1
|
Lam M, Baudoin M, Mougin B, Falentin-Daudré C. Melt-Blown Polypropylene Membrane Modification for Enhanced Hydrophilicity. J Biomed Mater Res B Appl Biomater 2024; 112:e35509. [PMID: 39578097 DOI: 10.1002/jbm.b.35509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 08/31/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024]
Abstract
Melt-blown, an environmentally friendly technique, is widely used to create high-quality non-woven fabrics by extruding molten polymer resins into interlaced fibers. In the realm of biomedical textiles, its unique microstructure makes it ideal for filtration and wound dressings. Our study focuses on modifying the surfaces of polypropylene melt-blown membranes. An effective, one-step, suitable, and reliable method to graft a bioactive polymer, sodium polystyrene sulfonate-PolyNaSS, onto the membranes has been developed. The process involves UV irradiation to initiate direct and progressive growth of NaSS over the surface through radical polymerization. To assess the efficiency of the grafting, techniques like colorimetry, water contact angle measurements, Fourier-transformed infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) were used. Outcomes related to the grafting were demonstrated by a change in wettability and quantitatively calculated sulfonate groups. Subsequently, grafted PolyNaSS promoted cell adhesion, as evidenced by improved cell morphology. On grafted membranes, fibroblasts exhibited a stretched shape, while non-grafted ones showed inactive round shapes. These findings underscore the chemical and biological reactivity of polypropylene materials, opening exciting possibilities for various applications of melt-blown materials.
Collapse
Affiliation(s)
- M Lam
- BEST/CB3S, Université Sorbonne Paris Nord, Villetaneuse, France
| | - M Baudoin
- MeltBio, Saint-Didier-de-la-Tour, France
| | - B Mougin
- MeltBio, Saint-Didier-de-la-Tour, France
| | | |
Collapse
|
2
|
Benabdderrahmane K, Stirnemann J, Ramtani S, Falentin-Daudré C. Development of a double-layer electrospun patch as a potential prenatal treatment for myelomeningocele. Wound Repair Regen 2024; 32:246-256. [PMID: 37957136 DOI: 10.1111/wrr.13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/05/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023]
Abstract
Myelomeningocele (MMC) is a congenital defect of the spine characterised by meningeal and spinal cord protrusion through the open vertebral arches. This defect causes progressive prenatal damage of the spinal cord, leading to lifelong handicap. Although mid-trimester surgical repair may reduce part of the handicap, an earlier and less invasive approach would further improve the prognosis, possibly minimising maternal and foetal risks. Several studies have proposed an alternative approach to surgical repair by covering the defect with a patch and protecting the exposed neural tissue. Our study aims to elaborate on a waterproof and biodegradable bioactive patch for MMC prenatal foetal repair. We developed a double-layer patch that can provide a waterproof coverage for the spinal cord, with a bioactive side, conducive to cell proliferation, and an antiadhesive side to avoid its attachment to the medulla.
Collapse
Affiliation(s)
- K Benabdderrahmane
- LBPS/CSPBAT, UMR CNRS 7244, Institut Galilée, Université Sorbonne Paris Nord, Villetaneuse, France
| | - J Stirnemann
- Obstetrics and Maternal-Fetal Medicine, Hôpital Necker Enfants Malades, AP-HP, Paris, France
- EA7328 Institut Imagine & Université de Paris-Cité, Paris, France
| | - S Ramtani
- LBPS/CSPBAT, UMR CNRS 7244, Institut Galilée, Université Sorbonne Paris Nord, Villetaneuse, France
| | - C Falentin-Daudré
- LBPS/CSPBAT, UMR CNRS 7244, Institut Galilée, Université Sorbonne Paris Nord, Villetaneuse, France
| |
Collapse
|
3
|
Liu Z, Zhang M, Hao Y, Hu W, Zhu W, Wang H, Li L. Application of surface-modified functional packaging in food storage: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13343. [PMID: 38629458 DOI: 10.1111/1541-4337.13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/13/2024] [Accepted: 03/24/2024] [Indexed: 04/19/2024]
Abstract
Innovations in food packaging systems could meet the evolving needs of the market; emerging concepts of non-migrating technologies reduce the negative migration of preservatives from packaging materials, extend shelf life, and improve food quality and safety. Non-migratory packaging activates the surface of inert materials through pretreatment to generate different active groups. The preservative is covalently grafted with the resin of the pretreated packaging substrate through the graft polymerization of the monomer and the coupling reaction of the polymer chain. The covalent link not only provides the required surface properties of the material for a long time but also retains the inherent properties of the polymer. This technique is applied to the processing for durable, stable, and easily controllable packaging widely. This article reviews the principles of various techniques for packaging materials, surface graft modification, and performance characterization of materials after grafting modification. Potential applications in the food industry and future research trends are also discussed.
