1
|
Klein J. Progesterone Metabolism in Digitalis and Other Plants-60 Years of Research and Recent Results. PLANT & CELL PHYSIOLOGY 2024; 65:1500-1514. [PMID: 38226483 DOI: 10.1093/pcp/pcae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
5β-Cardenolides are pharmaceutically important metabolites from the specialized metabolism of Digitalis lanata. They were used over decades to treat cardiac insufficiency and supraventricular tachycardia. Since the 1960s, plant scientists have known that progesterone is an essential precursor of cardenolide formation. Therefore, biosynthesis of plant progesterone was mainly analyzed in species of the cardenolide-containing genus Digitalis during the following decades. Today, Digitalis enzymes catalyzing the main steps of progesterone biosynthesis are known. Most of them are found in a broad range of organisms. This review will summarize the findings of 60 years of research on plant progesterone metabolism with particular focus on the recent results in Digitalis lanata and other plants.
Collapse
Affiliation(s)
- Jan Klein
- Department of Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Dornburger Straße 159, Jena 07743, Germany
| |
Collapse
|
2
|
Ding L, Fox AR, Chaumont F. Multifaceted role and regulation of aquaporins for efficient stomatal movements. PLANT, CELL & ENVIRONMENT 2024; 47:3330-3343. [PMID: 38742465 DOI: 10.1111/pce.14942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/18/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Stomata are micropores on the leaf epidermis that allow carbon dioxide (CO2) uptake for photosynthesis at the expense of water loss through transpiration. Stomata coordinate the plant gas exchange of carbon and water with the atmosphere through their opening and closing dynamics. In the context of global climate change, it is essential to better understand the mechanism of stomatal movements under different environmental stimuli. Aquaporins (AQPs) are considered important regulators of stomatal movements by contributing to membrane diffusion of water, CO2 and hydrogen peroxide. This review compiles the most recent findings and discusses future directions to update our knowledge of the role of AQPs in stomatal movements. After highlighting the role of subsidiary cells (SCs), which contribute to the high water use efficiency of grass stomata, we explore the expression of AQP genes in guard cells and SCs. We then focus on the cellular regulation of AQP activity at the protein level in stomata. After introducing their post-translational modifications, we detail their trafficking as well as their physical interaction with various partners that regulate AQP subcellular dynamics towards and within specific regions of the cell membranes, such as microdomains and membrane contact sites.
Collapse
Affiliation(s)
- Lei Ding
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Ana Romina Fox
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Yeh PS, Li CC, Lu YS, Chiang YW. Structural Insights into the Binding and Degradation Mechanisms of Protoporphyrin IX by the Translocator Protein TSPO. JACS AU 2023; 3:2918-2929. [PMID: 37885593 PMCID: PMC10598825 DOI: 10.1021/jacsau.3c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
The 18 kDa translocator protein (TSPO) has gained considerable attention as a clinical biomarker for neuroinflammation and a potential therapeutic target. However, the mechanisms by which TSPO associates with ligands, particularly the endogenous porphyrin ligand protoporphyrin IX (PpIX), remain poorly understood. In this study, we employed mutagenesis- and spectroscopy-based functional assays to investigate TSPO-mediated photo-oxidative degradation of PpIX and identify key residues involved in the reaction. We provide structural evidence using electron spin resonance, which sheds light on the highly conserved intracellular loop (LP1) connecting transmembrane 1 (TM1) and TM2. Our findings show that LP1 does not act as a lid to regulate ligand binding; instead, it interacts strongly with the TM3-TM4 linker (LP3) to stabilize the local structure of LP3. This LP1-LP3 interaction is crucial for maintaining the binding pocket structure, which is essential for proper ligand binding. Our results also demonstrate that PpIX accesses the pocket through the lipid bilayer without requiring conformational changes in TSPO. This study provides an improved understanding of TSPO-mediated PpIX degradation, highlighting potential therapeutic strategies to regulate the reaction.
Collapse
Affiliation(s)
- Pei-Shan Yeh
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Chieh-Chin Li
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yi-Shan Lu
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| |
Collapse
|
4
|
Geng W, Wang Y, Zhang J, Liu Z, Chen X, Qin L, Yang L, Tang H. Genome-wide identification and expression analyses of late embryogenesis abundant (LEA) gene family in tobacco (Nicotiana tabacum L.) reveal their function in abiotic stress responses. Gene 2022; 836:146665. [PMID: 35691407 DOI: 10.1016/j.gene.2022.146665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/11/2022] [Accepted: 06/06/2022] [Indexed: 12/29/2022]
Abstract
Late embryogenesis abundant (LEA) proteins play an important role in plant growth and response to abiotic stresses. However the late embryogenesis abundant (LEA) gene family in Nicotiana tabacum has not been systematically studied. In this study, 123 NtLEA genes were identified in Nicotiana tabacum, and divided into 8 groups, including LEA_1, LEA_2, LEA_3, LEA_4, LEA_5, LEA_6, DHN (dehydratin) and SMP (Seed Maturation Protein). The LEA_2 group is the most abundant of the NtLEA family. The gene structure, conserved motifs, subcellular localization and physicochemical properties of the NtLEA genes were analyzed. RNA-seq and qPCR analyses showed that the NtLEA genes were significantly induced under two different abiotic stresses and showed different expression patterns. The expression patterns of 35 NtLEA genes responding to ABA and 3 NtLEA genes responding to NaCl abiotic stress, respectively, were characterized. The protein-protein interaction network revealed that most NtLEA proteins (>78%) had the potential function to enhance tobacco resistance to abiotic stress. The transcriptional regulatory network showed that 21 transcription factor families were involved in regulating the expression of the NtLEA genes. These results are beneficial for future studies of the function of the NtLEA genes.
