1
|
Dacheux MA, Norman DD, Shin Y, Tigyi GJ, Lee SC. Deleting autotaxin in LysM+ myeloid cells impairs innate tumor immunity in models of metastatic melanoma. iScience 2024; 27:110971. [PMID: 39398245 PMCID: PMC11467674 DOI: 10.1016/j.isci.2024.110971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/04/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Autotaxin (ATX) is a lysophospholipase D that generates lysophosphatidic acid (LPA) and regulates cancer metastasis, therapeutic resistance, and tumor immunity. We found that myeloid cells in human melanoma biopsies abundantly express ATX and investigated its role in modulating innate tumor immunity using two models of melanoma metastasis-spontaneous and experimental. Targeted knockout of ATX in LysM+ myeloid cells in mice (LysM-KO) reduced both spontaneous and experimental B16-F10 melanoma metastases by ≥ 50%. Immunoprofiling revealed differences in M2-like alveolar macrophages, neutrophils and regulatory T cells in the metastatic lungs of LysM-WT versus LysM-KO that are model-dependent. These differences extend systemically, with LysM-KO mice bearing experimental metastasis having fewer neutrophils in the spleen than LysM-WT mice. Our results show that (1) LysM+ myeloid cells are an important source of ATX/LPA that promote melanoma metastasis by altering innate tumor immunity, and (2) intratumor and systemic immune profiles vary dynamically during disease progression and are model-dependent.
Collapse
Affiliation(s)
- Mélanie A. Dacheux
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3N. Dunlap Street, Memphis, TN 38163, USA
| | - Derek D. Norman
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3N. Dunlap Street, Memphis, TN 38163, USA
| | - Yoojin Shin
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3N. Dunlap Street, Memphis, TN 38163, USA
| | - Gábor J. Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3N. Dunlap Street, Memphis, TN 38163, USA
| | - Sue Chin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3N. Dunlap Street, Memphis, TN 38163, USA
| |
Collapse
|
2
|
Benesch MG, Wu R, Rog CJ, Brindley DN, Ishikawa T, Takabe K. Insights into autotaxin- and lysophosphatidate-mediated signaling in the pancreatic ductal adenocarcinoma tumor microenvironment: a survey of pathway gene expression. Am J Cancer Res 2024; 14:4004-4027. [PMID: 39267662 PMCID: PMC11387861 DOI: 10.62347/kqnw1871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
Lysophosphatidate (LPA)-mediated signaling is a vital component of physiological wound healing, but the pathway is subverted to mediate chronic inflammatory signaling in many pathologies, including cancers. LPA, as an extracellular signaling molecule, is produced by the enzyme autotaxin (ATX, gene name ENPP2) and signals through six LPA receptors (LPARs). Its signaling is terminated by turnover via the ecto-activity of three lipid phosphate phosphatases (LPPs, gene names PLPP1-3). Many pharmacological developments against the LPA-signaling axis are underway, primarily against ATX. An ATX inhibitor against pancreatic ductal adenocarcinoma (PDAC), a very aggressive disease with limited systemic therapeutic options, is currently in clinical trials, and represents the first in-class drug against LPA signaling in cancers. In the present study, we surveyed the expression of ATX, LPARs, and LPPs in human PDACs and their clinical outcomes in two large independent cohorts, the Cancer Genome Atlas (TCGA) and GSE21501. Correlation among gene expressions, biological function and the cell composition of the tumor microenvironment were analysed using gene set enrichment analysis and cell cyber-sorting with xCell. ENPP2, LPAR1, LPAR4, LPAR5, LPAR6, PLPP1, and PLPP2 were significantly elevated in PDACs compared to normal pancreatic tissue, whereas LPAR2, LPAR3, and PLPP3 where downregulated (all P≤0.003). Only ENPP2 demonstrated survival differences, with overall survival favoring ENPP2-high patients (hazard ration 0.5-0.9). ENPP2 was also the only gene with enriched gene patterns for inflammatory and tissue repair gene sets. Epithelial (cancer) cells had increased LPAR2, LPAR5 and PLPP2 expression, and decreased ENPP2, LPAR1, PLPP1, and PLPP3 gene expression (all P<0.02). Tumor fibroblasts had increased ENPP2, LPAR2, LPAR4, PLPP1, and PLPP3 expression and decreased LPAR2, LPAR5, and PLPP2 expression in both cohorts (all P≤0.01). Immune cell populations were not well correlated to gene expression in PDACs, but across both cohorts, cytolytic scores were increased in high-expressing ENPP2, LPAR1, LPAR6, PLPP1, and PLPP3 tumors (P<0.01). Overall, in PDACs, ENPP2 may switch from an anti-to-pro tumor promoting gene with disease progression. LPAR2 and PLPP2 inhibition are also predicted to have potential therapeutic utility. Future multi-omics investigations are necessarily to validate which LPA signaling components are high-value candidates for pharmacological manipulation in PDAC treatment.