Collapse
Affiliation(s)
- Zhuolin Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai, China
| | - Mengmeng Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai, China
| | - Yi Hao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai, China
| | - Wenqing Hu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai, China
| | - Weizhong Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai, China
| | - He Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai, China
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai, China
| |
Collapse
|
4
|
Patel V, Das E, Bhargava A, Deshmukh S, Modi A, Srivastava R. Ionogels for flexible conductive substrates and their application in biosensing. Int J Biol Macromol 2024; 254:127736. [PMID: 38183203 DOI: 10.1016/j.ijbiomac.2023.127736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 01/07/2024]
Abstract
Ionogels are highly conductive gels made from ionic liquids dispersed in a matrix made of organic or inorganic materials. Ionogels are known for high ionic conductivity, flexibility, high thermal and electrochemical stability. These characteristics make them suitable for sensing and biosensing applications. This review discusses about the two main constituents, ionic liquids and matrix, used to make ionogels and effect of these materials on the characteristics of ionogels. Here, the material properties like mechanical, electrochemical and stability are discussed for both polymer matrix and ionic liquid. We have briefly described about the fabrication methods like 3D printing, sol-gel, blade coating, spin coating, aerosol jet printing etc., used to make films or coating of these ionogels. The advantages and disadvantages of each method are also briefly summarized. Finally, the last section provides a few examples of application of flexible ionogels in areas like wearables, human-machine interface, electronic skin and detection of biological molecules.
Collapse
Affiliation(s)
- Vinay Patel
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076, India
| | - Eatu Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076, India
| | - Ameesha Bhargava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076, India
| | - Sharvari Deshmukh
- MIT School of Bioengineering Sciences and Research, MIT ADT University, Loni Kalbhor, Pune 412201, India
| | - Anam Modi
- G.N. Khalsa College, Matunga, Mumbai 400019, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076, India.
| |
Collapse
|
5
|
Furko M, Horváth ZE, Czömpöly O, Balázsi K, Balázsi C. Biominerals Added Bioresorbable Calcium Phosphate Loaded Biopolymer Composites. Int J Mol Sci 2022; 23:ijms232415737. [PMID: 36555378 PMCID: PMC9779388 DOI: 10.3390/ijms232415737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Nanocrystalline calcium phosphate (CP) bioceramic coatings and their combination with biopolymers are innovative types of resorbable coatings for load-bearing implants that can promote the integration of metallic implants into human bodies. The nanocrystalline, amorphous CP particles are an advantageous form of the various calcium phosphate phases since they have a faster dissolution rate than that of crystalline hydroxyapatite. Owing to the biomineral additions (Mg, Zn, Sr) in optimized concentrations, the base CP particles became more similar to the mineral phase in human bones (dCP). The effect of biomineral addition into the CaP phases was thoroughly studied. The results showed that the shape, morphology, and amorphous characteristic slightly changed in the case of biomineral addition in low concentrations. The optimized dCP particles were then incorporated into a chosen polycaprolactone (PCL) biopolymer matrix. Very thin, non-continuous, rough layers were formed on the surface of implant substrates via the spin coating method. The SEM elemental mapping proved the perfect incorporation and distribution of dCP particles into the polymer matrix. The bioresorption rate of thin films was followed by corrosion measurements over a long period of time. The corrosion results indicated a faster dissolution rate for the dCP-PCL composite compared to the dCP and CP powder layers.
Collapse
|
6
|
Nguyen TN, Humblot V, Migonney V, Lévy R. Atomic force microscopy characterization of polyethylene terephthalate grafting with poly(styrene sulfonate). NANOTECHNOLOGY 2022; 33:205702. [PMID: 35105825 DOI: 10.1088/1361-6528/ac50ef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Polyethylene terephthalate (PET) is widely used to elaborate biomaterials and medical devices in particular for long-term implant applications but tuning their surface properties remains challenging. We investigate surface functionalization by grafting poly(sodium 4-styrene sulfonate, PNaSS) with the aim of enhancing protein adhesion and cellular activity. Elucidating the topography and molecular level organization of the modified surfaces is important for understanding and predicting biological activity. In this work, we explore several grafting methods including thermal grafting, thermal grafting in the presence of Mohr's salt, and UV activation. We characterize the different surfaces obtained using atomic force microscopy (AFM), contact angle (CA), and x-ray photoelectron spectroscopy (XPS). We observe an increase in the percentage of sulfur atoms (XPS) that correlates with changes in (CA), and we identify by AFM characteristic features, which we interpret as patches of polymers on the PET surfaces. This work demonstrates tuning of biomaterials surface by functionalization and illustrates the capability of AFM to provide insights into the spatial organization of the grafted polymer.
