1
|
Collapse of complexity of brain and body activity due to excessive inhibition and MeCP2 disruption. Proc Natl Acad Sci U S A 2021; 118:2106378118. [PMID: 34686597 DOI: 10.1073/pnas.2106378118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 09/02/2021] [Indexed: 11/18/2022] Open
Abstract
Complex body movements require complex dynamics and coordination among neurons in motor cortex. Conversely, a long-standing theoretical notion supposes that if many neurons in motor cortex become excessively synchronized, they may lack the necessary complexity for healthy motor coding. However, direct experimental support for this idea is rare and underlying mechanisms are unclear. Here we recorded three-dimensional body movements and spiking activity of many single neurons in motor cortex of rats with enhanced synaptic inhibition and a transgenic rat model of Rett syndrome (RTT). For both cases, we found a collapse of complexity in the motor system. Reduced complexity was apparent in lower-dimensional, stereotyped brain-body interactions, neural synchrony, and simpler behavior. Our results demonstrate how imbalanced inhibition can cause excessive synchrony among movement-related neurons and, consequently, a stereotyped motor code. Excessive inhibition and synchrony may underlie abnormal motor function in RTT.
Collapse
|
2
|
Mariani B, Nicoletti G, Bisio M, Maschietto M, Oboe R, Leparulo A, Suweis S, Vassanelli S. Neuronal Avalanches Across the Rat Somatosensory Barrel Cortex and the Effect of Single Whisker Stimulation. Front Syst Neurosci 2021; 15:709677. [PMID: 34526881 PMCID: PMC8435673 DOI: 10.3389/fnsys.2021.709677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/14/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Since its first experimental signatures, the so called "critical brain hypothesis" has been extensively studied. Yet, its actual foundations remain elusive. According to a widely accepted teleological reasoning, the brain would be poised to a critical state to optimize the mapping of the noisy and ever changing real-world inputs, thus suggesting that primary sensory cortical areas should be critical. We investigated whether a single barrel column of the somatosensory cortex of the anesthetized rat displays a critical behavior. Neuronal avalanches were recorded across all cortical layers in terms of both multi-unit activities and population local field potentials, and their behavior during spontaneous activity compared to the one evoked by a controlled single whisker deflection. By applying a maximum likelihood statistical method based on timeseries undersampling to fit the avalanches distributions, we show that neuronal avalanches are power law distributed for both multi-unit activities and local field potentials during spontaneous activity, with exponents that are spread along a scaling line. Instead, after the tactile stimulus, activity switches to a transient across-layers synchronization mode that appears to dominate the cortical representation of the single sensory input.
Collapse
Affiliation(s)
- Benedetta Mariani
- Laboratory of Interdisciplinary Physics, Department of Physics and Astronomy, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Giorgio Nicoletti
- Laboratory of Interdisciplinary Physics, Department of Physics and Astronomy, University of Padova, Padova, Italy
| | - Marta Bisio
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Marta Maschietto
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Roberto Oboe
- Department of Management and Engineering, University of Padova, Padova, Italy
| | | | - Samir Suweis
- Laboratory of Interdisciplinary Physics, Department of Physics and Astronomy, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Stefano Vassanelli
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Biomedical Science, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Fagerholm ED, Foulkes WMC, Gallero-Salas Y, Helmchen F, Friston KJ, Leech R, Moran RJ. Neural Systems Under Change of Scale. Front Comput Neurosci 2021; 15:643148. [PMID: 33967728 PMCID: PMC8099030 DOI: 10.3389/fncom.2021.643148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/17/2020] [Accepted: 03/26/2021] [Indexed: 11/30/2022] Open
Abstract
We derive a theoretical construct that allows for the characterisation of both scalable and scale free systems within the dynamic causal modelling (DCM) framework. We define a dynamical system to be "scalable" if the same equation of motion continues to apply as the system changes in size. As an example of such a system, we simulate planetary orbits varying in size and show that our proposed methodology can be used to recover Kepler's third law from the timeseries. In contrast, a "scale free" system is one in which there is no characteristic length scale, meaning that images of such a system are statistically unchanged at different levels of magnification. As an example of such a system, we use calcium imaging collected in murine cortex and show that the dynamical critical exponent, as defined in renormalization group theory, can be estimated in an empirical biological setting. We find that a task-relevant region of the cortex is associated with higher dynamical critical exponents in task vs. spontaneous states and vice versa for a task-irrelevant region.