Collapse
Affiliation(s)
- Matthew Gk Benesch
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center Buffalo, New York 14263, USA
| | - Rongrong Wu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center Buffalo, New York 14263, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University Tokyo 160-8402, Japan
| | - Colin J Rog
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center Buffalo, New York 14263, USA
| | - David N Brindley
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta Edmonton, Alberta T6G 2S7, Canada
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University Tokyo 160-8402, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center Buffalo, New York 14263, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University Tokyo 160-8402, Japan
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine Yokohama 236-0004, Japan
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences Niigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine Fukushima 960-1295, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, State University of New York Buffalo, New York 14263, USA
| |
Collapse
|
3
|
Karalis T, Poulogiannis G. The Emerging Role of LPA as an Oncometabolite. Cells 2024; 13:629. [PMID: 38607068 PMCID: PMC11011573 DOI: 10.3390/cells13070629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
Lysophosphatidic acid (LPA) is a phospholipid that displays potent signalling activities that are regulated in both an autocrine and paracrine manner. It can be found both extra- and intracellularly, where it interacts with different receptors to activate signalling pathways that regulate a plethora of cellular processes, including mitosis, proliferation and migration. LPA metabolism is complex, and its biosynthesis and catabolism are under tight control to ensure proper LPA levels in the body. In cancer patient specimens, LPA levels are frequently higher compared to those of healthy individuals and often correlate with poor responses and more aggressive disease. Accordingly, LPA, through promoting cancer cell migration and invasion, enhances the metastasis and dissemination of tumour cells. In this review, we summarise the role of LPA in the regulation of critical aspects of tumour biology and further discuss the available pre-clinical and clinical evidence regarding the feasibility and efficacy of targeting LPA metabolism for effective anticancer therapy.
Collapse
Affiliation(s)
| | - George Poulogiannis
- Signalling and Cancer Metabolism Laboratory, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK;
| |
Collapse
|
4
|
Simonetti J, Ficili M, Sgalla G, Richeldi L. Experimental autotaxin inhibitors for the treatment of idiopathic pulmonary fibrosis. Expert Opin Investig Drugs 2024; 33:133-143. [PMID: 38299617 DOI: 10.1080/13543784.2024.2305126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Idiopathic Pulmonary Fibrosis (IPF) is a progressive, irreversible, and fatal lung disease with unmet medical needs. Autotaxin (ATX) is an extracellular enzyme involved in the generation of lysophosphatidic acid (LPA). Preclinical and clinical data have suggested the ATX-LPAR signaling axis plays an important role in the pathogenesis and the progression of IPF. AREAS COVERED The aim of this review is to provide an update on the available evidence on autotaxin inhibitors in IPF and further details on the ongoing clinical studies involving these molecules. EXPERT OPINION The development of autotaxin inhibitors as a potential therapy for idiopathic pulmonary fibrosis has gained attention due to evidence of their involvement in the disease. Preclinical and early-phase clinical studies have explored these inhibitors' efficacy and safety, offering a novel approach in treating this disease. Combining autotaxin inhibitors with existing anti-fibrotic agents is considered for enhanced therapeutic effects. Large phase III trials assessed Ziritaxestat but yielded disappointing results, highlighting the importance of long-term observation and clinical outcomes in clinical research. Patient stratification and personalized medicine are crucial, as pulmonary fibrosis is a heterogeneous disease. Ongoing research and collaboration are essential for this advancement.