Collapse
Affiliation(s)
- Tuan Ngoc Nguyen
- Laboratory of Chemistry, Structures, Properties of Biomaterials and Therapeutic Agents (CSPBAT), UMR CNRS F-7244, Sorbonne Paris Nord University, France
| | - Vincent Humblot
- Institut FEMTO-ST UMR CNRS 6174, Université Bourgogne Franche-Comté, 15B Avenue des Montboucons, F-25030 Besançon, France
| | - Véronique Migonney
- Laboratory of Chemistry, Structures, Properties of Biomaterials and Therapeutic Agents (CSPBAT), UMR CNRS F-7244, Sorbonne Paris Nord University, France
| | - Raphaël Lévy
- Université Sorbonne Paris Nord and Université de Paris, INSERM, LVTS, F-75018 Paris, France
| |
Collapse
|
7
|
Baumann JS, Jubeli E, Morocho A, Migonney V, Yagoubi N, Falentin-Daudré C. Development of Direct Grafting on Cyclic Olefin Copolymers to Improve Hydrophilicity by Using Bioactive Polymers. Ing Rech Biomed 2021. [DOI: 10.1016/j.irbm.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Chen S, Huang J, Zhou Z, Chen Q, Hong M, Yang S, Heqing Fu. Highly Elastic Anti-fatigue and Anti-freezing Conductive Double Network Hydrogel for Human Body Sensors. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00610] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shaoxian Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P.R. China
| | - Jianren Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P.R. China
| | - Zhaoxi Zhou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Qihui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P.R. China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P.R. China
| | - Shuibin Yang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, Huanggang Normal University, Xingang Road 2, Huanggang 438000, P. R. China
| | - Heqing Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P.R. China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| |
Collapse
|
9
|
Visan AI, Popescu-Pelin G, Socol G. Degradation Behavior of Polymers Used as Coating Materials for Drug Delivery-A Basic Review. Polymers (Basel) 2021; 13:1272. [PMID: 33919820 PMCID: PMC8070827 DOI: 10.3390/polym13081272] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
The purpose of the work was to emphasize the main differences and similarities in the degradation mechanisms in the case of polymeric coatings compared with the bulk ones. Combined with the current background, this work reviews the properties of commonly utilized degradable polymers in drug delivery, the factors affecting degradation mechanism, testing methods while offering a retrospective on the evolution of the controlled release of biodegradable polymeric coatings. A literature survey on stability and degradation of different polymeric coatings, which were thoroughly evaluated by different techniques, e.g., polymer mass loss measurements, surface, structural and chemical analysis, was completed. Moreover, we analyzed some shortcomings of the degradation behavior of biopolymers in form of coatings and briefly proposed some solving directions to the main existing problems (e.g., improving measuring techniques resolution, elucidation of complete mathematical analysis of the different degradation mechanisms). Deep studies are still necessary on the dynamic changes which occur to biodegradable polymeric coatings which can help to envisage the future performance of synthesized films designed to be used as medical devices with application in drug delivery.