Collapse
Affiliation(s)
- Weibo Geng
- Shandong Agricultural University, 271000 Taian, China
| | - Yanan Wang
- Shandong Agricultural University, 271000 Taian, China
| | - Jing Zhang
- Shandong Agricultural University, 271000 Taian, China
| | - Zhonghui Liu
- Shandong Agricultural University, 271000 Taian, China
| | - Xingyun Chen
- Shandong Agricultural University, 271000 Taian, China
| | - Liting Qin
- Shandong Agricultural University, 271000 Taian, China
| | - Long Yang
- Shandong Agricultural University, 271000 Taian, China.
| | - Heng Tang
- Shandong Agricultural University, 271000 Taian, China.
| |
Collapse
|
5
|
Maurel C, Tournaire-Roux C, Verdoucq L, Santoni V. Hormonal and environmental signaling pathways target membrane water transport. PLANT PHYSIOLOGY 2021; 187:2056-2070. [PMID: 35235672 PMCID: PMC8644278 DOI: 10.1093/plphys/kiab373] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/13/2021] [Indexed: 05/04/2023]
Abstract
Plant water transport and its molecular components including aquaporins are responsive, across diverse time scales, to an extremely wide array of environmental and hormonal signals. These include water deficit and abscisic acid (ABA) but also more recently identified stimuli such as peptide hormones or bacterial elicitors. The present review makes an inventory of corresponding signalling pathways. It identifies some main principles, such as the central signalling role of ROS, with a dual function of aquaporins in water and hydrogen peroxide transport, the importance of aquaporin phosphorylation that is targeted by multiple classes of protein kinases, and the emerging role of lipid signalling. More studies including systems biology approaches are now needed to comprehend how plant water transport can be adjusted in response to combined stresses.
Collapse
Affiliation(s)
- Christophe Maurel
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
- Author for Communication:
| | | | - Lionel Verdoucq
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Véronique Santoni
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
6
|
Liu W, Liu Z, Mo Z, Guo S, Liu Y, Xie Q. ATG8-Interacting Motif: Evolution and Function in Selective Autophagy of Targeting Biological Processes. FRONTIERS IN PLANT SCIENCE 2021; 12:783881. [PMID: 34912364 PMCID: PMC8666691 DOI: 10.3389/fpls.2021.783881] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/28/2021] [Indexed: 05/26/2023]
Abstract
Autophagy is an evolutionarily conserved vacuolar process functioning in the degradation of cellular components for reuse. In plants, autophagy is generally activated upon stress and its regulation is executed by numbers of AuTophaGy-related genes (ATGs), of which the ATG8 plays a dual role in both biogenesis of autophagosomes and recruitment of ATG8-interacting motif (AIM) anchored selective autophagy receptors (SARs). Such motif is either termed as AIM or ubiquitin-interacting motif (UIM), corresponding to the LC3-interacting region (LIR)/AIM docking site (LDS) or the UIM docking site (UDS) of ATG8, respectively. To date, dozens of AIM or UIM containing SARs have been characterized. However, the knowledge of these motifs is still obscured. In this review, we intend to summarize the current understanding of SAR proteins and discuss the conservation and diversification of the AIMs/UIMs, expectantly providing new insights into the evolution of them in various biological processes in plants.
Collapse
Affiliation(s)
- Wanqing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Zinan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Zulong Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Shaoying Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yunfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Hiser C, Montgomery BL, Ferguson-Miller S. TSPO protein binding partners in bacteria, animals, and plants. J Bioenerg Biomembr 2021; 53:463-487. [PMID: 34191248 PMCID: PMC8243069 DOI: 10.1007/s10863-021-09905-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/12/2021] [Indexed: 12/11/2022]
Abstract
The ancient membrane protein TSPO is phylogenetically widespread from archaea and bacteria to insects, vertebrates, plants, and fungi. TSPO’s primary amino acid sequence is only modestly conserved between diverse species, although its five transmembrane helical structure appears mainly conserved. Its cellular location and orientation in membranes have been reported to vary between species and tissues, with implications for potential diverse binding partners and function. Most TSPO functions relate to stress-induced changes in metabolism, but in many cases it is unclear how TSPO itself functions—whether as a receptor, a sensor, a transporter, or a translocator. Much evidence suggests that TSPO acts indirectly by association with various protein binding partners or with endogenous or exogenous ligands. In this review, we focus on proteins that have most commonly been invoked as TSPO binding partners. We suggest that TSPO was originally a bacterial receptor/stress sensor associated with porphyrin binding as its most ancestral function and that it later developed additional stress-related roles in eukaryotes as its ability to bind new partners evolved.