Collapse
Affiliation(s)
- Jacopo Simonetti
- Unita Operativa Complessa di Pneumologia, Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Unita Operativa Complessa di Pneumologia, Dipartimento di Neuroscienze, Organi di Senso e Torace, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Ficili
- Unita Operativa Complessa di Pneumologia, Dipartimento di Neuroscienze, Organi di Senso e Torace, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giacomo Sgalla
- Unita Operativa Complessa di Pneumologia, Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Unita Operativa Complessa di Pneumologia, Dipartimento di Neuroscienze, Organi di Senso e Torace, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Richeldi
- Unita Operativa Complessa di Pneumologia, Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Unita Operativa Complessa di Pneumologia, Dipartimento di Neuroscienze, Organi di Senso e Torace, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
5
|
Benesch MG, Tang X, Brindley DN, Takabe K. Autotaxin and Lysophosphatidate Signaling: Prime Targets for Mitigating Therapy Resistance in Breast Cancer. World J Oncol 2024; 15:1-13. [PMID: 38274724 PMCID: PMC10807915 DOI: 10.14740/wjon1762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
Overcoming and preventing cancer therapy resistance is the most pressing challenge in modern breast cancer management. Consequently, most modern breast cancer research is aimed at understanding and blocking these therapy resistance mechanisms. One increasingly promising therapeutic target is the autotaxin (ATX)-lysophosphatidate (LPA)-lipid phosphate phosphatase (LPP) axis. Extracellular LPA, produced from albumin-bound lysophosphatidylcholine by ATX and degraded by the ecto-activity of the LPPs, is a potent cell-signaling mediator of tumor growth, invasion, angiogenesis, immune evasion, and resistance to cancer treatment modalities. LPA signaling in the post-natal organism has central roles in physiological wound healing, but these mechanisms are subverted to fuel pathogenesis in diseases that arise from chronic inflammatory processes, including cancer. Over the last 10 years, our understanding of the role of LPA signaling in the breast tumor microenvironment has begun to mature. Tumor-promoting inflammation in breast cancer leads to increased ATX production within the tumor microenvironment. This results in increased local concentrations of LPA that are maintained in part by decreased overall cancer cell LPP expression that would otherwise more rapidly break it down. LPA signaling through six G-protein-coupled LPA receptors expressed by cancer cells can then activate virtually every known tumorigenic pathway. Consequently, to target therapy resistance and tumor growth mediated by LPA signaling, multiple inhibitors against the LPA signaling axis are entering clinical trials. In this review, we summarize recent developments in LPA breast cancer biology, and illustrate how these novel therapeutics against the LPA signaling pathway may be excellent adjuncts to extend the efficacy of evolving breast cancer treatments.
