1
|
Ezzeddine FM, Ward RC, Asirvatham SJ, DeSimone CV. Mapping and ablation of ventricular fibrillation substrate. J Interv Card Electrophysiol 2023:10.1007/s10840-022-01454-z. [PMID: 36598715 DOI: 10.1007/s10840-022-01454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023]
Abstract
Ventricular fibrillation (VF) is a life-threatening arrhythmia and a common cause of sudden cardiac death (SCD). A basic understanding of its mechanistic underpinning is crucial for enhancing our knowledge to develop innovative mapping and ablation techniques for this lethal rhythm. Significant advances in our understanding of VF have been made especially in the basic science and pre-clinical experimental realms. However, these studies have not yet translated into a robust clinical approach to identify and successfully ablate both the structural and functional substrate of VF. In this review, we aim to (1) provide a conceptual framework of VF and an overview of the data supporting the spatiotemporal dynamics of VF, (2) review experimental approaches to mapping VF to elucidate drivers and substrate for maintenance with a focus on the His-Purkinje system, (3) discuss current approaches using catheter ablation to treat VF, and (4) highlight current unknowns and gaps in the field where future work is necessary to transform the clinical landscape.
Collapse
Affiliation(s)
- Fatima M Ezzeddine
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Robert Charles Ward
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Samuel J Asirvatham
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Christopher V DeSimone
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
2
|
Ezzeddine FM, Darlington AM, DeSimone CV, Asirvatham SJ. Catheter Ablation of Ventricular Fibrillation. Card Electrophysiol Clin 2022; 14:729-742. [PMID: 36396189 DOI: 10.1016/j.ccep.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ventricular fibrillation (VF) is a common cause of sudden cardiac death (SCD) and is unfortunately without a cure. Current therapies focus on prevention of SCD, such as implantable cardioverter-defibrillator (ICD) implantation and anti-arrhythmic agents. Significant progress has been made in improving our understanding and ability to target the triggers of VF, via advanced mapping and ablation techniques, as well as with autonomic modulation. However, the critical substrate for VF maintenance remains incompletely defined. In this review, we discuss the evidence behind the basic mechanisms of VF and review the current role of catheter ablation in patients with VF.
Collapse
Affiliation(s)
- Fatima M Ezzeddine
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street Southwest, Rochester, MN, USA
| | - Ashley M Darlington
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street Southwest, Rochester, MN, USA
| | - Christopher V DeSimone
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street Southwest, Rochester, MN, USA
| | - Samuel J Asirvatham
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street Southwest, Rochester, MN, USA.
| |
Collapse
|
3
|
Ezzeddine FM, Ward RC, Jiang Z, Tri JA, Agboola K, Hu T, Lodhi F, Tan NY, Ladas TP, Christopoulos G, Sugrue AM, Tolkacheva EG, Munoz FDC, McLeod CJ, Asirvatham SJ, DeSimone CV. Novel insights into the substrate involved in maintenance of ventricular fibrillation: results from continuous multipolar mapping in a canine model. J Interv Card Electrophysiol 2022:10.1007/s10840-022-01333-7. [PMID: 35948726 DOI: 10.1007/s10840-022-01333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND While the triggers for ventricular fibrillation (VF) are well-known, the substrate required for its maintenance remains elusive. We have previously demonstrated dynamic spatiotemporal changes across VF from electrical induction of VF to asystole. Those data suggested that VF drivers seemed to reside in the distal RV and LV. However, signals from these areas were not recorded continuously. The aim of this study was to map these regions of significance with stationary basket electrodes from induction to asystole to provide further insights into the critical substrate for VF rhythm sustenance in canines. METHODS In six healthy canines, three multipolar basket catheters were positioned in the distal right ventricle (RV), RV outflow tract, and distal left ventricle (LV), and remained in place throughout the study. VF was induced via direct current application from an electrophysiologic catheter. Surface and intracardiac electrograms were recorded simultaneously and continuously from baseline, throughout VF, and until asystole, in order to get a complete electrophysiologic analysis of VF. Focused data analysis was also performed via two defined stages of VF: early VF (immediately after induction of VF to 10 min) and late VF (after 10 min up to VF termination and asystole). RESULTS VF was continuously mapped for a mean duration of 54 ± 9 min (range 42-70 min). Immediately after initiation of VF in the early phase, the distal LV region appeared to drive the maintenance of VF. Towards the terminal stage of VF, the distal RV region appeared to be responsible for VF persistence. In all canines, we noted local termination of VF in the LV, while VF on surface ECG continued; conversely, subsequent spontaneous termination of VF in the RV was associated with termination of VF on surface ECG into a ventricular escape rhythm. Continuous mapping of VF showed trends towards an increase in peak-to-peak ventricular electrogram cycle length (p = 0.06) and a decrease in the ventricular electrogram amplitude (p = 0.06) after 40 min. Once we could no longer discern surface QRS activity, we demonstrated local ventricular myocardial capture in both the RV and LV but could not reinitiate sustained VF despite aggressive ventricular burst pacing. CONCLUSIONS This study describes the evolution of VF from electrical initiation to spontaneous VF termination without hemodynamic support in healthy canines. These data are hypothesis-generating and suggest that critical substrate for VF maintenance may reside in both the distal RV and LV depending on stage of VF. Further studies are needed to replicate these findings with hemodynamic support and to translate such findings into clinical practice. Ventricular fibrillation maintenance may be dependent on critical structures in the distal RV. ECG: electrocardiogram; LV: left ventricle; RV: right ventricle; RVOT: right ventricular outflow tract; VF: ventricular fibrillation.
