1
|
Senthivel V, Jolly B, Vr A, Bajaj A, Bhoyar R, Imran M, Vignesh H, Divakar MK, Sharma G, Rai N, Kumar K, Mp J, Krishna M, Shenthar J, Ali M, Abqari S, Nadri G, Scaria V, Naik N, Sivasubbu S. Whole genome sequencing of families diagnosed with cardiac channelopathies reveals structural variants missed by whole exome sequencing. J Hum Genet 2024; 69:455-465. [PMID: 38890497 DOI: 10.1038/s10038-024-01265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/07/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
Cardiac channelopathies are a group of heritable disorders that affect the heart's electrical activity due to genetic variations present in genes coding for ion channels. With the advent of new sequencing technologies, molecular diagnosis of these disorders in patients has paved the way for early identification, therapeutic management and family screening. The objective of this retrospective study was to understand the efficacy of whole-genome sequencing in diagnosing patients with suspected cardiac channelopathies who were reported negative after whole exome sequencing and analysis. We employed a 3-tier analysis approach to identify nonsynonymous variations and loss-of-function variations missed by exome sequencing, and structural variations that are better resolved only by sequencing whole genomes. By performing whole genome sequencing and analyzing 25 exome-negative cardiac channelopathy patients, we identified 3 pathogenic variations. These include a heterozygous likely pathogenic nonsynonymous variation, CACNA1C:NM_000719:exon19:c.C2570G:p. P857R, which causes autosomal dominant long QT syndrome in the absence of Timothy syndrome, a heterozygous loss-of-function variation CASQ2:NM_001232.4:c.420+2T>C classified as pathogenic, and a 9.2 kb structural variation that spans exon 2 of the KCNQ1 gene, which is likely to cause Jervell-Lange-Nielssen syndrome. In addition, we also identified a loss-of-function variation and 16 structural variations of unknown significance (VUS). Further studies are required to elucidate the role of these identified VUS in gene regulation and decipher the underlying genetic and molecular mechanisms of these disorders. Our present study serves as a pilot for understanding the utility of WGS over clinical exomes in diagnosing cardiac channelopathy disorders.
Collapse
Affiliation(s)
- Vigneshwar Senthivel
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bani Jolly
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Arvinden Vr
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anjali Bajaj
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rahul Bhoyar
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
| | - Mohamed Imran
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Harie Vignesh
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
| | - Mohit Kumar Divakar
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gautam Sharma
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Nitin Rai
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Kapil Kumar
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jayakrishnan Mp
- Government Medical College, Kozhikode, Kerala, 673008, India
| | - Maniram Krishna
- Tiny Hearts Fetal and Pediatric Clinic, Thanjavur, Tamil Nadu, 613001, India
| | - Jeyaprakash Shenthar
- Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bengaluru, Karnataka, 560069, India
| | - Muzaffar Ali
- Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bengaluru, Karnataka, 560069, India
| | - Shaad Abqari
- Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Gulnaz Nadri
- Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Vinod Scaria
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nitish Naik
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Sridhar Sivasubbu
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Chockalingam P, Geetha TS, Nair S, Rajakumar N, Raja DC, Lokhandwala Y, Chaturvedi V, Selvaraj RJ, Ramasamy S, Sharda S, Sundar C, Anantharaman R. Results of comprehensive genetic testing in patients presenting to a multidisciplinary inherited heart disease clinic in India. Indian Heart J 2024; 76:260-267. [PMID: 39009076 PMCID: PMC11451389 DOI: 10.1016/j.ihj.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVES This study aims to analyze the results of comprehensive genetic testing in patients presenting to a dedicated multidisciplinary inherited heart disease clinic in India. METHODS All patients presenting to our clinic from August 2017 to October 2023 with a suspected inherited heart disease and consenting for genetic testing were included. The probands were grouped into familial cardiomyopathies namely hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), arrhythmogenic cardiomyopathy (ACM) and peripartum cardiomyopathy (PPCM), channelopathies namely congenital long QT syndrome (LQTS) and Brugada syndrome (BrS), and heritable connective tissue disorder namely Marfan Syndrome (MFS). Next generation sequencing (NGS) was used, and pre-test and post-test counseling were provided to probands and cascade screening offered to relatives. RESULTS Mean age of the subjects (n = 77; 48 probands, 29 relatives) was 43 ± 18 years, 68 % male and 44 % symptomatic, with 36 HCM, 3 DCM, 3 ACM, 1 PPCM, 3 LQTS, 1 BrS and 1 MFS probands. The diagnostic yield of NGS-based genetic testing was 31 %; variants of uncertain significance (VUS) were identified in 54 %; and 15 % were genotype-negative. Twenty-nine relatives from 18 families with HCM (n = 12), DCM (n = 3), ACM (n = 2) and MFS (n = 1) underwent genetic testing. The genotype positive probands/relatives and VUS carriers with strong disease phenotype and/or high risk variant were advised periodic follow-up; the remaining probands/relatives were discharged from further clinical surveillance. CONCLUSIONS Genetic testing guides treatment and follow-up of patients with inherited heart diseases and should be carried out in dedicated multidisciplinary clinics with expertise for counseling and cascade screening of family members.