Collapse
Affiliation(s)
- Matthew G.K. Benesch
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Xiaoyun Tang
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - David N. Brindley
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
| |
Collapse
|
6
|
Bhattacharyya S, Oon C, Diaz L, Sandborg H, Stempinski ES, Saoi M, Morgan TK, López CS, Cross JR, Sherman MH. Autotaxin-lysolipid signaling suppresses a CCL11-eosinophil axis to promote pancreatic cancer progression. NATURE CANCER 2024; 5:283-298. [PMID: 38195933 PMCID: PMC10899115 DOI: 10.1038/s43018-023-00703-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/06/2023] [Indexed: 01/11/2024]
Abstract
Lipids and their modifying enzymes regulate diverse features of the tumor microenvironment and cancer progression. The secreted enzyme autotaxin (ATX) hydrolyzes extracellular lysophosphatidylcholine to generate the multifunctional lipid mediator lysophosphatidic acid (LPA) and supports the growth of several tumor types, including pancreatic ductal adenocarcinoma (PDAC). Here we show that ATX suppresses the accumulation of eosinophils in the PDAC microenvironment. Genetic or pharmacologic ATX inhibition increased the number of intratumor eosinophils, which promote tumor cell apoptosis locally and suppress tumor progression. Mechanistically, ATX suppresses eosinophil accumulation via an autocrine feedback loop, wherein ATX-LPA signaling negatively regulates the activity of the AP-1 transcription factor c-Jun, in turn suppressing the expression of the potent eosinophil chemoattractant CCL11 (eotaxin-1). Eosinophils were identified in human PDAC specimens, and rare individuals with high intratumor eosinophil abundance had the longest overall survival. Together with recent findings, this study reveals the context-dependent, immune-modulatory potential of ATX-LPA signaling in cancer.
Collapse
Affiliation(s)
- Sohinee Bhattacharyya
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chet Oon
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luis Diaz
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Holly Sandborg
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Erin S Stempinski
- Multiscale Microscopy Core Facility, Oregon Health & Science University, Portland, OR, USA
| | - Michelle Saoi
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Terry K Morgan
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Claudia S López
- Multiscale Microscopy Core Facility, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mara H Sherman
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
7
|
Grisaru-Tal S, Munitz A. ATX restricts anti-tumor eosinophil responses. NATURE CANCER 2024; 5:221-223. [PMID: 38418775 DOI: 10.1038/s43018-023-00718-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Affiliation(s)
- Sharon Grisaru-Tal
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
| |
Collapse
|
8
|
Pietrobono S, Sabbadini F, Bertolini M, Mangiameli D, De Vita V, Fazzini F, Lunardi G, Casalino S, Scarlato E, Merz V, Zecchetto C, Quinzii A, Di Conza G, Lahn M, Melisi D. Autotaxin Secretion Is a Stromal Mechanism of Adaptive Resistance to TGFβ Inhibition in Pancreatic Ductal Adenocarcinoma. Cancer Res 2024; 84:118-132. [PMID: 37738399 PMCID: PMC10758691 DOI: 10.1158/0008-5472.can-23-0104] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/11/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
The TGFβ receptor inhibitor galunisertib demonstrated efficacy in patients with pancreatic ductal adenocarcinoma (PDAC) in the randomized phase II H9H-MC-JBAJ study, which compared galunisertib plus the chemotherapeutic agent gemcitabine with gemcitabine alone. However, additional stromal paracrine signals might confer adaptive resistance that limits the efficacy of this therapeutic strategy. Here, we found that autotaxin, a secreted enzyme that promotes inflammation and fibrosis by generating lysophosphatidic acid (LPA), mediates adaptive resistance to TGFβ receptor inhibition. Blocking TGFβ signaling prompted the skewing of cancer-associated fibroblasts (CAF) toward an inflammatory (iCAF) phenotype. iCAFs were responsible for a significant secretion of autotaxin. Paracrine autotaxin increased LPA-NFκB signaling in tumor cells that triggered treatment resistance. The autotaxin inhibitor IOA-289 suppressed NFκB activation in PDAC cells and overcame resistance to galunisertib and gemcitabine. In immunocompetent orthotopic murine models, IOA-289 synergized with galunisertib in restoring sensitivity to gemcitabine. Most importantly, treatment with galunisertib significantly increased plasma levels of autotaxin in patients enrolled in the H9H-MC-JBAJ study, and median progression-free survival was significantly longer in patients without an increase of autotaxin upon treatment with galunisertib compared with those with increased autotaxin. These results establish that autotaxin secretion by CAFs is increased by TGFβ inhibition and that circulating autotaxin levels predict response to the combination treatment approach of gemcitabine plus galunisertib. SIGNIFICANCE TGFβ inhibition skews cancer-associated fibroblasts toward an inflammatory phenotype that secretes autotaxin to drive adaptive resistance in PDAC, revealing autotaxin as a therapeutic target and biomarker of galunisertib response.