Collapse
Affiliation(s)
- Erik D. Fagerholm
- Department of Neuroimaging, King’s College London, London, United Kingdom
| | - W. M. C. Foulkes
- Department of Physics, Imperial College London, London, United Kingdom
| | - Yasir Gallero-Salas
- Brain Research Institute, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| | - Karl J. Friston
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Robert Leech
- Department of Neuroimaging, King’s College London, London, United Kingdom
| | - Rosalyn J. Moran
- Department of Neuroimaging, King’s College London, London, United Kingdom
| |
Collapse
|
4
|
Amgalan A, Taylor P, Mujica-Parodi LR, Siegelmann HT. Unique scales preserve self-similar integrate-and-fire functionality of neuronal clusters. Sci Rep 2021; 11:5331. [PMID: 33674620 PMCID: PMC7936002 DOI: 10.1038/s41598-021-82461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/24/2020] [Accepted: 01/19/2021] [Indexed: 11/09/2022] Open
Abstract
Brains demonstrate varying spatial scales of nested hierarchical clustering. Identifying the brain's neuronal cluster size to be presented as nodes in a network computation is critical to both neuroscience and artificial intelligence, as these define the cognitive blocks capable of building intelligent computation. Experiments support various forms and sizes of neural clustering, from handfuls of dendrites to thousands of neurons, and hint at their behavior. Here, we use computational simulations with a brain-derived fMRI network to show that not only do brain networks remain structurally self-similar across scales but also neuron-like signal integration functionality ("integrate and fire") is preserved at particular clustering scales. As such, we propose a coarse-graining of neuronal networks to ensemble-nodes, with multiple spikes making up its ensemble-spike and time re-scaling factor defining its ensemble-time step. This fractal-like spatiotemporal property, observed in both structure and function, permits strategic choice in bridging across experimental scales for computational modeling while also suggesting regulatory constraints on developmental and evolutionary "growth spurts" in brain size, as per punctuated equilibrium theories in evolutionary biology.
Collapse
Affiliation(s)
- Anar Amgalan
- Physics and Astronomy Department, Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
- Laboratory for Computational Neurodiagnostics, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Patrick Taylor
- College of Information and Computer Sciences, University of Massachusetts, Amherst, MA, USA
| | - Lilianne R Mujica-Parodi
- Physics and Astronomy Department, Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA.
- Laboratory for Computational Neurodiagnostics, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA.
| | - Hava T Siegelmann
- College of Information and Computer Sciences, University of Massachusetts, Amherst, MA, USA.
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA, USA.
- Center for Data Science, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
5
|
Turkheimer FE, Rosas FE, Dipasquale O, Martins D, Fagerholm ED, Expert P, Váša F, Lord LD, Leech R. A Complex Systems Perspective on Neuroimaging Studies of Behavior and Its Disorders. Neuroscientist 2021; 28:382-399. [PMID: 33593120 PMCID: PMC9344570 DOI: 10.1177/1073858421994784] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
The study of complex systems deals with emergent behavior that arises as
a result of nonlinear spatiotemporal interactions between a large
number of components both within the system, as well as between the
system and its environment. There is a strong case to be made that
neural systems as well as their emergent behavior and disorders can be
studied within the framework of complexity science. In particular, the
field of neuroimaging has begun to apply both theoretical and
experimental procedures originating in complexity science—usually in
parallel with traditional methodologies. Here, we illustrate the basic
properties that characterize complex systems and evaluate how they
relate to what we have learned about brain structure and function from
neuroimaging experiments. We then argue in favor of adopting a complex
systems-based methodology in the study of neuroimaging, alongside
appropriate experimental paradigms, and with minimal influences from
noncomplex system approaches. Our exposition includes a review of the
fundamental mathematical concepts, combined with practical examples
and a compilation of results from the literature.
Collapse
Affiliation(s)
- Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fernando E Rosas
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK.,Data Science Institute, Imperial College London, London, UK.,Centre for Complexity Science, Imperial College London, London, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Erik D Fagerholm
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Paul Expert
- Global Digital Health Unit, School of Public Health, Imperial College London, London, UK
| | - František Váša
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Robert Leech
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
6
|
Roisen DA, Shew WL. Fractal brain dynamics: from Mandelbrot to marmosets. J Physiol 2020; 598:1425-1426. [PMID: 32060921 DOI: 10.1113/jp279556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022] Open
|
7
|
Chen G, Gong P. Computing by modulating spontaneous cortical activity patterns as a mechanism of active visual processing. Nat Commun 2019; 10:4915. [PMID: 31664052 PMCID: PMC6820766 DOI: 10.1038/s41467-019-12918-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2019] [Accepted: 10/07/2019] [Indexed: 01/23/2023] Open
Abstract
Cortical populations produce complex spatiotemporal activity spontaneously without sensory inputs. However, the fundamental computational roles of such spontaneous activity remain unclear. Here, we propose a new neural computation mechanism for understanding how spontaneous activity is actively involved in cortical processing: Computing by Modulating Spontaneous Activity (CMSA). Using biophysically plausible circuit models, we demonstrate that spontaneous activity patterns with dynamical properties, as found in empirical observations, are modulated or redistributed by external stimuli to give rise to neural responses. We find that this CMSA mechanism of generating neural responses provides profound computational advantages, such as actively speeding up cortical processing. We further reveal that the CMSA mechanism provides a unifying explanation for many experimental findings at both the single-neuron and circuit levels, and that CMSA in response to natural stimuli such as face images is the underlying neurophysiological mechanism of perceptual "bubbles" as found in psychophysical studies.
Collapse
Affiliation(s)
- Guozhang Chen
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia.,ARC Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Pulin Gong
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia. .,ARC Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|