Collapse
Affiliation(s)
- Anita Ioana Visan
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077190 Magurele, Ilfov, Romania;
| | | | - Gabriel Socol
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077190 Magurele, Ilfov, Romania;
| |
Collapse
|
10
|
Lam M, Migonney V, Falentin-Daudre C. Review of silicone surface modification techniques and coatings for antibacterial/antimicrobial applications to improve breast implant surfaces. Acta Biomater 2021; 121:68-88. [PMID: 33212233 DOI: 10.1016/j.actbio.2020.11.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
Silicone implants are widely used in the medical field for plastic or reconstructive surgeries for the purpose of soft tissue issues. However, as with any implanted object, healthcare-associated infections are not completely avoidable. The material suffers from a lack of biocompatibility and is often subject to bacterial/microbial infections characterized by biofilm growth. Numerous strategies have been developed to either prevent, reduce, or fight bacterial adhesion by providing an antibacterial property. The present review summarizes the diverse approaches to deal with bacterial infections on silicone surfaces along with the different methods to activate/oxidize the surface before any surface modifications. It includes antibacterial coatings with antibiotics or nanoparticles, covalent attachment of active bacterial molecules like peptides or polymers. Regarding silicone surfaces, the activation step is essential to render the surface reactive for any further modifications using energy sources (plasma, UV, ozone) or chemicals (acid solutions, sol-gel strategies, chemical vapor deposition). Meanwhile, corresponding work on breast silicone prosthesis is discussed. The latter is currently in the line of sight for causing severe capsular contractures. Specifically, to that end, besides chemical modifications, the antibacterial effect can also be achieved by physical surface modifications by adjusting the surface roughness and topography for instance.
Collapse
|
11
|
Long-term hydrolytic degradation study of polycaprolactone films and fibers grafted with poly(sodium styrene sulfonate): Mechanism study and cell response. Biointerphases 2020; 15:061006. [PMID: 33203213 DOI: 10.1116/6.0000429] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polycaprolactone (PCL) is a widely used biodegradable polyester for tissue engineering applications when long-term degradation is preferred. In this article, we focused on the analysis of the hydrolytic degradation of virgin and bioactive poly(sodium styrene sulfonate) (pNaSS) functionalized PCL surfaces under simulated physiological conditions (phosphate buffer saline at 25 and 37 °C) for up to 120 weeks with the aim of applying bioactive PCL for ligament tissue engineering. Techniques used to characterize the bulk and surface degradation indicated that PCL was hydrolyzed by a bulk degradation mode with an accelerated degradation-three times increased rate constant-for pNaSS grafted PCL at 37 °C when compared to virgin PCL at 25 °C. The observed degradation mechanism is due to the pNaSS grafting process (oxidation and radical polymerization), which accelerated the degradation until 48 weeks, when a steady state is reached. The PCL surface was altered by pNaSS grafting, introducing hydrophilic sulfonate groups that increase the swelling and smoothing of the surface, which facilitated the degradation. After 48 weeks, pNaSS was largely removed from the surface, and the degradation of virgin and pNaSS grafted surfaces was similar. The cell response of primary fibroblast cells from sheep ligament was consistent with the surface analysis results: a better initial spreading of cells on pNaSS surfaces when compared to virgin surfaces and a tendency to become similar with degradation time. It is worthy to note that during the extended degradation process the surfaces were able to continue inducing better cell spreading and preserve their cell phenotype as shown by collagen gene expressions.
Collapse
|
12
|
Ma Z, Li L, Shi X, Wang Z, Guo M, Wang Y, Jiao Z, Zhang C, Zhang P. Enhanced osteogenic activities of polyetheretherketone surface modified by poly(sodium p‐styrene sulfonate) via ultraviolet‐induced polymerization. J Appl Polym Sci 2020. [DOI: 10.1002/app.49157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhangyu Ma
- Department of StomatologyThe First Hospital of Jilin University Changchun China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Linlong Li
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
- University of Chinese Academy of Sciences Beijing China
| | - Xincui Shi
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Zongliang Wang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Min Guo
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Yu Wang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Zixue Jiao
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Congxiao Zhang
- Department of StomatologyThe First Hospital of Jilin University Changchun China
| | - Peibiao Zhang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| |
Collapse
|
13
|
Raagulan K, Kim BM, Chai KY. Recent Advancement of Electromagnetic Interference (EMI) Shielding of Two Dimensional (2D) MXene and Graphene Aerogel Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E702. [PMID: 32276331 PMCID: PMC7221907 DOI: 10.3390/nano10040702] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 02/07/2023]
Abstract
The two Dimensional (2D) materials such as MXene and graphene, are most promising materials, as they have attractive properties and attract numerous application areas like sensors, supper capacitors, displays, wearable devices, batteries, and Electromagnetic Interference (EMI) shielding. The proliferation of wireless communication and smart electronic systems urge the world to develop light weight, flexible, cost effective EMI shielding materials. The MXene and graphene mixed with polymers, nanoparticles, carbon nanomaterial, nanowires, and ions are used to create materials with different structural features under different fabrication techniques. The aerogel based hybrid composites of MXene and graphene are critically reviewed and correlate with structure, role of size, thickness, effect of processing technique, and interfacial interaction in shielding efficiency. Further, freeze drying, pyrolysis and hydrothermal treatment is a powerful tool to create excellent EMI shielding aerogels. We present here a review of MXene and graphene with various polymers and nanomaterials and their EMI shielding performances. This will help to develop a more suitable composite for modern electronic systems.