Collapse
Affiliation(s)
- Silvia Pietrobono
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Fabio Sabbadini
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Monica Bertolini
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Domenico Mangiameli
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Veronica De Vita
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Federica Fazzini
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Giulia Lunardi
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Simona Casalino
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Enza Scarlato
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Valeria Merz
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Camilla Zecchetto
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Alberto Quinzii
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | | | | | - Davide Melisi
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| |
Collapse
|
9
|
Shinde A, Tang X, Singh R, Brindley DN. Infliximab, a Monoclonal Antibody against TNF-α, Inhibits NF-κB Activation, Autotaxin Expression and Breast Cancer Metastasis to Lungs. Cancers (Basel) 2023; 16:52. [PMID: 38201482 PMCID: PMC10778319 DOI: 10.3390/cancers16010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
An inflammatory milieu in the tumor microenvironment leads to immune evasion, resistance to cell death, metastasis and poor prognosis in breast cancer patients. TNF-α is a proinflammatory cytokine that regulates multiple aspects of tumor biology from initiation to progression. TNF-α-induced NF-κB activation initiates inflammatory pathways, which determine cell survival, death and tumor progression. One candidate pathway involves the increased secretion of autotaxin, which produces lysophosphatidate that signals through six G-protein-coupled receptors. Significantly, autotaxin is one of the 40-50 most upregulated genes in metastatic tumors. In this study, we investigated the effects of TNF-α by blocking its action with a monoclonal antibody, Infliximab, and studied the effects on autotaxin secretion and tumor progression. Infliximab had little effect on tumor growth, but it decreased lung metastasis by 60% in a syngeneic BALB/c mouse model using 4T1 breast cancer cells. Infliximab-treated mice also showed a decrease in proliferation and metastatic markers like Ki-67 and vimentin in tumors. This was accompanied by decreases in NF-κB activation, autotaxin expression and the concentrations of plasma and tumor cytokines/chemokines which are involved in metastasis. We also demonstrated a positive correlation of TNF-α -NF-κB and ATX expression in breast cancer patients using cancer databases. Studies in vitro showed that TNF-α-induced NF-κB activation increases autotaxin expression and the clone forming ability of 4T1 breast cancer cells. This report highlights the potential role of Infliximab as an additional approach to attenuate signaling through the autotaxin-lysophosphatidate-inflammatory cycle and decrease mortality from metastatic cancer.
Collapse
Affiliation(s)
- Anjali Shinde
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara 390002, Gujarat, India;
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| | - Xiaoyun Tang
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara 390002, Gujarat, India;
- Department of Molecular and Human Genetics, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India
| | - David N. Brindley
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| |
Collapse
|
10
|
Laubach K, Turan T, Mathew R, Wilsbacher J, Engelhardt J, Samayoa J. Tumor-intrinsic metabolic reprogramming and how it drives resistance to anti-PD-1/PD-L1 treatment. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:611-641. [PMID: 37842241 PMCID: PMC10571065 DOI: 10.20517/cdr.2023.60] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 10/17/2023]
Abstract