Collapse
Affiliation(s)
- Priya Chockalingam
- Centre for Inherited Heart Disease, Department of Cardiology, Kauvery Hospital, Chennai, India.
| | - Thenral S Geetha
- Principal Scientist, Operations, Medgenome Labs, Bengaluru, India
| | - Sandhya Nair
- Senior Manager, Operations, Medgenome Labs, Bengaluru, India
| | - Nivedita Rajakumar
- Senior Genetic Counselor, Neuberg Centre for Genomic Medicine, Chennai, India
| | - Deep Chandh Raja
- Cardiac Electrophysiologist, Department of Cardiology, Kauvery Hospital, Chennai, India
| | - Yash Lokhandwala
- Cardiac Electrophysiologist, Holy Family Hospital, Mumbai, India
| | - Vivek Chaturvedi
- Senior Consultant & Professor of Cardiology, Amrita Institute of Medical Science and Research, Faridabad, India
| | - Raja J Selvaraj
- Professor of Cardiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Sakthivel Ramasamy
- Cardiac Electrophysiologist, Dr. Kamakshi Memorial Hospitals, Chennai, India
| | - Sheetal Sharda
- Director, Genomics Development and Implementation, Neuberg Centre for Genomic Medicine, Ahmedabad, India
| | - C Sundar
- Interventional Cardiologist, Department of Cardiology, Kauvery Hospital, Chennai, India
| | - R Anantharaman
- Centre for Inherited Heart Disease, Department of Cardiology, Kauvery Hospital, Chennai, India; Interventional Cardiologist, Department of Cardiology, Kauvery Hospital, Chennai, India
| |
Collapse
|
3
|
Sandal S, Verma IC, Mahay SB, Dubey S, Sabharwal RK, Kulshrestha S, Saxena R, Suman P, Kumar P, Puri RD. Next-Generation Sequencing in Unexplained Intellectual Disability. Indian J Pediatr 2024; 91:682-695. [PMID: 37804371 DOI: 10.1007/s12098-023-04820-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/23/2023] [Indexed: 10/09/2023]
Abstract
OBJECTIVES To determine the diagnostic yield of next generation sequencing (NGS) in patients with moderate/severe/profound intellectual disability (ID) unexplained by conventional tests and to assess the impact of definitive diagnosis on the clinical management and genetic counselling of these families. METHODS This was a ambi-directional study conducted at Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi. The study comprised 227 patients (prospective cohort - 126, retrospective cohort - 101) in whom NGS based tests were performed. RESULTS The mean age of study cohort was 4.5 ± 4.4 y (2.5 mo to 37.3 y). The male: female ratio was 1.6:1. The overall diagnostic yield of NGS was 53.3% (121/227) with causative variants identified in 84 known ID genes. Autosomal recessive intellectual disability (ARID) (23.3%, 53/227) was the most common followed by autosomal dominant intellectual disability (ADID) (20.7%, 47/227) and X-linked intellectual disability (XLID) (9.2%, 21/227). The diagnostic yield was notably higher for ID plus associated condition group (55.6% vs. 20%) (p = 0.0075, Fisher's exact test) compared to isolated ID group. The impact of diagnosis on active or long-term management was observed in 17/121 (14%) and on reproductive outcomes in 26/121 (21.4%) families. CONCLUSIONS There is paucity of data on molecular genetic spectrum of ID from India. The current study identifies extensive genetic heterogeneity and the impact of NGS in patients with ID unexplained by standard genetic tests. The study identified ARID as the most common cause of ID with additional implications for reproductive outcomes. It reiterates the importance of phenotype in genetic testing.
