1
|
Zhang M, Zhang Y, Mu W, Dong M, Han X. In Situ Synthesis of Lipid Analogues Leading to Artificial Cell Growth and Division. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mingrui Zhang
- Harbin Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Ying Zhang
- Heilongjiang Institute of Technology College of Materials and Chemical Engineering CHINA
| | - Wei Mu
- Harbin Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Mingdong Dong
- Aarhus Universitet Interdisciplinary Nanosci Ctr iNANO DENMARK
| | - Xiaojun Han
- Harbin Institute of Technology School of Chemical Engineering and Technology No.92, West Da-Zhi Street, Harbin, 150001, China 150001 harbin CHINA
| |
Collapse
|
2
|
Biocatalytic self-assembled synthetic vesicles and coacervates: From single compartment to artificial cells. Adv Colloid Interface Sci 2022; 299:102566. [PMID: 34864354 DOI: 10.1016/j.cis.2021.102566] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022]
Abstract
Compartmentalization is an intrinsic feature of living cells that allows spatiotemporal control over the biochemical pathways expressed in them. Over the years, a library of compartmentalized systems has been generated, which includes nano to micrometer sized biomimetic vesicles derived from lipids, amphiphilic block copolymers, peptides, and nanoparticles. Biocatalytic vesicles have been developed using a simple bag containing enzyme design of liposomes to multienzymes immobilized multi-vesicular compartments for artificial cell generation. Additionally, enzymes were also entrapped in membrane-less coacervate droplets to mimic the cytoplasmic macromolecular crowding mechanisms. Here, we have discussed different types of single and multicompartment systems, emphasizing their recent developments as biocatalytic self-assembled structures using recent examples. Importantly, we have summarized the strategies in the development of the self-assembled structure to improvise their adaptivity and flexibility for enzyme immobilization. Finally, we have presented the use of biocatalytic assemblies in mimicking different aspects of living cells, which further carves the path for the engineering of a minimal cell.
Collapse
|
3
|
Li D, Xiong Q, Lu D, Chen Y, Liang L, Duan H. Magnetic nanochains-based dynamic ELISA for rapid and ultrasensitive detection of acute myocardial infarction biomarkers. Anal Chim Acta 2021; 1166:338567. [PMID: 34022991 DOI: 10.1016/j.aca.2021.338567] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023]
Abstract
Acute myocardial infarction (AMI) is the leading cause of morbidity and mortality globally. The serum levels of a group of cardiac biomarkers have been regarded as important indicators in the routine diagnosis of AMI. The development of rapid, sensitive, and accurate detection methods of AMI biomarkers is urgently needed for the early diagnosis of AMI. Here, a dynamic and pseudo-homogeneous enzyme-linked immunosorbent assay (ELISA) was reported based on the combined use of bioconjugated magnetic nanochains (MNCs) and gold nanoparticles (AuNPs) probes. The capture antibodies-conjugated MNCs served as dynamic nano-mixers to facilitate liquid mixing and as homogeneously dispersed capturing agents to capture and separate specific targets. The AuNPs probes were prepared by co-immobilization of detection antibodies and horseradish peroxidase (HRP) for signals amplification. The design of bioconjugated MNCs and AuNPs probes significantly increased the assay kinetics and improves the assay sensitivity. This novel ELISA strategy realized accurate detection of a panel of AMI biomarkers within 35 min, leading to considerably improved sensitivities compared to that of conventional ELISA method.
Collapse
Affiliation(s)
- Di Li
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qirong Xiong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Derong Lu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Yonghao Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Li Liang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
| |
Collapse
|
4
|
Wang Z, Wang X, Zhang Y, Xu W, Han X. Principles and Applications of Single Particle Tracking in Cell Research. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005133. [PMID: 33533163 DOI: 10.1002/smll.202005133] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/24/2020] [Indexed: 06/12/2023]
Abstract
It is a tough challenge for many decades to decipher the complex relationships between cell behaviors and cellular physical properties. Single particle tracking (SPT) with high spatial and temporal resolution has been applied extensively in cell research to understand physicochemical properties of cells and their bio-functions by tracking endogenous or exogenous probes. This review describes the fundamental principles of SPT as well as its applications in intracellular mechanics, membrane dynamics, organelles distribution, and processes of internalization and transport. Finally, challenges and future directions of SPT are also discussed.