The development of immune checkpoint blockade (ICB) therapies has been instrumental in advancing the field of immunotherapy. Despite the prominence of these treatments, many patients exhibit primary or acquired resistance, rendering them ineffective. For example, anti-programmed cell death protein 1 (anti-PD-1)/anti-programmed cell death ligand 1 (anti-PD-L1) treatments are widely utilized across a range of cancer indications, but the response rate is only 10%-30%. As such, it is necessary for researchers to identify targets and develop drugs that can be used in combination with existing ICB therapies to overcome resistance. The intersection of cancer, metabolism, and the immune system has gained considerable traction in recent years as a way to comprehensively study the mechanisms that drive oncogenesis, immune evasion, and immunotherapy resistance. As a result, new research is continuously emerging in support of targeting metabolic pathways as an adjuvant to ICB to boost patient response and overcome resistance. Due to the plethora of studies in recent years highlighting this notion, this review will integrate the relevant articles that demonstrate how tumor-derived alterations in energy, amino acid, and lipid metabolism dysregulate anti-tumor immune responses and drive resistance to anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Kyra Laubach
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
- Immuno-Oncology, AbbVie, South San Francisco, CA 94080, USA
| | - Tolga Turan
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
| | - Rebecca Mathew
- Immuno-Oncology, AbbVie, South San Francisco, CA 94080, USA
| | | | | | - Josue Samayoa
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
| |
Collapse
|
11
|
Centonze M, Di Conza G, Lahn M, Fabregat I, Dituri F, Gigante I, Serino G, Scialpi R, Carrieri L, Negro R, Pizzuto E, Giannelli G. Autotaxin inhibitor IOA-289 reduces gastrointestinal cancer progression in preclinical models. J Exp Clin Cancer Res 2023; 42:197. [PMID: 37550785 PMCID: PMC10408149 DOI: 10.1186/s13046-023-02780-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Autotaxin (ATX) is a secreted enzyme that converts lysophosphatidylcholine to lysophosphatidic acid (LPA). LPA stimulates cell proliferation and migration and promotes wound repair following tissue damage. ATX levels are directly correlated with stage and grade in several human cancers. Several small molecule ATX inhibitors have been developed in recent years. IOA-289 is a potent ATX inhibitor, developed to treat cancers containing fibrosis. In this study, we tested IOA-289 treatment on different gastrointestinal tract tumor cell lines, in order to evaluate its effects on viability and motility. METHODS To determine the effects on cell viability and proliferation of treatment with increasing concentrations of IOA-289, we used the crystal violet assay, a clonogenic assay in matrigel, and we evaluated the inhibitor's effect on formation of 3D spheroids in an in vitro model. The effect of IOA-289 on cell cycle phases was analysed with a redox dye reagent. Cell migration capacity was evaluated by wound healing assay and transwell migration assay. To evaluate the pro-apoptotic effect of the inhibitor, cells were stained with Annexin V and immunofluorescence and flow cytometry analysis were performed. An antibody array was also used, to discriminate, in various samples, the differential expression of 43 proteins involved in the apoptosis pathway. RESULTS We found that IOA-289 is able to inhibit both growth and migration of gastrointestinal tract tumor cell lines, both in 2D (crystal violet assay) and 3D in vitro models (spheroid formation and clonogenic assay in matrigel). This effect is dose-dependent, and the drug is most effective when administered in FBS-free culture medium. The inhibitory effect on cell growth is due to a pro-apoptotic effect of IOA-289. Staining with FITC-conjugated Annexin V showed that IOA-289 induced a dose-dependent increase in fluorescence following incubation for 24 h, and apoptotic cells were also distinguished in flow cytometry using Annexin/PI staining. The antibody array shows that treatment with IOA-289 causes the increased expression of several pro-apoptotic proteins in all tested cell lines. CONCLUSIONS These results indicate that IOA-289 may be an effective drug for the treatment of tumors of the gastrointestinal tract, particularly those characterized by a high degree of fibrosis.
