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Canada; Department of Pediatrics, IWK Health Center, Canadian Centre for Vaccinology CCfV, Halifax, Canada; Laboratory of Immunity, Shantou University Medical College, Shantou, China; BioForge Canada Limited, Halifax, Canada
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Gustavo Sganzerla Martinez
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Canada; Department of Pediatrics, IWK Health Center, Canadian Centre for Vaccinology CCfV, Halifax, Canada; Laboratory of Immunity, Shantou University Medical College, Shantou, China; BioForge Canada Limited, Halifax, Canada
| | - Krishna Pal Singh
- Mahatma Jyotiba Phule Rohilkhand University, Bareilly, Uttar Pradesh, India
| | - David J Kelvin
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Canada; Department of Pediatrics, IWK Health Center, Canadian Centre for Vaccinology CCfV, Halifax, Canada; Laboratory of Immunity, Shantou University Medical College, Shantou, China; BioForge Canada Limited, Halifax, Canada.
| |
Collapse
|
9
|
Sarfraz A, Qurrat-Ul-Ain Fatima S, Shehroz M, Ahmad I, Zaman A, Nishan U, Tayyab M, Sheheryar, Moura AA, Ullah R, Ali EA, Shah M. Decrypting the multi-genome data for chimeric vaccine designing against the antibiotic resistant Yersinia pestis. Int Immunopharmacol 2024; 132:111952. [PMID: 38555818 DOI: 10.1016/j.intimp.2024.111952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Yersinia pestis, the causative agent of plague, is a gram-negative bacterium that can be fatal if not treated properly. Three types of plague are currently known: bubonic, septicemic, and pneumonic plague, among which the fatality rate of septicemic and pneumonic plague is very high. Bubonic plague can be treated, but only if antibiotics are used at the initial stage of the infection. But unfortunately, Y. pestis has also shown resistance to certain antibiotics such as kanamycin, minocycline, tetracycline, streptomycin, sulfonamides, spectinomycin, and chloramphenicol. Despite tremendous progress in vaccine development against Y. pestis, there is no proper FDA-approved vaccine available to protect people from its infections. Therefore, effective broad-spectrum vaccine development against Y. pestis is indispensable. In this study, vaccinomics-assisted immunoinformatics techniques were used to find possible vaccine candidates by utilizing the core proteome prepared from 58 complete genomes of Y. pestis. Human non-homologous, pathogen-essential, virulent, and extracellular and membrane proteins are potential vaccine targets. Two antigenic proteins were prioritized for the prediction of lead epitopes by utilizing reverse vaccinology approaches. Four vaccine designs were formulated using the selected B- and T-cell epitopes coupled with appropriate linkers and adjuvant sequences capable of inducing potent immune responses. The HLA allele population coverage of the T-cell epitopes selected for vaccine construction was also analyzed. The V2 constructs were top-ranked and selected for further analysis on the basis of immunological, physicochemical, and immune-receptor docking interactions and scores. Docking and molecular dynamic simulations confirmed the stability of construct V2 interactions with the host immune receptors. Immune simulation analysis anticipated the strong immune profile of the prioritized construct. In silico restriction cloning ensured the feasible cloning ability of the V2 construct in the expression system of E. coli strain K12. It is anticipated that the designed vaccine construct may be safe, effective, and able to elicit strong immune responses against Y. pestis infections and may, therefore, merit investigation using in vitro and in vivo assays.
Collapse
Affiliation(s)
- Asifa Sarfraz
- Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | | | - Muhammad Shehroz
- Department of Bioinformatics, Kohsar University Murree, Murree 47150, Pakistan
| | - Iqra Ahmad
- Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Aqal Zaman
- Department of Microbiology & Molecular Genetics, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Muhammad Tayyab
- Institute of Biotechnology & Genetic Engineering, The University of Agriculture Peshawar, Pakistan
| | - Sheheryar
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| | | | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Essam A Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan.