Collapse
Affiliation(s)
- Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xuejing Wang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
| | - Ying Zhang
- School of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, 150027, China
| | - Weili Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
5
|
Wang X, Du H, Wang Z, Mu W, Han X. Versatile Phospholipid Assemblies for Functional Synthetic Cells and Artificial Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002635. [PMID: 32830387 DOI: 10.1002/adma.202002635] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/09/2020] [Indexed: 06/11/2023]
Abstract
The bottom-up construction of a synthetic cell from nonliving building blocks capable of mimicking cellular properties and behaviors helps to understand the particular biophysical properties and working mechanisms of a cell. A synthetic cell built in this way possesses defined chemical composition and structure. Since phospholipids are native biomembrane components, their assemblies are widely used to mimic cellular structures. Here, recent developments in the formation of versatile phospholipid assemblies are described, together with the applications of these assemblies for functional membranes (protein reconstituted giant unilamellar vesicles), spherical and nonspherical protoorganelles, and functional synthetic cells, as well as the high-order hierarchical structures of artificial tissues. Their biomedical applications are also briefly summarized. Finally, the challenges and future directions in the field of synthetic cells and artificial tissues based on phospholipid assemblies are proposed.
Collapse
Affiliation(s)
- Xuejing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hang Du
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Marine Antifouling Engineering Technology Center of Shangdong Province, Harbin Institute of Technology, Weihai, 264209, China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Wei Mu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
6
|
Abstract
Lung cancer is one of the serious malignant tumors with high morbidity and mortality due to the poor diagnosis and early metastasis. The developing nanotechnology provides novel concepts and research strategies for the lung cancer diagnosis by employing nanomaterials as diagnostic reagents to enhance diagnostic efficiency. This commentary introduces recent progress using nanoparticles for lung cancer diagnosis from two aspects of in vivo and in vitro detection. The challenges and future research perspectives are proposed at the end of the paper.
Collapse
|
7
|
Li C, Li Q, Wang Z, Han X. Phospholipid Self-Assemblies Shaped Like Ancient Chinese Coins for Artificial Organelles. Anal Chem 2020; 92:6060-6064. [PMID: 32207619 DOI: 10.1021/acs.analchem.0c00430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phospholipid self-assemblies are ubiquitous in organisms. Nonspherical lipid-based proto-organelles bear the merits with structures similar to real organelles. It is still a challenge to mimic mass transport between organelles inside cells. Herein, unusual phospholipid self-assemblies shaped like ancient Chinese coins (ACC) were discovered by the recrystallization of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine in an ethanol/water solution from 50 to 25 °C with a certain cooling rate. Their diameter and the ratio of the square edge to the disk diameter were controlled by varying ethanol percentage, lipid concentration, and cooling rate. The ACC-shaped phospholipid bicelles expanded to stacked cisterna structures in pure water, which were regarded as artificial organelles. Mass transport among organelles in a cell was mimicked via the membrane fusion of vesicle shuttles and artificial organelles, which induced cascade enzyme reactions inside artificial organelles. The ACC-shaped phospholipid assemblies provide nice platforms for the studies of cell biology and bottom-up synthetic biology.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Qingchuan Li
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| |
Collapse
|
8
|
Programmed magnetic manipulation of vesicles into spatially coded prototissue architectures arrays. Nat Commun 2020; 11:232. [PMID: 31932592 PMCID: PMC6957477 DOI: 10.1038/s41467-019-14141-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/11/2019] [Indexed: 11/14/2022] Open
Abstract
In nature, cells self-assemble into spatially coded tissular configurations to execute higher-order biological functions as a collective. This mechanism has stimulated the recent trend in synthetic biology to construct tissue-like assemblies from protocell entities, with the aim to understand the evolution mechanism of multicellular mechanisms, create smart materials or devices, and engineer tissue-like biomedical implant. However, the formation of spatially coded and communicating micro-architectures from large quantity of protocell entities, especially for lipid vesicle-based systems that mostly resemble cells, is still challenging. Herein, we magnetically assemble giant unilamellar vesicles (GUVs) or cells into various microstructures with spatially coded configurations and spatialized cascade biochemical reactions using a stainless steel mesh. GUVs in these tissue-like aggregates exhibit uncustomary osmotic stability that cannot be achieved by individual GUVs suspensions. This work provides a versatile and cost-effective strategy to form robust tissue-mimics and indicates a possible superiority of protocell colonies to individual protocells. To execute higher-order functions, cells self-assemble into spatially coded tissue configurations. Here the authors magnetically assembly giant unilamellar vesicles into three dimensional tissue-mimic structures with collective osmotic stability.
Collapse
|
9
|
Abstract
This article summarizes recent progress on biomimetic subcellular structures and discusses integration of these isolated systems.
Collapse
Affiliation(s)
- Shuying Yang
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Lingxiang Jiang
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
10
|
Preparation Methods for Phospholipid Vesicle Arrays and Their Applications in Biological Analysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61179-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|