1
|
HOU Y, ZHANG T, WANG H. [Advancements in Radiomics for Immunotherapy of Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:637-644. [PMID: 39318257 PMCID: PMC11425675 DOI: 10.3779/j.issn.1009-3419.2024.102.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Indexed: 09/26/2024]
Abstract
Lung cancer is the main cause of cancer-related deaths, with non-small cell lung cancer (NSCLC) being the predominant subtype. At present, immunotherapy represented by immune checkpoint inhibitors (ICIs) of programmed cell death receptor 1 or its ligand has been widely used in the clinical diagnosis and treatment of patients with NSCLC. However, only a few patients can benefit from it, and reliable predictive markers for immunotherapy are lacking. Radiomics is a tool that uses computer software and algorithms to extract a large amount of quantitative information from biomedical images. A large number of studies have confirmed that the radiomic model that predicts the immune efficacy of NSCLC can be used as a new type of immune efficacy predictive marker, which is expected to guide the individualized diagnosis and treatment decisions for patients with lung cancer and has a bright application prospect. This article reviews the research progress of radiomics in predicting the immune therapy response of NSCLC, identifying pseudo-progression and hyperprogression, ICIs-related pneumonia, cachexia risk, and combining with other genomics.
.
Collapse
|
2
|
Bodalal Z, Bogveradze N, Ter Beek LC, van den Berg JG, Sanders J, Hofland I, Trebeschi S, Groot Lipman KBW, Storck K, Hong EK, Lebedyeva N, Maas M, Beets-Tan RGH, Gomez FM, Kurilova I. Radiomic signatures from T2W and DWI MRI are predictive of tumour hypoxia in colorectal liver metastases. Insights Imaging 2023; 14:133. [PMID: 37477715 PMCID: PMC10361926 DOI: 10.1186/s13244-023-01474-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Tumour hypoxia is a negative predictive and prognostic biomarker in colorectal cancer typically assessed by invasive sampling methods, which suffer from many shortcomings. This retrospective proof-of-principle study explores the potential of MRI-derived imaging markers in predicting tumour hypoxia non-invasively in patients with colorectal liver metastases (CLM). METHODS A single-centre cohort of 146 CLMs from 112 patients were segmented on preoperative T2-weighted (T2W) images and diffusion-weighted imaging (DWI). HIF-1 alpha immunohistochemical staining index (high/low) was used as a reference standard. Radiomic features were extracted, and machine learning approaches were implemented to predict the degree of histopathological tumour hypoxia. RESULTS Radiomic signatures from DWI b200 (AUC = 0.79, 95% CI 0.61-0.93, p = 0.002) and ADC (AUC = 0.72, 95% CI 0.50-0.90, p = 0.019) were significantly predictive of tumour hypoxia. Morphological T2W TE75 (AUC = 0.64, 95% CI 0.42-0.82, p = 0.092) and functional DWI b0 (AUC = 0.66, 95% CI 0.46-0.84, p = 0.069) and b800 (AUC = 0.64, 95% CI 0.44-0.82, p = 0.071) images also provided predictive information. T2W TE300 (AUC = 0.57, 95% CI 0.33-0.78, p = 0.312) and b = 10 (AUC = 0.53, 95% CI 0.33-0.74, p = 0.415) images were not predictive of tumour hypoxia. CONCLUSIONS T2W and DWI sequences encode information predictive of tumour hypoxia. Prospective multicentre studies could help develop and validate robust non-invasive hypoxia-detection algorithms. CRITICAL RELEVANCE STATEMENT Hypoxia is a negative prognostic biomarker in colorectal cancer. Hypoxia is usually assessed by invasive sampling methods. This proof-of-principle retrospective study explores the role of AI-based MRI-derived imaging biomarkers in non-invasively predicting tumour hypoxia in patients with colorectal liver metastases (CLM).
Collapse
Affiliation(s)
- Zuhir Bodalal
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Nino Bogveradze
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
- Department of Radiology, American Hospital Tbilisi, Tbilisi, Georgia
| | - Leon C Ter Beek
- Department of Medical Physics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jose G van den Berg
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joyce Sanders
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ingrid Hofland
- Core Facility Molecular Pathology & Biobank, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Stefano Trebeschi
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Kevin B W Groot Lipman
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Koen Storck
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Eun Kyoung Hong
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Natalya Lebedyeva
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Monique Maas
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Regina G H Beets-Tan
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Fernando M Gomez
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
- Hospital Clinic-Hospital Sant Joan de Deu, Barcelona, Spain.
| | - Ieva Kurilova
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Viswanathan VS, Gupta A, Madabhushi A. Novel Imaging Biomarkers to Assess Oncologic Treatment-Related Changes. Am Soc Clin Oncol Educ Book 2022; 42:1-13. [PMID: 35671432 DOI: 10.1200/edbk_350931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer therapeutics cause various treatment-related changes that may impact patient follow-up and disease monitoring. Although atypical responses such as pseudoprogression may be misinterpreted as treatment nonresponse, other changes, such as hyperprogressive disease seen with immunotherapy, must be recognized early for timely management. Radiation necrosis in the brain is a known response to radiotherapy and must be distinguished from local tumor recurrence. Radiotherapy can also cause adverse effects such as pneumonitis and local tissue toxicity. Systemic therapies, like chemotherapy and targeted therapies, are known to cause long-term cardiovascular effects. Thus, there is a need for robust biomarkers to identify, distinguish, and predict cancer treatment-related changes. Radiomics, which refers to the high-throughput extraction of subvisual features from radiologic images, has been widely explored for disease classification, risk stratification, and treatment-response prediction. Lately, there has been much interest in investigating the role of radiomics to assess oncologic treatment-related changes. We review the utility and various applications of radiomics in identifying and distinguishing atypical responses to treatments, as well as in predicting adverse effects. Although artificial intelligence tools show promise, several challenges-including multi-institutional clinical validation, deployment in health care settings, and artificial-intelligence bias-must be addressed for seamless clinical translation of these tools.
Collapse
Affiliation(s)
| | - Amit Gupta
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH.,Louis Stokes Cleveland VA Medical Center, Cleveland, OH
| |
Collapse
|