1
|
El-Fatyany A, Wang H, Abd El-Atty SM. Efficient Framework Analysis for Targeted Drug Delivery Based on Internet of Bio-NanoThings. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021; 46:9965-9980. [PMID: 33907662 PMCID: PMC8061466 DOI: 10.1007/s13369-021-05651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 04/03/2021] [Indexed: 11/24/2022]
Abstract
The Internet of Bio-NanoThings (IoBNTs) is a novel paradigm that derives from synthetic biology and advances in nanotechnology for controlling the embedded nanodevices in various medical applications. However, numerous studies have focused on communication efficiency among the nanodevices in a given network, the challenges such as the design and the development of the nanodevices, and the coordination of molecular communication within the wireless body area network (BAN), and the interface connection between the BAN and the Internet are yet to be addressed. Therefore, in this study, we present a framework analysis comprising of the compartmental model, for studying the effects and variances in drug concentration that occur inside intra-body nanonetworks through IoBNT, while taking into account the properties of target cells as well as the ligand-receptor binding mechanism. A performance analysis of the proposed framework for the forward link (i.e., from the Internet to the intra-body nanonetwork) and reverse link (i.e., from the intra-body nanonetwork to the Internet) is presented. The simulation results of the developed framework reveal its ability to enhance the delivery of therapeutic drugs to the target cell while minimizing the side effects in healthy cells.
Collapse
Affiliation(s)
- Aya El-Fatyany
- School of Computer Science and Technology, Harbin Institute of Technology (HIT), Harbin, China.,Department of Mathematics, Faculty of Science, Menoufia University, Shebin El‑Kom, Egypt
| | - Hongzhi Wang
- School of Computer Science and Technology, Harbin Institute of Technology (HIT), Harbin, China
| | - Saied M Abd El-Atty
- Department of Electronics and Electrical Communications Engineering, Menoufia University, Menouf, 32952 Egypt
| |
Collapse
|
2
|
Zhan Z, Dai Y, Li Q, Lv Y. Small molecule-based bioluminescence and chemiluminescence probes for sensing and imaging of reactive species. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116129] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Zhan Z, Su Z, Chai L, Li C, Liu R, Lv Y. Multimodal Imaging Iridium(III) Complex for Hypochlorous Acid in Living Systems. Anal Chem 2020; 92:8285-8291. [PMID: 32456421 DOI: 10.1021/acs.analchem.0c00536] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biomolecule tracing with different imaging methods is of great significance for more accurately unravelling the fundamental processes in living systems. However, considering the different principles of each imaging method for probe design, it is still a great challenge to apply one molecular probe to achieve two or even more imaging analyses for biomarkers. In general, traditional oxime was reported as a recognition group for fluorescence imaging of HOCl. Herein, for the first time, we designed the oxime decorated iridium(III) complex, which can be directly used for chemiluminescence as well as two-photon luminescence and photoluminescence lifetime imaging of HOCl in living systems. Moreover, the novel chemiluminescence mechanism of Ir-CLFLPLIM for HOCl was also proposed and explored by continuously monitoring chemiluminescence peak shapes and mass spectra, inferring the reaction intermediate and calculating the chemical reaction energy range of the reaction process. This strategy could lead us to expand the chemiluminescence application of transition metal complexes and develop more multimodal imaging probes.
Collapse
Affiliation(s)
- Zixuan Zhan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Li Chai
- Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenghui Li
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.,Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
4
|
Shah SNA, Khan M, Rehman ZU. A prolegomena of periodate and peroxide chemiluminescence. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|