| |
Collapse
|
10
|
Aiman S, Farooq QUA, Han Z, Aslam M, Zhang J, Khan A, Ahmad A, Li C, Ali Y. Core-genome-mediated promising alternative drug and multi-epitope vaccine targets prioritization against infectious Clostridium difficile. PLoS One 2024; 19:e0293731. [PMID: 38241420 PMCID: PMC10798517 DOI: 10.1371/journal.pone.0293731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/18/2023] [Indexed: 01/21/2024] Open
Abstract
Prevention of Clostridium difficile infection is challenging worldwide owing to its high morbidity and mortality rates. C. difficile is currently being classified as an urgent threat by the CDC. Devising a new therapeutic strategy become indispensable against C. difficile infection due to its high rates of reinfection and increasing antimicrobial resistance. The current study is based on core proteome data of C. difficile to identify promising vaccine and drug candidates. Immunoinformatics and vaccinomics approaches were employed to construct multi-epitope-based chimeric vaccine constructs from top-ranked T- and B-cell epitopes. The efficacy of the designed vaccine was assessed by immunological analysis, immune receptor binding potential and immune simulation analyses. Additionally, subtractive proteomics and druggability analyses prioritized several promising and alternative drug targets against C. difficile. These include FMN-dependent nitroreductase which was prioritized for pharmacophore-based virtual screening of druggable molecule databases to predict potent inhibitors. A MolPort-001-785-965 druggable molecule was found to exhibit significant binding affinity with the conserved residues of FMN-dependent nitroreductase. The experimental validation of the therapeutic targets prioritized in the current study may worthy to identify new strategies to combat the drug-resistant C. difficile infection.
Collapse
Affiliation(s)
- Sara Aiman
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Qurrat ul Ain Farooq
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Zhongjie Han
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Muneeba Aslam
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Jilong Zhang
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abbas Ahmad
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, KP, Pakistan
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Yasir Ali
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
11
|
Aiman S, Ahmad A, Khan AA, Alanazi AM, Samad A, Ali SL, Li C, Ren Z, Khan A, Khattak S. Vaccinomics-based next-generation multi-epitope chimeric vaccine models prediction against Leishmania tropica - a hierarchical subtractive proteomics and immunoinformatics approach. Front Immunol 2023; 14:1259612. [PMID: 37781384 PMCID: PMC10540849 DOI: 10.3389/fimmu.2023.1259612] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Leishmania tropica is a vector-borne parasitic protozoa that is the leading cause of leishmaniasis throughout the global tropics and subtropics. L. tropica is a multidrug-resistant parasite with a diverse set of serological, biochemical, and genomic features. There are currently no particular vaccines available to combat leishmaniasis. The present study prioritized potential vaccine candidate proteins of L. tropica using subtractive proteomics and vaccinomics approaches. These vaccine candidate proteins were downstream analyzed to predict B- and T-cell epitopes based on high antigenicity, non-allergenic, and non-toxic characteristics. The top-ranked overlapping MHC-I, MHC-II, and linear B-cell epitopes were prioritized for model vaccine designing. The lead epitopes were linked together by suitable linker sequences to design multi-epitope constructs. Immunogenic adjuvant sequences were incorporated at the N-terminus of the model vaccine constructs to enhance their immunological potential. Among different combinations of constructs, four vaccine designs were selected based on their physicochemical and immunological features. The tertiary structure models of the designed vaccine constructs were predicted and verified. The molecular docking and molecular dynamic (MD) simulation analyses indicated that the vaccine design V1 demonstrated robust and stable molecular interactions with toll-like receptor 4 (TLR4). The top-ranked vaccine construct model-IV demonstrated significant expressive capability in the E. coli expression system during in-silico restriction cloning analysis. The results of the present study are intriguing; nevertheless, experimental bioassays are required to validate the efficacy of the predicted model chimeric vaccine.
Collapse
Affiliation(s)
- Sara Aiman
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Abbas Ahmad
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amer M. Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdus Samad
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan, Pakistan
| | - Syed Luqman Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan, Pakistan
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Zhiguang Ren
- The First Affiliated Hospital, Henan University, Kaifeng, China
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan, Pakistan
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| |
Collapse
|