Collapse
Affiliation(s)
- Sapna Sandal
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ishwar Chander Verma
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Sunita Bijarnia Mahay
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Sudhisha Dubey
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - R K Sabharwal
- Department of Pediatric Neurology, Sir Ganga Ram Hospital, New Delhi, India
| | - Samarth Kulshrestha
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Renu Saxena
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Praveen Suman
- Department of Developmental Pediatrics, Sir Ganga Ram Hospital, New Delhi, India
| | - Praveen Kumar
- Department of Pediatric Neurology, Sir Ganga Ram Hospital, New Delhi, India
| | - Ratna Dua Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India.
| |
Collapse
|
4
|
Goyal I, Yennappu M. Institutionalization of personalized medicine in India: analysis of research trends and government interventions. Per Med 2023. [PMID: 37449373 DOI: 10.2217/pme-2022-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The biggest challenges that any country faces are affordability and accessibility of quality healthcare. Technological advancements can address these challenges. One such advancement is personalized medicine (PM). This paper discusses the implementation and institutionalization of PM. Using the sectoral innovation system framework, this work describes government interventions with research trends in PM in India. The Web of Science database was used to analyze research trends. Indian government-funded interventions to institutionalize PM were compiled and analyzed. Results suggest that India's healthcare sector is dynamic. The framework discusses some specifics, including the research network, boundaries and government initiatives to promote PM adoption. Based on the policy gaps, this paper further proposes an integrated policy framework for incorporating PM into India's healthcare system.
Collapse
Affiliation(s)
- Ishita Goyal
- CSIR-National Institute of Science Communication & Policy Research (NIScPR), Dr KS Krishnan Marg, Pusa Gate, New Delhi- 110012, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Madhavi Yennappu
- CSIR-National Institute of Science Communication & Policy Research (NIScPR), Dr KS Krishnan Marg, Pusa Gate, New Delhi- 110012, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India
| |
Collapse
|
5
|
Lou J, Chen H, Huang S, Chen P, Yu Y, Chen F. Update on risk factors and biomarkers of sudden unexplained cardiac death. J Forensic Leg Med 2022; 87:102332. [DOI: 10.1016/j.jflm.2022.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023]
|
6
|
Akgun-Dogan O, Ağaoğlu NB, K Demirkol Y, Doğanay L, Ergül Y, Karacan M. Mutational spectrum of congenital long QT syndrome in Turkey; identification of 12 novel mutations across KCNQ1, KCNH2, SCN5A, KCNJ2, CACNA1C, and CALM1. J Cardiovasc Electrophysiol 2021; 33:262-273. [PMID: 34860437 DOI: 10.1111/jce.15306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/10/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Long QT syndrome (LQTS) is of great importance as it is the most common cause of sudden cardiac death in childhood. The diagnosis is made by the prolongation of the QTc interval on the electrocardiography. However, clinical heterogeneity and nondiagnostic QTc intervals may cause a delay in the diagnosis. In such cases, genetic tests such as next-generation sequencing (NGS) panel analysis enable a definitive diagnosis. We present the first study that aimed to expand the LQTS's mutational spectrum by NGS panel analysis from Turkey. METHODS Fifty-seven unrelated patients with clinically diagnosed LQTS were investigated using an NGS panel that includes six LQTS-related genes. Clinical aspects, outcome, and molecular analysis results were reviewed. RESULTS Pathogenic (53%)/likely pathogenic (23%)/variant of unknown significance (4%) variants were detected in any of the genes examined in 79% of the patients. Among all detected variants, KCNQ1(71%) was the most common gene, followed by SCN5A (11%), KCNH2 (10%), CALM1 (5%), and CACNA1C (3%). Twelve novel variants were detected. Among the variants in KCNQ1, the c.1097G>A variant was present in 42% of patients. This variant also composed 31% of the variants detected in all of the genes. CONCLUSION Our study expands the spectrum of the variations associated with LQTS with twelve novel variants in five genes. And also it draws attention to the frequency of the KCNQ1 c.1097G>A variant and forms the basis for new studies to determine the possible founder effect in the Turkish population. Furthermore, identifying new variants and clinical findings has importance in elaborating the roles of related genes in pathophysiology and determining the variable expression and incomplete penetration rates in this syndrome.