Collapse
Affiliation(s)
- Fatima M Ezzeddine
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Robert C Ward
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Zhi Jiang
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jason A Tri
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kolade Agboola
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Tiffany Hu
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Fahad Lodhi
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Nicholas Y Tan
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Thomas P Ladas
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Georgios Christopoulos
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Alan M Sugrue
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Elena G Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Freddy Del-Carpio Munoz
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Samuel J Asirvatham
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Christopher V DeSimone
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
4
|
Tan NY, Christopoulos G, Ladas TP, Jiang Z, Sugrue AM, Tri JA, Tolkacheva EG, Del-Carpio Munoz F, McLeod CJ, Asirvatham SJ, DeSimone CV. Regional and Temporal Variation of Ventricular and Conduction Tissue Activity During Ventricular Fibrillation in Canines. Circ Arrhythm Electrophysiol 2021; 14:e010281. [PMID: 34665643 DOI: 10.1161/circep.121.010281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Nicholas Y Tan
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester (N.T., G.C., T.P.L., Z.J., A.M.S., J.A.T., F.D.-C.M., S.J.A., C.V.D.)
| | - Georgios Christopoulos
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester (N.T., G.C., T.P.L., Z.J., A.M.S., J.A.T., F.D.-C.M., S.J.A., C.V.D.)
| | - Thomas P Ladas
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester (N.T., G.C., T.P.L., Z.J., A.M.S., J.A.T., F.D.-C.M., S.J.A., C.V.D.)
| | - Zhi Jiang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester (N.T., G.C., T.P.L., Z.J., A.M.S., J.A.T., F.D.-C.M., S.J.A., C.V.D.)
| | - Alan M Sugrue
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester (N.T., G.C., T.P.L., Z.J., A.M.S., J.A.T., F.D.-C.M., S.J.A., C.V.D.)
| | - Jason A Tri
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester (N.T., G.C., T.P.L., Z.J., A.M.S., J.A.T., F.D.-C.M., S.J.A., C.V.D.)
| | - Elena G Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis (E.G.T.)
| | - Freddy Del-Carpio Munoz
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester (N.T., G.C., T.P.L., Z.J., A.M.S., J.A.T., F.D.-C.M., S.J.A., C.V.D.)
| | | | - Samuel J Asirvatham
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester (N.T., G.C., T.P.L., Z.J., A.M.S., J.A.T., F.D.-C.M., S.J.A., C.V.D.)
| | - Christopher V DeSimone
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester (N.T., G.C., T.P.L., Z.J., A.M.S., J.A.T., F.D.-C.M., S.J.A., C.V.D.)
| |
Collapse
|
5
|
Ladas TP, Sugrue A, Nan J, Vaidya VR, Padmanabhan D, Venkatachalam KL, Asirvatham SJ. Fundamentals of Cardiac Mapping. Card Electrophysiol Clin 2020; 11:433-448. [PMID: 31400868 DOI: 10.1016/j.ccep.2019.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To characterize cardiac activity and arrhythmias, electrophysiologists can record the electrical activity of the heart in relation to its anatomy through a process called cardiac mapping (electroanatomic mapping, EAM). A solid understanding of the basic cardiac biopotentials, called electrograms, is imperative to construct and interpret the cardiac EAM correctly. There are several mapping approaches available to the electrophysiologist, each optimized for specific arrhythmia mechanisms. This article provides an overview of the fundamentals of EAM.
Collapse
Affiliation(s)
- Thomas P Ladas
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Mayo Clinic, Rochester, MN, USA
| | - Alan Sugrue
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Mayo Clinic, Rochester, MN, USA
| | - John Nan
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Mayo Clinic, Rochester, MN, USA
| | - Vaibhav R Vaidya
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Mayo Clinic, Rochester, MN, USA
| | - Deepak Padmanabhan
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Mayo Clinic, Rochester, MN, USA
| | - K L Venkatachalam
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Mayo Clinic, Jacksonville, Florida, USA
| | - Samuel J Asirvatham
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Mayo Clinic, Rochester, MN, USA; Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN, USA; Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
DeSimone CV, Asirvatham SJ. Purkinje tissue modification and ventricular fibrillation. Pacing Clin Electrophysiol 2019; 42:1291-1293. [PMID: 31407803 DOI: 10.1111/pace.13781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 11/27/2022]
Affiliation(s)
| | - Samuel J Asirvatham
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota.,Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
7
|
Maury P, Rollin A. Mapping ventricular fibrillation ... another piece from the jigsaw. Indian Pacing Electrophysiol J 2018; 18:193-194. [PMID: 30408556 PMCID: PMC6303162 DOI: 10.1016/j.ipej.2018.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Philippe Maury
- University Hospital Rangueil, Toulouse, France; Unité Inserm U 1048, Toulouse, France.
| | - Anne Rollin
- University Hospital Rangueil, Toulouse, France
| |
Collapse
|