Omran TZ, Jasmi FSOA, Obaid KM, Ghareeb AKR, Alsailawi HA, Mudhafar M. The interleukin gene landscape: understanding its influence on inflammatory mechanisms in apical periodontitis.
Mol Biol Rep 2025;
52:365. [PMID:
40192910 DOI:
10.1007/s11033-025-10477-4]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/27/2025] [Indexed: 04/23/2025]
Abstract
Apical periodontitis is a common inflammatory illness caused by microbial infections in the root canal system, which destroys the periapical tissue. This disease's course and severity are highly regulated by a complex interaction of host immunological responses and genetic variables, particularly interleukin (IL) gene polymorphisms. These genetic variants influence cytokine production, the inflammatory cascade, and the ability to resolve infections. Polymorphisms in important cytokines (e.g., IL-1β, IL-6, IL-10, TNF-α, and IL-17) have been linked to worsening or reducing inflammation, affecting the clinical presentation and chronicity of apical periodontitis. A thorough examination of the molecular and clinical consequences of interleukin polymorphisms in apical periodontitis is given in this article. It emphasizes their function in regulating bone resorption, tissue degradation, and immune cell signaling. Their value in enhancing diagnostic precision, forecasting disease susceptibility, and directing treatment approaches is demonstrated by the incorporation of genetic insights into clinical practice. Targeted therapies, like immunomodulatory drugs and cytokine inhibitors, have great potential to reduce inflammation and encourage periapical healing. Future studies should focus on population-based research to examine genetic variability across ethnic groups, functional investigations to clarify the mechanisms behind polymorphism-driven cytokine regulation, and longitudinal studies to evaluate illness trajectories. Furthermore, developments in precision medicine and bioinformatics could completely transform patient-specific strategies by providing customized treatments and diagnostics. This review highlights the necessity of a multidisciplinary strategy that integrates immunology, genetics, and clinical practice to maximize apical periodontitis therapy and enhance dental health outcomes worldwide.
Collapse