Collapse
Affiliation(s)
- Ozlem Akgun-Dogan
- Division of Pediatric Genetics, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Nihat B Ağaoğlu
- Department of Medical Genetics, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Yasemin K Demirkol
- Division of Pediatric Genetics, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Levent Doğanay
- Department of Internal Medicine, Genomic Laboratory (GLAB), Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Yakup Ergül
- Department of Pediatric Cardiology, Mehmet Akif Ersoy Thoracic and Cardiovascular Research and Education Hospital, Istanbul, Turkey
| | - Mehmet Karacan
- Department of Pediatric Cardiology, Umraniye Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
7
|
Kang H, Lan L, Jia Y, Li C, Fang Y, Zhu S, Kirsch H. Long QT syndrome with potassium voltage-gated channel subfamily H member 2 gene mutation mimicking refractory epilepsy: case report. BMC Neurol 2021; 21:338. [PMID: 34481479 PMCID: PMC8418736 DOI: 10.1186/s12883-021-02365-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epileptic seizures can be difficult to distinguish from other etiologies that cause cerebral hypoxia, especially cardiac diseases. Long QT syndrome (LQTS), especially LQTS type 2 (LQT2), frequently masquerades as seizures because of the transient cerebral hypoxia caused by ventricular arrhythmia. The high rate of sudden death in LQTS highlights the importance of accurate and early diagnosis; correct diagnosis of LQTS also prevents inappropriate treatment with anti-epileptic drugs (AEDs). CASE PRESENTATION We report a case of congenital LQT2 with potassium voltage-gated channel subfamily H member 2 gene (KCNH2) mutation misdiagnosed as refractory epilepsy and treated with various AEDs for 22 years. The possibility of cardiac arrhythmia was suspected after the patient presented to the emergency room and the electrocardiograph (ECG) monitor showed paroxysmal ventricular tachycardia during attacks. Atypical seizure like attacks with prodromal uncomfortable chest sensation and palpitation, triggered by auditory stimulation, and typical ventricular tachycardia monitored by ECG raised suspicion for LQT2, which was confirmed by exome sequencing and epileptic seizure was ruled out by 24-h EEG monitoring. Although the patient rejected implantation of an implantable cardioverter defibrillator, β blocker was given and the syncope only attacked 1-2 per year when there was an incentive during the 5 years follow up. CONCLUSIONS Our case illustrates how long LQTS can masquerade convincingly as epilepsy and can be treated wrongly with AEDs, putting the patient at high risk of sudden cardiac death. Careful ECG evaluation is recommend for both patients with first seizure and those with refractory epilepsy.
Collapse
Affiliation(s)
- Huicong Kang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Blvd., Wuhan, 430030, Hubei Province, China
| | - Lili Lan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Blvd., Wuhan, 430030, Hubei Province, China
| | - Yuchao Jia
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Blvd., Wuhan, 430030, Hubei Province, China
| | - Cun Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Blvd., Wuhan, 430030, Hubei Province, China
| | - Yongkang Fang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Blvd., Wuhan, 430030, Hubei Province, China
| | - Suiqiang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Blvd., Wuhan, 430030, Hubei Province, China.
| | - Heidi Kirsch
- Department of Neurology and Radiology & Biomedical Imaging, Epilepsy Center, University of California, San Francisco, California, 94143-0628, USA
| |
Collapse
|
8
|
Kamga MVK, Reppel M, Hescheler J, Nguemo F. Modeling genetic cardiac channelopathies using induced pluripotent stem cells - Status quo from an electrophysiological perspective. Biochem Pharmacol 2021; 192:114746. [PMID: 34461117 DOI: 10.1016/j.bcp.2021.114746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
Long QT syndrome (LQTS), Brugada syndrome (BrS), and catecholaminergic polymorphic ventricular tachycardia (CPVT) are genetic diseases of the heart caused by mutations in specific cardiac ion channels and are characterized by paroxysmal arrhythmias, which can deteriorate into ventricular fibrillation. In LQTS3 and BrS different mutations in the SCN5A gene lead to a gain-or a loss-of-function of the voltage-gated sodium channel Nav1.5, respectively. Although sharing the same gene mutation, these syndromes are characterized by different clinical manifestations and functional perturbations and in some cases even present an overlapping clinical phenotype. Several studies have shown that Na+ current abnormalities in LQTS3 and BrS can also cause Ca2+-signaling aberrancies in cardiomyocytes (CMs). Abnormal Ca2+ homeostasis is also the main feature of CPVT which is mostly caused by heterozygous mutations in the RyR2 gene. Large numbers of disease-causing mutations were identified in RyR2 and SCN5A but it is not clear how different variants in the SCN5A gene produce different clinical syndromes and if in CPVT Ca2+ abnormalities and drug sensitivities vary depending on the mutation site in the RyR2. These questions can now be addressed by using patient-specific in vitro models of these diseases based on induced pluripotent stem cells (iPSCs). In this review, we summarize different insights gained from these models with a focus on electrophysiological perturbations caused by different ion channel mutations and discuss how will this knowledge help develop better stratification and more efficient personalized therapies for these patients.