Collapse
Affiliation(s)
- Kanthasamy Raagulan
- Division of Bio−Nanochemistry, College of Natural Sciences, Wonkwang University, Iksan 570-749, Korea;
| | - Bo Mi Kim
- Department of Chemical Engineering, Wonkwang University, Iksan 570-749, Korea
| | - Kyu Yun Chai
- Division of Bio−Nanochemistry, College of Natural Sciences, Wonkwang University, Iksan 570-749, Korea;
| |
Collapse
|
14
|
Lam M, Moris V, Humblot V, Migonney V, Falentin-Daudre C. A simple way to graft a bioactive polymer – Polystyrene sodium sulfonate on silicone surfaces. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Singh J, Kumar S, Dhaliwal A. Controlled release of amoxicillin and antioxidant potential of gold nanoparticles-xanthan gum/poly (Acrylic acid) biodegradable nanocomposite. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101384] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Amokrane G, Humblot V, Jubeli E, Yagoubi N, Ramtani S, Migonney V, Falentin-Daudré C. Electrospun Poly(ε-caprolactone) Fiber Scaffolds Functionalized by the Covalent Grafting of a Bioactive Polymer: Surface Characterization and Influence on in Vitro Biological Response. ACS OMEGA 2019; 4:17194-17208. [PMID: 31656893 PMCID: PMC6811844 DOI: 10.1021/acsomega.9b01647] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/19/2019] [Indexed: 05/10/2023]
Abstract
The purpose of this study is to present the poly(caprolactone) (PCL) functionalization by the covalent grafting of poly(sodium styrene sulfonate) on electrospun scaffolds using the "grafting from" technique and evaluate the effect of the coating and surface wettability on the biological response. The "grafting from" technique required energy (thermal or UV) to induce the decomposition of the PCL (hydro)peroxides and generate radicals able to initiate the polymerization of NaSS. In addition, UV irradiation was used to initiate the radical polymerization of NaSS directly from the surface (UV direct "grafting from"). The interest of these two techniques is their easiness, the reduction of the number of process steps, and its applicability to the industry. The selected parameters allow controlling the grafting rate (i.e., degree of functionalization). The aim of the study was to compare two covalent grafting in terms of surface functionalization and hydrophilicity and their effect on the in vitro biological responses of fibroblasts. The achieved results showed the influence of the sulfonate functional groups on the cell response. In addition, outcomes highlighted that the UV direct "grafting from" method allows to moderate the amount of sulfonate groups and the surface hydrophilicity presents a considerable interest for covalently immobilizing bioactive polymers onto electrospun scaffolds designed for tissue engineering applications using efficient post-electrospinning chemical modification.
Collapse
Affiliation(s)
- Gana Amokrane
- Université
Paris 13 Sorbonne Paris Cité, Laboratoire CSPBAT, équipe
LBPS, CNRS (UMR 7244), Institut Galilée, 93430 Villetaneuse, France
| | - Vincent Humblot
- Sorbonne Université, Caboratoire
de Réactivité de Surface, UMR CNRS 7197, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Emile Jubeli
- Laboratoire Matériaux et Santé EA 401,
UFR de Pharmacie, Université Paris-Sud, 92290 Châtenay-Malabry, France
| | - Najet Yagoubi
- Laboratoire Matériaux et Santé EA 401,
UFR de Pharmacie, Université Paris-Sud, 92290 Châtenay-Malabry, France
| | - Salah Ramtani
- Université
Paris 13 Sorbonne Paris Cité, Laboratoire CSPBAT, équipe
LBPS, CNRS (UMR 7244), Institut Galilée, 93430 Villetaneuse, France
| | - Véronique Migonney
- Université
Paris 13 Sorbonne Paris Cité, Laboratoire CSPBAT, équipe
LBPS, CNRS (UMR 7244), Institut Galilée, 93430 Villetaneuse, France
| | - Céline Falentin-Daudré
- Université
Paris 13 Sorbonne Paris Cité, Laboratoire CSPBAT, équipe
LBPS, CNRS (UMR 7244), Institut Galilée, 93430 Villetaneuse, France
- E-mail:
| |
Collapse
|