Collapse
Affiliation(s)
- Carrie Hiser
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
| | - Beronda L Montgomery
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
8
|
Bhati KK, Luong AM, Batoko H. VPS34 Complexes in Plants: Untangled Enough? TRENDS IN PLANT SCIENCE 2021; 26:303-305. [PMID: 33602624 DOI: 10.1016/j.tplants.2021.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 05/11/2023]
Abstract
Phosphatidylinositol-3-phosphate (PI3P) is essential for endocytosis and autophagy. VPS38 (endocytosis) and ATG14 (autophagy) are required for localized biosynthesis of PI3P. Liu et al. have shown that mutant arabidopsis (Arabidopsis thaliana) lacking both proteins are viable and synthesize PI3P, suggesting that the enzymatic complex VPS34 can function in absence of these regulatory subunits.
Collapse
Affiliation(s)
- Kaushal Kumar Bhati
- Louvain Institute of Biomolecular Science and Technology, University of Louvain, Louvain-la-Neuve, Belgium
| | - Ai My Luong
- Louvain Institute of Biomolecular Science and Technology, University of Louvain, Louvain-la-Neuve, Belgium
| | - Henri Batoko
- Louvain Institute of Biomolecular Science and Technology, University of Louvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
9
|
Fox AR, Scochera F, Laloux T, Filik K, Degand H, Morsomme P, Alleva K, Chaumont F. Plasma membrane aquaporins interact with the endoplasmic reticulum resident VAP27 proteins at ER-PM contact sites and endocytic structures. THE NEW PHYTOLOGIST 2020; 228:973-988. [PMID: 33410187 PMCID: PMC7586982 DOI: 10.1111/nph.16743] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/01/2020] [Indexed: 05/24/2023]
Abstract
Plasma membrane (PM) intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water and small solutes. The functional importance of the PM organisation of PIPs in the interaction with other cellular structures is not completely understood. We performed a pull-down assay using maize (Zea mays) suspension cells expressing YFP-ZmPIP2;5 and validated the protein interactions by yeast split-ubiquitin and bimolecular fluorescence complementation assays. We expressed interacting proteins tagged with fluorescent proteins in Nicotiana benthamiana leaves and performed water transport assays in oocytes. Finally, a phylogenetic analysis was conducted. The PM-located ZmPIP2;5 physically interacts with the endoplasmic reticulum (ER) resident ZmVAP27-1. This interaction requires the ZmVAP27-1 cytoplasmic major sperm domain. ZmPIP2;5 and ZmVAP27-1 localise in close vicinity in ER-PM contact sites (EPCSs) and endocytic structures upon exposure to salt stress conditions. This interaction enhances PM water permeability in oocytes. Similarly, the Arabidopsis ZmVAP27-1 paralogue, AtVAP27-1, interacts with the AtPIP2;7 aquaporin. Together, these data indicate that the PIP2-VAP27 interaction in EPCSs is evolutionarily conserved, and suggest that VAP27 might stabilise the aquaporins and guide their endocytosis in response to salt stress.
Collapse
Affiliation(s)
- Ana Romina Fox
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐Neuve1348Belgium
- Facultad de Farmacia y BioquímicaInstituto de Química y Fisicoquímica Biológica (IQUIFIB)CONICETUniversidad de Buenos AiresBuenos Aires1113Argentina
| | - Florencia Scochera
- Facultad de Farmacia y BioquímicaInstituto de Química y Fisicoquímica Biológica (IQUIFIB)CONICETUniversidad de Buenos AiresBuenos Aires1113Argentina
- Facultad de Farmacia y BioquímicaDepartamento de FisicomatemáticaUniversidad de Buenos AiresBuenos Aires1113Argentina
| | - Timothée Laloux
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐Neuve1348Belgium
| | - Karolina Filik
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐Neuve1348Belgium
| | - Hervé Degand
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐Neuve1348Belgium
| | - Pierre Morsomme
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐Neuve1348Belgium
| | - Karina Alleva
- Facultad de Farmacia y BioquímicaInstituto de Química y Fisicoquímica Biológica (IQUIFIB)CONICETUniversidad de Buenos AiresBuenos Aires1113Argentina
- Facultad de Farmacia y BioquímicaDepartamento de FisicomatemáticaUniversidad de Buenos AiresBuenos Aires1113Argentina
| | - François Chaumont
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐Neuve1348Belgium
| |
Collapse
|