Collapse
Affiliation(s)
- Michelle Vanessa Kapchoup Kamga
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Michael Reppel
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany; Praxis für Kardiologie und Angiologie, Landsberg am Lech, Germany
| | - Jürgen Hescheler
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Filomain Nguemo
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
9
|
Ohno S, Ozawa J, Fukuyama M, Makiyama T, Horie M. An NGS-based genotyping in LQTS; minor genes are no longer minor. J Hum Genet 2020; 65:1083-1091. [PMID: 32681117 DOI: 10.1038/s10038-020-0805-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/15/2020] [Accepted: 07/07/2020] [Indexed: 11/09/2022]
Abstract
Mutations in KCNQ1, KCNH2, and SCN5A are the major cause of long QT syndrome (LQTS). More than 90% of the genotyped patients have been reported to carry mutations in any of these three genes. Thanks to increasing popularity of next generation sequencer (NGS), novel CACNA1C mutations have been identified among LQTS patients without extra-cardiac phenotypes. We aimed to clarify the frequency of genotypes in LQTS patients in the era of NGS. The study comprised 160 congenital LQTS patients (71 males) registered from November 2015 to September 2018. Inclusion criteria was QTc > 460 ms and Schwartz score ≥ 3. We performed genetic analysis using target gene method by NGS and confirmed the mutations by Sanger method. The median age for genetic screening was 13 (0-68) years. Sixteen patients suffered cardiac arrest, 47 syncope, and 97 were asymptomatic. We identified genetic mutations in 111 (69.4%) patients including 6 CACNA1C (5.4% of the genotyped patients) with 4 asymptomatic patients. Five (3.1%) patients carried double mutations; three out of them with RYR2 and KCNQ1 or KCNH2. In conclusion, CACNA1C screening would be recommended even if the patient is asymptomatic to elucidate the genetic background of the LQTS patients.
Collapse
Affiliation(s)
- Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan. .,Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan. .,Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan.
| | - Junichi Ozawa
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Megumi Fukuyama
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Takeru Makiyama
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Minoru Horie
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan.,Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
10
|
Elston S, Kaski J, Starling L. Long QT syndrome with a functional 2:1 block and multilevel conduction disease. PROGRESS IN PEDIATRIC CARDIOLOGY 2018. [DOI: 10.1016/j.ppedcard.2018.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Saprungruang A, Khongphatthanayothin A, Mauleekoonphairoj J, Wandee P, Kanjanauthai S, Bhuiyan ZA, Wilde AAM, Poovorawan Y. Genotype and clinical characteristics of congenital long QT syndrome in Thailand. Indian Pacing Electrophysiol J 2018; 18:165-171. [PMID: 30036649 PMCID: PMC6198685 DOI: 10.1016/j.ipej.2018.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/07/2018] [Accepted: 07/19/2018] [Indexed: 11/16/2022] Open
Abstract
Background Congenital long QT syndrome (LQTS) is an inheritable arrhythmic disorder which is linked to at least 17 genes. The clinical characteristics and genetic mutations may be variable among different population groups and they have not yet been studied in Thai population. Methods Clinical characteristics were retrospectively reviewed from children and young adults with congenital long QT syndrome whose blood samples were sent for genotyping during 1998–2017. Sangers sequencing was used to sequentially identify KCNQ1 or KCNH2 genetic variants. Whole exome sequencing (WES) was used to identify variants in all other known LQTS genes. Results Of the 20 subjects (17 families), 45% were male, mean QTc was 550.3 ± 68.8 msec (range 470–731 msec) and total Schwartz's score was 5.6 ± 1.2 points (range 3–8 points). Fifty percent of patients had events at rest, 30% had symptoms after adrenergic mediated events, and 20% were asymptomatic. We discovered pathogenic and likely pathogenic genetic variants in KCNQ1, KCNH2, and SCN5A in 6 (35%), 4 (24%), and 2 (12%) families, respectively. One additional patient had variance of unknown significance (VUS) in KCNH2 and another one in ANK2. No pathogenic genetic variant was found in 3 patients (18%). Most patients received beta-blocker and 9 (45%) had ICD implanted. LQT1 patients were either asymptomatic or had stress-induced arrhythmia. Most of the LQT2 and LQT3 patients developed symptoms at rest or during sleep. Conclusions Our patients with LQTS were mostly symptomatic at presentation. The genetic mutations were predominantly in LQT1, LQT2, and LQT3 genes.