Collapse
Affiliation(s)
- Matteo Centonze
- National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, Italy
| | - Giusy Di Conza
- iOnctura SA, Avenue Secheron 15, 1202, Geneva, Switzerland
| | - Michael Lahn
- iOnctura SA, Avenue Secheron 15, 1202, Geneva, Switzerland
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBEREHD - ISCIII, Barcelona, Spain
| | - Francesco Dituri
- National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, Italy
| | - Isabella Gigante
- National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, Italy
| | - Grazia Serino
- National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, Italy
| | - Rosanna Scialpi
- National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, Italy
| | - Livianna Carrieri
- National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, Italy
| | - Roberto Negro
- National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, Italy
| | - Elena Pizzuto
- National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, Italy.
| |
Collapse
|
12
|
Tang X, Morris AJ, Deken MA, Brindley DN. Autotaxin Inhibition with IOA-289 Decreases Breast Tumor Growth in Mice Whereas Knockout of Autotaxin in Adipocytes Does Not. Cancers (Basel) 2023; 15:2937. [PMID: 37296899 PMCID: PMC10251959 DOI: 10.3390/cancers15112937] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Breast cancer cells produce negligible quantities of autotaxin. Instead, previous work indicated that adipocytes in the inflamed adipose tissue adjacent to breast tumors are a major source of autotaxin secretion that drives breast tumor growth, metastasis, and the loss of efficacy for chemotherapy and radiotherapy. To test this hypothesis, we used mice with an adipocyte-specific knock out of autotaxin. The lack of autotaxin secretion from adipocytes failed to decrease the growth of orthotopic E0771 breast tumors in syngeneic C57BL/6 mice and the growth and lung metastasis of spontaneous breast tumors in MMTV-PyMT mice. However, the inhibition of autotaxin with IOA-289 decreased the growth of E0771 tumors, indicating that another source of autotaxin is responsible for tumor growth. Tumor-associated fibroblasts and leukocytes produce the majority of autotoxin transcripts in the E0771 breast tumors, and we hypothesize that they are the main sources of ATX that drive breast tumor growth. Autotaxin inhibition with IOA-289 increased the numbers of CD8α+-T-cells in the tumors. This was accompanied by decreases in the concentrations of CXCL10, CCL2, and CXCL9 in the plasma and LIF, TGFβ1, TGFβ2, and prolactin in the tumors. Bioinformatics analysis of human breast tumor databases showed that autotaxin (ENPP2) is expressed mainly in endothelial cells and fibroblasts. Autotaxin expression correlated significantly with increases in IL-6 cytokine receptor ligand interactions, signaling by LIF, TGFβ, and prolactin. This confirms the relevance of results from autotaxin inhibition in the mouse model. We propose that inhibiting autotaxin activity that is derived from cells presenting breast tumors such as fibroblasts, leukocytes, or endothelial cells changes the tumor micro-environment in such a way as to inhibit tumor growth.
Collapse
Affiliation(s)
- Xiaoyun Tang
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| | - Andrew J. Morris
- Central Arkansas Veterans Affairs Healthcare System and University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205, USA;
| | - Marcel A. Deken
- iOnctura BV, Gustav Mahlerplein 102, 1082 MA Amsterdam, The Netherlands;
| | - David N. Brindley
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| |
Collapse
|
13
|
Vít O, Petrák J. Autotaxin and Lysophosphatidic Acid Signalling: the Pleiotropic Regulatory Network in Cancer. Folia Biol (Praha) 2023; 69:149-162. [PMID: 38583176 DOI: 10.14712/fb2023069050149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Autotaxin, also known as ecto-nucleotide pyrophosphatase/phosphodiesterase family member 2, is a secreted glycoprotein that plays multiple roles in human physiology and cancer pathology. This protein, by converting lysophosphatidylcholine into lysophosphatidic acid, initiates a complex signalling cascade with significant biological implications. The article outlines the autotaxin gene and protein structure, expression regulation and physiological functions, but focuses mainly on the role of autotaxin in cancer development and progression. Autotaxin and lysophosphatidic acid signalling influence several aspects of cancer, including cell proliferation, migration, metastasis, therapy resistance, and interactions with the immune system. The potential of autotaxin as a diagnostic biomarker and promising drug target is also examined.
Collapse
Affiliation(s)
- Ondřej Vít
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.
| | - Jiří Petrák
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| |
Collapse
|