Collapse
Affiliation(s)
- Ankavipar Saprungruang
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Apichai Khongphatthanayothin
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Bangkok General Hospital, Bangkok, Thailand
| | - John Mauleekoonphairoj
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pharawee Wandee
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supaluck Kanjanauthai
- Division of Cardiology, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Zahurul A Bhuiyan
- Laboratoire de Génétique Moléculaire, Service de Génétique Médicale, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Arthur A M Wilde
- Academic Medical Center, Heart Centre, Department of Clinical and Experimental Cardiology, University of Amsterdam, the Netherlands
| | - Yong Poovorawan
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
12
|
Liin SI, Larsson JE, Barro-Soria R, Bentzen BH, Larsson HP. Fatty acid analogue N-arachidonoyl taurine restores function of I Ks channels with diverse long QT mutations. eLife 2016; 5. [PMID: 27690226 PMCID: PMC5081249 DOI: 10.7554/elife.20272] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/28/2016] [Indexed: 01/08/2023] Open
Abstract
About 300 loss-of-function mutations in the IKs channel have been identified in patients with Long QT syndrome and cardiac arrhythmia. How specific mutations cause arrhythmia is largely unknown and there are no approved IKs channel activators for treatment of these arrhythmias. We find that several Long QT syndrome-associated IKs channel mutations shift channel voltage dependence and accelerate channel closing. Voltage-clamp fluorometry experiments and kinetic modeling suggest that similar mutation-induced alterations in IKs channel currents may be caused by different molecular mechanisms. Finally, we find that the fatty acid analogue N-arachidonoyl taurine restores channel gating of many different mutant channels, even though the mutations are in different domains of the IKs channel and affect the channel by different molecular mechanisms. N-arachidonoyl taurine is therefore an interesting prototype compound that may inspire development of future IKs channel activators to treat Long QT syndrome caused by diverse IKs channel mutations. DOI:http://dx.doi.org/10.7554/eLife.20272.001 Every heartbeat relies on an electric wave that travels through the heart. This wave must reach different parts of the heart in a specific sequence to ensure that the heart muscle cells contract in a coordinated manner. Such coordinated contractions enable the heart to pump enough blood around the body. By allowing specific ions to flow into or out of the heart muscle cell, proteins called ion channels in the cell membrane generate the electric wave, keep it going and stop it. One such protein called the IKs channel controls the flow of potassium ions, and in doing so stops the electric wave in heart muscle cells. About 300 different mutations in the IKs channel have been shown to cause abnormal heart rhythms in individuals with a disorder called long QT syndrome. People with this condition may suddenly black out because their heart develops prolonged electric waves that prevent blood from being pumped properly. To investigate how mutations in the IKs channel produce heart rhythm abnormalities, Liin et al. genetically engineered the egg cells of African clawed frogs to have one of eight mutant forms of the human IKs channel. Studying these channels revealed that the mutations reduce how well the channels work in a wide variety of ways. However, treating the cells with a particular fatty acid helped to normalize how each of the mutant channels worked. Therefore, variants of the fatty acid could potentially form a useful treatment for people with heart rhythm problems caused by mutations in the IKs channel. More studies are needed to confirm whether the fatty acid is as effective at combating the effects of the mutations in whole hearts and animals. As ion channels related to the IKs channel are found in many types of cells, it is also important to investigate whether treatment with the fatty acid could cause any side effects that affect other organs. DOI:http://dx.doi.org/10.7554/eLife.20272.002
Collapse
Affiliation(s)
- Sara I Liin
- Department of Physiology and Biophysics, University of Miami, Miami, United States.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Johan E Larsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Rene Barro-Soria
- Department of Physiology and Biophysics, University of Miami, Miami, United States
| | - Bo Hjorth Bentzen
- The Danish Arrhythmia Research Centre, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - H Peter Larsson
- Department of Physiology and Biophysics, University of Miami, Miami, United States
| |
Collapse
|